
An Almost Space-Optimal Streaming Algorithm for
Coresets in Fixed Dimensions

Hamid Zarrabi-Zadeh∗

Abstract

We present a new streaming algorithm for maintaining an ε-kernel of a point set in Rd using
O((1/ε(d−1)/2) log(1/ε)) space. The space used by our algorithm is optimal up to a small logarithmic
factor. This significantly improves (for any fixed dimension d > 3) the best previous algorithm
for this problem that uses O(1/εd−(3/2)) space, presented by Agarwal and Yu. Our algorithm
immediately improves the space complexity of the previous streaming algorithms for a number
of fundamental geometric optimization problems in fixed dimensions, including width, minimum-
volume bounding box, minimum-radius enclosing cylinder, minimum-width enclosing annulus, etc.

1 Introduction

The coreset framework has recently attracted considerable attention as a powerful tool for approxi-
mating various measures of a geometric data set. In this framework, a small subset of the input point
set, called a coreset , is extracted in such a way that solving the optimization problem on the coreset
yields an approximate solution to the entire set.

Agarwal et al. [2] developed a generic method for computing coresets for various optimization
problems by introducing the notion of ε-kernel. Roughly speaking, a subset Q ⊆ P is called an ε-
kernel of P if for every slab S containing Q, the (1 + ε)-expansion of S contains P . The technique of
Agarwal et al. yields approximation algorithms for a wide range of shape-fitting problems.

The coreset framework also plays an essential role in designing approximation algorithms operating
under the data stream model. In this model, the input is given to the algorithm as a stream over time,
and the algorithm has to process the input elements as they arrive in only one pass. Furthermore, the
algorithm has only a limited amount of working storage and cannot store the whole input in its memory.
This one-pass streaming model is attractive both in theory and in practice due to emerging applications
which involve massive data sets. The coreset framework is useful here as it allows streaming algorithms
to maintain only a “sketch” of the input, which is typically small compared to the whole data set. For
example, see [1, 9, 10, 11] on the growing literature of streaming algorithms developed over the recent
few years for various geometric problems using the notion of coresets.

In this paper, we are interested in space-efficient streaming algorithms for maintaining ε-kernels
in Rd. Using the general dynamization technique of Bentley and Saxe [8], Agarwal et al. [2] gave a
streaming algorithm for maintaining an ε-kernel of a stream of points in Rd using O((1/ε(d−1)/2) logd n)
space and O(1/εd−1) time per update, where n is the number of points in the stream. Chan [9] suc-
ceeded to remove the dependency of the space bound to n and gave the first constant-space streaming

∗School of Computer Science, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada; hzarrabi@uwaterloo.ca

1

Table 1. Space complexity of various streaming algorithms for maintaining ε-kernels in Rd.

Algorithm Space Bound Ref

Agarwal, Har-Peled, and Varadarajan ’04 O((1/ε
d−1
2) logd n) [2]

Chan ’06 O((1/εd−(3/2)) logd(1/ε)) [9]

Agarwal and Yu ’07 O(1/εd−(3/2)) [6]

This work O((1/ε
d−1
2) log(1/ε)) Here

algorithm that uses only O([(1/ε) log(1/ε)]d−1) space and requires O(1) amortized time for processing
each new point. He also showed how the space bound can be improved to O((1/εd−(3/2)) logd(1/ε)) at
the expense of increasing the update time to O(1/

√
ε). Later on, Agarwal and Yu [6] removed the ex-

tra logarithmic factors and slightly improved the space complexity to O(1/εd−(3/2)), with O(log(1/ε))
update time per input point. Agarwal and Yu’s algorithm is indeed space-optimal in two dimensions,
but is still far from optimal in dimensions higher than two.

Our Results. Chan [9] left this question open whether the space bound for the problem of maintaining
ε-kernels in Rd can be brought down to near O(1/ε(d−1)/2). In this paper, we answer Chan’s question
in the affirmative by providing a streaming algorithm that uses a near optimal space. More precisely,
our algorithm maintains an ε-kernel in Rd using only O((1/ε(d−1)/2) log(1/ε)) space and (1/ε)O(d)

update time per insertion. The space bound of our algorithm is optimal up to a logarithmic factor, as
one can easily verify that any ε-kernel for sufficiently many points uniformly distributed on the surface
of a d-dimensional hypersphere has size Ω(1/ε(d−1)/2) [3]. Our algorithm differs from its predecessors
[6, 9] in that the high level structure of our algorithm is not dimensionality-reduction (which ultimately
exploits efficient techniques in two dimensions), but rather a high-dimensional partition of the input
stream into d-dimensional “fat substreams” for which ε-kernels can be maintained efficiently by a kind
of bucketing scheme. Our algorithm can be viewed as a generalization of the algorithm proposed by
Chan [9] in two dimensions, which also employs a version of the compression technique used in [6].
See Table 1 for a comparison between the space complexity of our algorithm and the previous ones.

Our algorithm immediately improves the space complexity of the best previous streaming algo-
rithms for a wide range of geometric problems in fixed dimensions, including width, minimum-volume
bounding box, minimum-radius enclosing cylinder, minimum-width enclosing cylindrical shell, etc.
The improvement obtained by our algorithm is substantial when the problem’s dimension is large.
However, the algorithm improves several previous results in lower dimensions as well. For example, for
the two-dimensional minimum-width enclosing annulus problem, combined with the lifting technique
of Agarwal et al. [2], our algorithm requires only O((1/ε) log(1/ε)) space, while the best previous space
bound for this problem was O(1/ε3/2). As a byproduct of our algorithm, we also show how to main-
tain an ε-kernel of a stream of points in Rd in an optimal time of O(1) using O((1/εd−(3/2)) log(1/ε))
space, which improves the best previously known time-optimal algorithm by Chan [9] that requires
O([(1/ε) log(1/ε)]d−1) space.

2

2 Preliminaries

We first introduce the notation used in this paper. For a point set P ⊂ Rd and a direction u ∈ Sd−1,
the directional width of P along u is defined by w(P, u) = maxp,q∈P 〈p− q, u〉, where 〈·, ·〉 denotes the
inner product function. A subset Q ⊆ P is called an ε-kernel of P , if for all u ∈ Sd−1,

w(Q, u) > (1− ε)w(P, u).

We will use the following result from Chan throughout this paper:

Theorem 1 (Chan [9]) Given a set P of n points in Rd, an ε-kernel of P of size O(1/ε(d−1)/2) can
be computed in O(n+ 1/εd−(3/2)) time for d > 2, or in O((n+ 1/εd−2) log(1/ε)) time for d > 3.

Let S = {p1, . . . , pk} be a set of k points in Rd (k 6 d+ 1). We denote by F(S) the flat spanned

by S, i.e., F(S) =
{∑k

i=1 aipi | a1, . . . , ak ∈ R and
∑k

i=1 ai = 1
}
. Given a point p ∈ Rd and a flat

F ⊂ Rd, the orthogonal projection of p onto F is defined as proj(F, p) = arg minp′∈F ‖pp′‖. The
Euclidean distance between p and its projection onto F is denoted by dF(p). Throughout this paper,
we simply use dS(p) instead of dF(S)(p) to refer to the distance of p to a flat defined by the point set
S. If S = ∅, then dS(p) = 0 by definition.

Let X = 〈x0, x1, . . . , xk〉 be a sequence of k + 1 points in Rd (k 6 d). We say that a point p ∈ Rd

is X-respecting , if for every 0 6 i < k,

dXi(p) 6 2 · dXi(xi+1),

where Xi = {x0, x1, . . . , xi}. If |X| 6 1, then every point is X-respecting by definition. The sequence
X is called self-respecting , if for every 1 6 j 6 k, xj is 〈x0, . . . , xj−1〉-respecting. Moreover, a point
set P is called X-respecting, if for every point p ∈ P , p is X-respecting.

In this paper, we assume a real-RAM model of computation [13] in which arithmetic operations
on real numbers take constant time.

3 Fat Substreams

In this section, we present a simple efficient algorithm for maintaining ε-kernels of fat substreams to
be used as a subroutine in Section 4. Let B be a hyperbox in Rd, and α 6 1 be a positive constant.
A point set P ⊂ Rd is called α-fat with respect to B, if there exist two points v and v′ so that
v + αB ⊆ conv(P) ⊆ v′ + B. If P is fat with respect to a hyperbox B, then an ε-kernel of P of size
O(1/ε(d−1)/2) can be computed efficiently using a simple grid-rounding method [9, 14] to be described
later in this section. This grid-rounding method actually works for the case where B is a hypercube.
However, we can easily transform B to a hypercube by an affine transform τ , and then compute an
ε-kernel Q of the set τ(P). The set τ−1(Q) is then an ε-kernel of P , as proved in [2]. In the following,
we show how this idea can be used for X-respecting substreams.

Let X = 〈x0, x1, . . . , xd〉 be a sequence of d+ 1 points in Rd. For each 1 6 i 6 d, we denote by x̂i

the projection of xi onto F(Xi−1), where Xi = {x0, x1, . . . , xi}. Let wi = ‖x̂ixi‖ and ui = (1/wi)
−−→
x̂ixi.

We denote by BX the d-dimensional box centered at x0, whose i-th side has length 2wi in direction
ui (1 6 i 6 d), and define BX = 2BX . The following lemma (which is analogous to what is proved
in [7] for three dimensions) provides a connection between X-respecting and fat sets.

3

Bi−1

ox̂i

xi

bb′

uk H

ui

F(Xi−1)
a

wi

a′
6 wk

Figure 1. Proof of Lemma 1.

Lemma 1 Let X be a self-respecting sequence of d + 1 points in Rd. Given a point set P ⊂ Rd, if P
is X-respecting, then P ∪X is (1/4)d-fat with respect to BX .

Proof: Obviously, BX contains all the points of P ∪ X. We show that conv(X) (and therefore,
conv(P ∪X)) contains a translated copy of (1/4)dBX . Suppose by induction that conv(Xi−1) contains
an (i− 1)-dimensional box Bi−1 ⊂ BX , whose j-th side has length wj/4

i−1 in direction uj (1 6 j < i).
Now, consider the pyramid Pi = conv(Bi−1 ∪ {xi}). Clearly, Pi ⊆ conv(Xi). We only need to show
that Pi contains an i-dimensional box Bi ⊂ BX , whose j-th side has length at least wj/4

i in direction
uj (1 6 j 6 i).

Fix a k (1 6 k < i), and consider the plane H through xix̂i parallel to uk (see Fig. 1). The
projection of Bi−1 onto H is a line segment ab of length wk/4

i−1. Let o be the orthogonal projection
of x0 onto H. Then we have ‖oa‖, ‖ob‖ 6 wk (because Bi−1 ⊂ BX), and ‖ox̂i‖ 6 ‖x0xi‖ 6 2wk

(because X is self-respecting).

Let a′ (respectively, b′) be a point on
←→
ab whose vertical distance (in direction ui) from xia (respec-

tively, from xib) is equal to wi/4
i. We have ‖aa′‖, ‖bb′‖ 6 3wk/4

i, due to similarity of triangles, and
because ‖ax̂i‖, ‖bx̂i‖ 6 3wk. Let sk = ab − (aa′ ∪ bb′). If one of the two angles ∠abxi and ∠baxi is
obtuse, then one of the segments aa′ and bb′ falls completely outside ab, and therefore ‖sk‖ > wk/4

i.
If both ∠abxi and ∠baxi are at most π/2, then ‖aa′‖ + ‖bb′‖ = ‖ab‖/4 = wk/4

i, and therefore,
‖sk‖ = 3wk/4

i > wk/4
i. Now, we cut that portion of Bi−1 whose projection onto H lies inside sk, and

repeat this procedure for every 1 6 k < i. The remaining box, B′i−1, has length at least wk/4
i in each

direction uk. If we expand B′i−1 by wi/4
i units in direction ui, we obtain the desired i-dimensional

box Bi ⊂ BX which completely remains inside Pi. 2

Note that the fatness parameter in Lemma 1 is exponential in d, but is a constant in any fixed
dimension.

Algorithm for Fat Streams. Let P be a point set in Rd which is fat with respect to a d-dimensional
hyperbox B. We may assume that B is centered at origin by a simple translation. Moreover, we
may assume that B = [−1, 1]d by an affine transform1. Now, we can easily compute an ε-kernel
of P using the following grid-rounding method proposed in [9, 14]: Let R be the set of points of a√
ε-grid over the boundary of the cube [−2, 2]d, and let ξS(r) denote the nearest neighbor of a point

1In order for this affine transform to exist, B must have a positive width along each of its d axes. If this is not the
case, we simply ignore all those axes along which B has zero width and consider B to be a hyperbox in a lower dimension.

4

r ∈ R in the set S. Then the set Q = {ξP (r) | r ∈ R} is an ε-kernel of P (see Fig. 2). Obviously,
|Q| 6 |R| = O(1/ε(d−1)/2). It just remains to show how we can efficiently maintain Q when new points
are inserted into P , while P remains fat with respect to B.

Let Kernel(S) = {ξS(r) | r ∈ R}. The function Insert-Box described below inserts a point p
into the fat stream P (enclosed by B) and returns an ε-kernel of P . The algorithm maintains two
subsets Q0 and Q1 at each time, which are initially empty.

B.Insert-Box(p):

1: Q1 ← Q1 ∪ {p}
2: if |Q1| > 1/ε(d−1)/2 then

3: Q0 ← Kernel(Q0 ∪Q1)

4: Q1 ← ∅
5: return Q0 ∪Q1

The algorithm divides the stream P into substreams of size
⌊
1/ε(d−1)/2

⌋
. Whenever a substream

is completely received, it is merged to the kernel maintained for the previous substreams in order
to obtain a single kernel for the whole stream received so far. The correctness of the algorithm
immediately follows from the following two facts: (i) Kernel(P ∪ Q) ⊆ Kernel(P) ∪Kernel(Q),
and (ii) Kernel(Kernel(P)) = Kernel(P). The kernel in line 3 can be computed using Theorem 1
in O(n+1/εd−(3/2)) or O((n+1/εd−2) log(1/ε)) time, where n = |Q0∪Q1| = Θ(1/ε(d−1)/2). Therefore,
the amortized update time charged to each input point is O(1 + (1/ε(d−3)/2) log(1/ε)). We conclude:

Theorem 2 Given a stream of points P in Rd which is fat with respect to a fixed hyperbox, an ε-kernel
of P can be maintained using O(1/ε(d−1)/2) space and O(1 + (1/ε(d−3)/2) log(1/ε)) amortized time per
input point.

Remark. In two dimensions, Agarwal and Yu [6] used a balanced binary search tree to maintain
an ε-kernel of a fat stream in O(log(1/ε)) time. Theorem 2 immediately improves their method by
providing an algorithm that requires only O(1) amortized time, without using any extra data structure.

R

PB

Figure 2. Constructing an ε-kernel of a fat point set.

5

Corollary 1 Let X be a self-respecting sequence of d+1 points in Rd. Given an X-respecting stream P
in Rd, an ε-kernel of P∪X can be maintained using O(1/ε(d−1)/2) space and O(1+(1/ε(d−3)/2) log(1/ε))
amortized update time.

Proof: By Lemma 1, P ∪X is fat with respect to BX . Therefore, we can use the Insert-Box function
on BX with the only exception that Q0 is initially set to X. 2

4 The Main Algorithm

In this section, we describe our main algorithm for maintaining an ε-kernel of a data stream P ⊂ Rd.
The Insert function presented in Fig. 3 inserts a point p into an X-respecting stream P and returns
an ε-kernel Q of P . Each new point p is inserted into the stream by calling P .Insert(p, 〈〉), where 〈〉
denotes the empty sequence. In this algorithm, b = dlog(1/ε)e, and φi (used in line 15) is a function
to be defined shortly.

P .Insert(p,X):

1: if p is the first point of P then

2: i← 1, v1 ← p

3: if |X| = d+ 1 then

4: return Q = BX .Insert-Box(p)

5: if dX(p) 6 2 · dX(vi) then

6: Qi ← Pi .Insert(p,X + 〈vi〉)
7: else

8: if |Qi| > 1/ε(d−1)/2 then

9: Qi ← ε-Kernel(Qi)

10: Pi .Free()

11: i← i+ 1, vi ← p

12: Qi ← Pi .Insert(p,X + 〈vi〉)
13: if i− b > 0 then

14: for each q ∈ Qi−b do

15: q′ ← φ1 ◦ · · · ◦ φi(q)
16: Q′ ← P ′.Insert(q′, 〈〉)
17: Q0 ← {q | q′ ∈ Q′}
18: Qi−b ← ∅
19: return Q = ∪ij=0Qj

compression step

merging step

Figure 3. The main algorithm.

The overall structure of the algorithm is simple. For an easier understanding, one can temporarily
ignore the two code blocks in the algorithm labeled by “compression” and “merging” steps (we need
these two steps only to guarantee the space bound). The algorithm works recursively, and the level

6

0

1

2

d

d + 1

Q1 Q2 Q3

Q1 Q2

v1

v1

v3

⇒v4 Q1Q2Q3

v1

v1

v5

v1

Q4
x2

x3

x0

x1

x2

x3

x0

x1

Q1 Q2 v3

v4

(b)(a)

Figure 4. An example of the execution of the algorithm for d = 3. (a) All 〈x0, x1, x2, x3〉-respecting points go down through
the levels until they are inserted into a hyperbox BX at level d+ 1. (b) A new point p has arrived which is 〈x0, x1〉-respecting,
but not 〈x0, x1, v4〉-respecting. As a result, the kernel previously maintained for the substream started by v4 is compressed
and stored in Q4, the subtree rooted at v4 is discarded, and a new substream is started with v5 = p as its first point.

of recursion is controlled by an input sequence X. We start with an empty sequence X = 〈〉 at the
topmost level (level 0), and add one point to X at each subsequent level. After d + 1 recursive calls
(i.e., at level d+ 1), we reach a set X of d+ 1 points that defines a d-dimensional hyperbox BX . The
idea is to recursively partition the input stream into substreams each of which is fat with respect to
a hyperbox so that an ε-kernel for each substream can be maintained efficiently using the method
described in Section 3.

At any time, we have d + 2 instances of the algorithm corresponding to the levels 0 to d + 1 of
the recursion. Each instance receives as input a stream of points P (which is a subset of its parent’s
stream), and a sequence of points X such that P is X-respecting. It then divides its input X-respecting
stream P into substreams P1, . . . , Pi started by the points v1, . . . , vi, where v1 is the first point of P ,
and each subsequent vi is chosen by the algorithm as the first point of P for which dX(vi) > 2·dX(vi−1).
Each substream Pi is thus (X + 〈vi〉)-respecting.

Let xk denote the latest value of vi at level k (0 6 k 6 d), and let X = 〈x0, . . . , xd〉 (see Fig. 4).
When a new input point p arrives, it is recursively examined against X by the algorithm. If p is
X-respecting, then it finds its way down to level d by recursively calling the Insert function in line 6.
When the recursion in the size of X reaches |X| = d + 1 (line 3), the point p is inserted into the
hyperbox BX using the Insert-Box function described in Section 3. If the input point p is not X-
respecting, then at some level k (0 6 k 6 d) the condition at line 5 fails, and therefore, we need to start
a new substream Pi. This is done in lines 11–12 by incrementing i, updating vi(= xk), and inserting
p into the newly started substream Pi via a recursive call to the Insert function (see Fig. 4(b)).

To guarantee the space bound, two steps have been added to the algorithm. The compression step
in lines 8-10 is invoked before starting any new substream Pi+1 to ensure that the size of the ε-kernel
Qi maintained for the current substream Pi is O(1/ε(d−1)/2); if not, it is reduced to O(1/ε(d−1)/2) in
line 9 using Theorem 1. All kernels previously maintained for the substreams of Pi are also discarded
by calling function Free in line 10.

The merging step in lines 13–18 ensures that at most b = dlog(1/ε)e kernels Qi−b+1, . . . , Qi are

7

Hi−2

Hi−1

Hi

q

φi−1 ◦ φi(q) p

φi(q)

πi−1(p)

πi ◦ πi−1(p)

X

ui

Figure 5. Mapping functions πi and φi.

active at any level; earlier ones are merged together to form a (d−1)-dimensional substream P ′ whose
kernel is maintained in a set Q′. We are justified to do this because of the following observation due to
Chan [9]: points in earlier subsets are so close to the flat F(X) that rounding them to a single (d− 1)-
dimensional hyperplane passing through X is sufficient for representing the extent of the points in the
earlier subsets. The mapping φ1 ◦ · · · ◦ φi used in line 15 is defined as follows: let v̂i = proj(F(X), vi),

and let ui =
−−→
v̂ivi. We denote by H0 an arbitrary hyperplane through X, and for 1 6 i 6 d, denote by

Hi the hyperplane through X perpendicular to ui. The function φi denotes the projection to Hi−1
parallel to the direction ui (see Fig. 5)2. We keep the mapping function φ1 ◦ · · · ◦φi in a single matrix
and update it only once whenever i is increased.

5 Analysis

In this section we prove the correctness of our algorithm, and analyze its space and time complexities.
The notation used here closely follows the one used in [9]. Let πi denote the orthogonal projection
onto Hi. Note that πi is a weak inverse of φi in the sense that πi ◦ · · · ◦ π1 ◦ φ1 ◦ · · · ◦ φi = πi (see
Fig. 5). In the following analysis, we fix an instance of the algorithm (corresponding to a level k of
the recursion) that receives as input a point stream P and a sequence X of k points such that P is
X-respecting. Let f denote the latest value of i, and ψ = πf ◦ · · · ◦ π1. We first prove two technical
lemmas.

Lemma 2 For every i 6 f and every direction u ∈ Sd−1, 〈vi − πi(vi), u〉 6 4dw(P ∪X,u).

Proof: Let X be a sequence of d+ 1 points obtained as follows: starting from X = X, we repeatedly
add to X a point from P which is farthest from F(X), until X has d + 1 points. Obviously, P is
X-respecting and P ∪ X = P ∪X. Thus, by Lemma 1, conv(P ∪X) is sandwiched between BX and a
translated copy of (1/4)dBX. Both vi and πi(vi) lie inside BX. Therefore, for each direction u ∈ Sd−1,

〈vi − πi(vi), u〉 6 w(BX, u) = 4dw((1/4)dBX, u) 6 4dw(P ∪X,u).

2

2 We assume that Hi is not orthogonal to Hi−1. Degeneracies can be avoided by general perturbation techniques.

8

Lemma 3 Let q ∈ Qj−b for some b < j 6 f , and let q′ = φ1 ◦ · · · ◦ φj(q). Then for every direction
u ∈ Sd−1, 〈q − ψ(q′), u〉 6 4d+1εw(P ∪X,u).

Proof: By the doubling property we have dX(q) 6 2dX(vj−b) 6 21−bdX(vj). Moreover, 〈q − πi(q), u〉 /
d(q,Hi) = 〈vi − πi(vi), u〉 /d(vi,Hi). Since dX(vi) = d(vi,Hi) and dX(q) > d(q,Hi), we have

〈q − πi(q), u〉 6
dX(q)

dX(vi)
〈vi − πi(vi), u〉 6

dX(q)

dX(vi)
· 4dw(P ∪X,u), (1)

where the last inequality holds by Lemma 2. Now, define qj = q, and qt = πt−1 ◦ · · · ◦ πj(q) for all
t > j. It is clear that πi(qi) = qi+1. Therefore,

f∑
i=j

〈qi − πi(qi), u〉 =

f∑
i=j

〈qi − qi+1, u〉 > 〈qj − qf+1, u〉 . (2)

Furthermore,
f∑

i=j

dX(qi)

dX(vi)
6

f∑
i=j

1

2(j−i)
· dX(qi)

dX(vj)
6 2 · dX(q)

dX(vj)
6 2(21−b) 6 4ε.

Therefore, if we replace q by qi in (1) and sum up the inequality over i from j to f , we get

f∑
i=j

〈qi − πi(qi), u〉 6
f∑

i=j

dX(qi)

dX(vi)
· 4dw(P ∪X,u) 6 4d+1εw(P ∪X,u). (3)

The lemma statement follows by (2) and (3) and the fact that qf+1 = πf ◦ · · · ◦ πj(q) = ψ(q′), due to
the weak-inverse relationship between πi’s and φi’s. 2

Theorem 3 Given a stream of points P in Rd, an ε-kernel of P can be maintained using O(1/ε(d−1)/2

log(1/ε)) space and O(1 + (1/ε(d−3)/2) log(1/ε)) update time.

Proof: We show that for every X-respecting stream P , the set Q returned by our algorithm is an
ε-kernel of P ∪X. The proof is by induction on the size of X. If |X| = d + 1 (the base case), then
the set Q computed in line 4 is an ε-kernel of P ∪X by Corollary 1. Otherwise, |X| 6 d. Consider
an arbitrary point p ∈ P . The algorithm inserts p into a substream Pi (1 6 i 6 f) upon its arrival.
If i = f , then the set Qi is an ε-kernel of Pi ∪X by induction. If f − b < i < f , then Qi has passed
the compression step in lines 8–9, but it is still active, i.e., is not merged into Q0. Therefore, Qi is a
(2ε)-kernel of Pi ∪ X due to the fact that an ε-kernel of a ε′-kernel of a set, is an (ε + ε′)-kernel of
that set. The only remaining case is when i 6 f − b. In this case, Qi is merged into Q0 in lines 13–18.
Since Qi is a (2ε)-kernel of Pi ∪ X before merging, there exists a point q ∈ Qi such that for every
direction u ∈ Sd−1, 〈q, u〉 > 〈p, u〉 − 2εw(Pi ∪X,u). The mapped point of q, q′, is inserted into P ′ in
line 16. Since Q′ is an ε-kernel of P ′, ψ(Q′) is an ε-kernel of ψ(P ′). Moreover, there exists a point
r ∈ Q0 with r′ ∈ Q′, such that 〈r′, u〉 > 〈q′, u〉 − εw(P ′, u), and hence〈

ψ(r′), u
〉
>
〈
ψ(q′), u

〉
− εw(ψ(P ′), u). (4)

Let ρ = 4d+1. By Lemma 3, for every q ∈ Q1 ∪ · · · ∪Qf−b and its corresponding q′ ∈ P ′,

〈q, u〉 − ρεw(P ∪X,u) 6
〈
ψ(q′), u

〉
6 〈q, u〉+ ρεw(P ∪X,u),

9

which implies that w(ψ(P ′), u) 6 w(Q1 ∪ · · · ∪ Qf−b, u) + 2ρεw(P ∪ X,u) 6 (1 + 2ρε)w(P ∪ X,u).
Furthermore, by Lemma 3 we have 〈ψ(r′), u〉 6 〈r, u〉+ρεw(P ∪X,u) and 〈ψ(q′), u〉 > 〈q, u〉−ρεw(P ∪
X,u). Replacing in (4), we get

〈r, u〉+ ρεw(P ∪X,u) > 〈q, u〉 − ρεw(P ∪X,u)− ε[(1 + 2ρε)w(P ∪X,u)],

and hence, 〈r, u〉 > 〈q, u〉 − O(ε)w(P ∪X,u). Since 〈q, u〉 > 〈p, u〉 − 2εw(P ∪X,u), we have 〈r, u〉 >
〈p, u〉 − O(ε)w(P ∪X,u). Therefore, in any of the above cases, there exists a point in ∪fi=0Qi whose
projected length along direction u differs from that of p by at most O(ε)w(P ∪ X,u), and hence,

Q = ∪fi=0Qi is an O(ε)-kernel of P ∪X. (Note that in our proof, the algorithm returns an O(ε)-kernel
rather than an ε-kernel; but this is not a problem as the depth of the recursion tree of our algorithm
is d+ 1, and therefore, we can adjust ε at the beginning by a constant, depending only on d.)

Space Complexity. Let S(d, k) denote the space used by the algorithm to compute an ε-kernel
of the d-dimensional X-respecting stream P , where |X| = k. Then, |Q0| = |Q′| = S(d − 1, 0),
|Q1|, . . . , |Qf−b| = 0 by the merging step, |Qf−b+1|, . . . , |Qf−1| = O(1/ε(d−1)/2) by the compression
step, and |Qf | = S(d, k + 1). Therefore, S(d, k) is upper-bounded by the following recurrence:

S(d, k) =


S(d, k + 1) + S(d− 1, 0) + log(1/ε)O(1/ε(d−1)/2) 0 6 k 6 d,

O(1/ε(d−1)/2) k = d+ 1,
O(1) d = 1,

which solves to S(d, k) = O((1/ε(d−1)/2) log(1/ε)), for every 0 6 k 6 d.

Update Time. The compression step in line 9 can be done using Theorem 1 in O(|Qi|+ 1/εd−(3/2))
or O((|Qi| + 1/εd−2) log(1/ε)) time. Since |Qi| = Θ(1/ε(d−1)/2)), we can charge an amortized time
of O(1 + (1/ε(d−3)/2) log(1/ε)) to each point of Qi. In lines 14–16, each point is inserted into P ′ at
most once. Therefore, the cost of insertion into the (d − 1)-dimensional stream P ′ can be charged
to each point upon its insertion to a Pi, which at most doubles its total insertion cost. The main
cost incurred by each point is therefore the time needed to insert the point into a fat subset, which is
O(1 + (1/ε(d−3)/2) log(1/ε)) by Corollary 1. 2

6 Reducing Update Time

While the main focus in designing streaming algorithms is to optimize the working storage, the time
needed to process each element is also of particular interest, especially in applications where a huge
amount of date arrives in a short period of time. For the problem of maintaining ε-kernels in Rd,
Chan [9] proposed a streaming algorithm that processes each input point in O(1) time using a data
structure of size O([(1/ε) log(1/ε)]d−1). Here, we show how to improve the space complexity of Chan’s
algorithm for all fixed dimensions, while the optimal update time, O(1), is preserved.

We provide a general framework to trade-off between time and space complexity in our algorithm
as follows: Let λ(ε) = Ω(1/ε(d−1)/2) be a function of ε. We replace 1/ε(d−1)/2 by λ(ε) in line 2 of
the Insert-box function and in line 8 of the main Insert function. It is easy to verify that the
amortized update time of the new algorithm is O([1/εd−(3/2)]/λ(ε)) for d > 2, and O(log(1/ε) +
[(1/εd−2) log(1/ε)]/λ(ε)) for d > 3. Furthermore, the space complexity of the algorithm is upper-
bounded by the recurrence S(d, k) = S(d, k + 1) + S(d− 1, 0) + log(1/ε)O(λ(ε)), with the base cases

10

S(d, d+1) = O(λ(ε)) and S(1, k) = O(1). The recurrence solves to S(d, k) = O(λ(ε) log(1/ε)). Setting
λ(ε) = 1/εd−(3/2), we immediately get the following result:

Theorem 4 Given a stream of points P in Rd, an ε-kernel of P can be maintained using O((1/εd−(3/2))
log(1/ε)) space and O(1) amortized update time.

Note that the above theorem improves the best previous time-optimal streaming algorithm of
Chan without using the common dimension-reduction approach used in [9] and [6]. Moreover, by
setting λ(ε) = 1/εd−2, we obtain a streaming algorithm with space complexity O((1/εd−2) log(1/ε))
and amortized update time O(log(1/ε)), which for all d > 3, improves over the algorithm of Agarwal
and Yu [6] in terms of space without increasing their update time.

7 Applications

In this section, we briefly review some of the implications of our result. Consider a measure µ so that
for any point set P ⊂ Rd, an ε-kernel of P is an O(ε)-coreset for P with respect to µ. Examples
of such a measure include diameter, width, radius of the smallest enclosing cylinder, and volume of
the minimum bounding box. Theorem 3 provides space-efficient streaming algorithms to maintain
ε-approximations to all these measures using near O(1/ε(d−1)/2) space. Note that O(1/ε(d−1)/2)-space
streaming algorithms were previously known only for diameter [5], while the best space bound for
other measures was O(1/εd−(3/2)) [6]. Using the general technique described in [2], our result implies
improved streaming algorithms for various other shape-fitting problems like minimum-width spherical
shell/annulus and minimum-width cylindrical shell. Improved results for kinetic versions of the above
problems (where input is a stream of moving points) are implied as well. In these kinetic versions, the
trajectory of each moving point is assumed to be a fixed algebraic function determined upon arriving
the point, and the objective is to maintain an approximation at any time for the points received up
to that time.

Our streaming algorithm can be also used in noisy environments, using the “robust kernel”
paradigm proposed in [12, 4]. Roughly speaking, a subset Q ⊆ P is called a (k, ε)-kernel of P , if
Q ε-approximates the directional width of P , for any direction, when k outliers can be ignored in that
direction. According to [4], one can simultaneously run 2k + 1 instances of our streaming algorithm
to obtain the following result:

Corollary 2 Given a stream P of points in Rd and a parameter k > 0, a (k, ε)-kernel of P can be
maintained using O((k/ε(d−1)/2) log(1/ε)) space.

The kernel size obtained by Corollary 2 substantially improves over the previous known upper
bound O(k/εd−(3/2)) [6], and is very close to the lower bound which is proved to be O(k/ε(d−1)/2) in
the worst case [12].

8 Conclusions

In this paper, we have presented a streaming algorithm for maintaining an ε-kernel of a stream of
points in Rd using O((1/ε(d−1)/2) log(1/ε)) space. The space complexity of our algorithm is optimal

11

up to a log(1/ε) factor. In the special case of two dimensions, Agarwal and Yu [6] proposed a rather
involved technique to remove this extra log factor at the expense of increasing update time from O(1)
to O(log(1/ε)). It remains open whether this small log factor can be removed in any fixed dimension.

Acknowledgements

The author would like to thank Timothy M. Chan for his valuable comments and helpful discussions.

References

[1] P. K. Agarwal and S. Har-Peled. Maintaining approximate extent measures of moving points. In
Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 148–157, 2001.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points.
J. ACM, 51(4):606–635, 2004.

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets.
Combinatorial and Computational Geometry (J. E. Goodman, J. Pach, and E. Welzl, eds.), Math.
Sci. Research Inst. Pub., Cambridge, 2005.

[4] P. K. Agarwal, S. Har-Peled, and H. Yu. Robust shape fitting via peeling and grating coresets.
Discrete Comput. Geom., 39(1-3):38–58, 2008.

[5] P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related
problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189–201, 1992.

[6] P. K. Agarwal and H. Yu. A space-optimal data-stream algorithm for coresets in the plane. In
Proc. 23rd Annu. ACM Sympos. Comput. Geom., pages 1–10, 2007.

[7] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of
a point set in three dimensions. J. Algorithms, 38(1):91–109, 2001.

[8] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transforma-
tions. J. Algorithms, 1:301–358, 1980.

[9] T. M. Chan. Faster core-set constructions and data stream algorithms in fixed dimensions.
Comput. Geom. Theory Appl., 35(1–2):20–35, 2006.

[10] G. Frahling and C. Sohler. Coresets in dynamic geometric data streams. In Proc. 37th Annu.
ACM Sympos. Theory Comput., pages 209–217, 2005.

[11] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In Proc. 36th
Annu. ACM Sympos. Theory Comput., pages 291–300, 2004.

[12] S. Har-Peled and Y. Wang. Shape fitting with outliers. SIAM J. Comput., 33(2):269–285, 2004.

[13] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
New York, NY, 1985.

[14] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting
and kinetic data structures using core sets. In Proc. 20th Annu. ACM Sympos. Comput. Geom.,
pages 263–272, 2004.

12

	Introduction
	Preliminaries
	Fat Substreams
	The Main Algorithm
	Analysis
	Reducing Update Time
	Applications
	Conclusions

