
BIASED RANGE TREES

Vida Dujmović∗ John Howat∗ Pat Morin∗

ABSTRACT. A data structure, called a biased range tree, is presented that preprocesses a set S of n points
in R2 and a query distributionD for 2-sided orthogonal range counting queries. The expected query time
for this data structure, when queries are drawn according to D, matches, to within a constant factor,
that of the optimal decision tree for S and D. The memory and preprocessing requirements of the data
structure are O(n log n).

1 Introduction

Let S be a set of n points in R2 and let D be a probability measure over R2. A 2-sided orthogonal range
counting query over S asks, for a query point q = (qx, qy), to report the number of points (px, py) ∈ S such
that px ≥ qx and py ≥ qy. A 2-sided range counting query has distributionD if the query point q is chosen
from the probability measure D. If T is a data structure for answering 2-sided range counting queries
over S then we denote by µD(T) the expected time, using T , to answer a range query with distribution
D. The current paper is concerned with preprocessing the pair (S,D) to build a data structure T that
minimizes µD(T).

1.1 Previous Work

The general topic of geometric range queries is a field that has seen an enormous amount of activity in
the last century. Results in this field depend heavily on the types of objects the data structure stores and
on the shape of the query ranges. In this section we only mention a few data structures for orthogonal
range counting and semigroup queries in 2 dimensions. The interested reader is directed to the excellent,
and easily accessible, survey by Agarwal and Erickson [9].

Orthogonal range counting is a classic problem in computational geometry. The 2- (and 3- and 4-)
sided range counting problem can be solved by Bentley’s range trees [3]. Range trees use O(n log n)
space and can be constructed in O(n log n) time. Originally, range trees answered queries in O(log2 n)
time. However, with the application of fractional cascading [6, 11] the query time can be reduced to
O(log n) without increasing the space requirement by more than a constant factor. Range trees can also
answer more general semigroup queries in which each point of S is assigned a weight from a commutative
semigroup and the goal is to report the weight of all points in the query range [10, 15].

For 2-sided orthogonal range counting queries, Chazelle [4, 5] proposes a data structure of size
O(n), that can be constructed in O(n log n) time, and that can answer range couting queries in O(log n)
time. Unfortunately, this data structure is not capable of answering semigroup queries in the same
time bound. For semigroup queries, Chazelle provides data structures with the following requirements:
(1) O(n) space and O(log2+ε n) query time, (2) O(n log log n) space and O(log2 n log log n) query time,
and (3) O(n logε n) space and O(log2 n) query time.

Practical linear space data structures for range counting include k-d trees [2], quad-trees [13], and
their variants. These structures are practical in the sense that they are easy to implement and use only
O(n) space. Unfortunately, neither of these structures has a worst-case query time of logO(1) n. Thus, in
terms of query time, k-d trees and quad-trees are nowhere near competitive with range trees.

∗School of Computer Science, Carleton University {vida,jhowat,morin}@cg.scs.carleton.ca

1

Despite the long history of data structures for orthogonal range queries, range trees with fractional
cascading are still the most effective data structure for 2-sided orthogonal range queries in the semigroup
model. In particular, no data structure is currently known that uses o(n log n) space and can answer 2-
sided orthogonal range queries in O(log n) time.

1.2 New Results

In the current paper we present a data structure, the biased range tree, for 2-sided orthogonal range
counting. Biased range trees fit into the comparison tree model of computation, in which all decisions
made during a query are based on the result of comparing either the x- or y-coordinate of the query point
to some precomputed values. Most data structures for orthogonal range searching, including range trees,
k-d trees and quadtrees, fit into the comparison tree model. This model makes no assumptions about
the x- or y-coordinates of points other than that they each come from some (possibly different) total
order. This is particularly useful in practice since it avoid the precision problems usually associated with
algebraic decisions and allows the mixing of different data types (one for x-coordinates and one for
y-coordinates) in one data structure.

A biased range tree has size O(n log n), can be constructed in O(n log n) time, and can answer range
counting (or semigroup) queries in O(µD(T ∗)) expected time, where T ∗ is any comparison tree that
answers range counting queries over S. In particular, T ∗ could be a comparison tree that minimizes
µD(T ∗) implying that the expected query time of our data structure is as fast as the fastest comparison-
based data structure for answering range counting queries over S. Moreover, the worst-case search time
of biased range trees is O(log n), matching the worst-case performance of range trees.

Note that we do not place any restrictions on the comparison tree T ∗. Biased range trees, while
requiring only O(n log n) space, are competitive with any comparison-based data structure. Thus, the
memory requirement of biased range trees is the same as that of range trees but their expected query
time can never be any worse.

The remainder of the paper is organized as follows. In Section 2 we present background material
that is used in subsequent sections. In Section 3 we define biased range trees. In Section 4 we prove
that biased range trees are optimal. In Section 5 we recap, summarize, and describe directions for future
work.

2 Preliminaries

In this section we give definitions, notations, and background that are prerequisites for subsequent
sections.

Rectangles. For the purposes of the current paper, a rectangle R(a, b, c, d) is defined as

R(a, b, c, d) = {(x, y) : a ≤ x ≤ b and c ≤ y ≤ d} .

We also allow unbounded rectangles by setting a, c = −∞ and/or b, d = ∞. Therefore, under this
definition, rectangles can have 0, 1, 2, 3, or 4 sides. For a query point q = (qx, qy) we denote by R(q)
the query range R(qx,∞, qy,∞). A horizontal strip is rectangle of the form R(−∞,∞, c, d) and a vertical
strip is a rectangle of the form R(a, b,−∞,∞).

Classification Problems and Classification Trees. A classification problem over a domain D is a func-
tion P : D 7→ {0, . . . , k − 1}. The special case in which k = 2 is called a decision problem. A d-
ary classification tree is a full d-ary tree1 in which each internal node v is labelled with a function
Pv : D 7→ {0, , d − 1} and for which each leaf ` is labelled with a value in {0, . . . , k − 1}. The

1A full d-ary tree is a rooted ordered tree in which each non-leaf node has exactly d children.

2

search path of an input q in a classification tree T starts at the root of T and, at each internal node v,
evaluates i = Pv(q) and proceeds to the ith child of v. We denote by T (q) the label of the final (leaf)
node in the search path for q. We say that the classification tree T solves the classification problem P
over the domain D if, for every q ∈ D, P(q) = T (q).

The particular type of classification trees we are concerned with are comparison trees. These are
binary classification trees in which the function Pv at each node v compares either qx or qy to a fixed
value (that may depend on the point set S and the distribution D). For the problem of 2-sided range
counting over S, the leaves of T are labelled with values in {0, . . . , |S|} and T (q) = |R(q) ∩ S| for all
q ∈ R2.

Probability. For a probability measure D and an event X, we denote by D|X the distribution D
conditioned on X. That is, the distribution where the probability of an event Y is Pr(Y | X) =
Pr(Y ∩X)/Pr(X). The probability measures used in this paper are usually defined over R2. We make
no assumptions about how these measures are represented, but we assume that an algorithm can, in
constant time, given a rectangle r, determine Pr(r).

For a classification tree T that solves a problem P : D 7→ {0, . . . , k − 1} and a probability measure D
over D, the expected search time of T , denoted by µD(T), is the expected length of the search path for q
when q is drawn at random from D according to D. Note that, for each leaf ` of T there is a maximal
subset r(`) ⊆ D such that the search path for any q ∈ r(`) ends at `. Thus, the expected search time of
T (under distribution D) can be written as

µD(T) =
∑

`∈L(T)

Pr(r(`))× dT (`) ,

where L(T) denotes the leaves of T and dT (`) denotes the length of the path from the root of T to `.
When the tree T is obvious based on context we will sometimes use the notation d(`) to denote dT (`).
Note that, for comparison trees, the closure of r(`) is always a rectangle. For a node v in a tree, we will
use the phrases depth of v and level of v interchangeably and they both refer to d(v).

The following theorem is a restatement of (half of) Shannon’s Fundamental Theorem for a Noiseless
Channel [14, Theorem 9].

Theorem 1. Let P : D 7→ {0, . . . , k − 1} be a classification problem and let p ∈ D be selected from a
distibution D such that Pr{P(p) = i} = pi, for 0 ≤ i < k. Then, any d-ary classification tree T that solves
P has

µD(T) ≥
k−1∑
i=0

pi logd(1/pi) . (1)

In terms of range counting, Theorem 1 immediately implies that, if pi is the probability that the
query range contains i points of S, then any binary decision tree T that does range counting has µD(T) ≥∑n
i=0 pi log(1/pi). Unfortunately for us, this lower bound is too weak and, in general, there is no decision

tree whose performance matches this obvious entropy lower bound.
A stronger lower bound on the cost of range searching can be obtained by considering the arrange-

ment A of 2n rays obtained by drawing two rays originating at each point of S, one to the left and one
downwards (see Figure 1.a). This arrangement partitions the plane into a set of faces F (A). If T is a
comparison tree for range counting in S, then there is no leaf ` of T such that the interior of r(`) inter-
sects any edge of A since otherwise there are query points q in the neighbourhood of this intersection
for which T (q) 6= |R(q) ∩ S|. Therefore, by relabelling the leaves of T with the faces of A, we obtain a
data structure for determining which face of A contains the query point q. By Theorem 1, this implies
that

µD(T) ≥
∑

f∈F (A)

Pr(f) log(1/Pr(f)) .

3

(a) (b)

Figure 1: (a) The distribution of the query point q over the faces of the arrangement A gives a lower
bound on the cost of any comparison tree for range counting in S. (b) The lower bound is not always
achievable by a comparison tree.

Unfortunately, this bound is still not strong enough and, in general, there is no decision tree T that
matches this lower bound. To see this, consider Figure 1.b, when the query point q is uniformly dis-
tributed among the n + 1 shaded circles. In this case, q is always in the same face of A so the lower
bound given above is 0. Nevertheless, it is not hard to see that the leaves of any decision tree T for range
searching in S can be relabelled to determine which of the n+1 circles contains q, so µD(T) ≥ log(n+1).

Biased Search Trees. Biased search trees are a classic data structure for solving the following 1-
dimensional problem: Given an increasing sequence of real numbersX = 〈x0 = −∞, x1, x2, . . . , xn, xn+1 =
∞〉 and a probability distribution D over R, construct a binary search tree T = T (X,D) so that, for any
query value q drawn from D, one can quickly find the unique interval [xi, xi+1) containing q. If pi is the
probability that q ∈ [xi, xi+1) then the expected number of comparisons performed while searching for
q is given by

µD(T) ≤
n∑
i=1

pi log(1/pi) + 1

and the tree T can be constructed in O(n) time [12]. Clearly, by Theorem 1, the query time of this binary
search tree is optimal up to an additive constant term. Note that, by having each node of T store the size
of its subtree, a biased search tree can count the number of elements of X in the interval I(q) = [q,∞)
without increasing the search time by more than a constant factor. Thus, biased search trees are an
optimal data structure for 1-dimensional range counting.

3 Biased Range Trees

In this section we describe the biased range tree data structure, which has three main parts: the backup
tree, the primary tree, and a set of catalogues that adorn the nodes of the primary tree.

3.1 The Backup Tree

In trying to achieve optimal query time, biased range trees will try to quickly answer queries that are,
in some sense, easy. In some cases, a query is difficult and it cannot be answered in o(log n) time. For
these queries, a backup range tree that stores the points of S and can answer any 2-sided range query in

4

v

right(v)

s(v)

v

left(v)

s(v)

vv

s(v)

left(v)

right(v) x

y

(a) (b)

Figure 2: The splitting of (a) a vertical node v and (b) a horizontal node v.

O(log n) worst-case time is used. The preprocessing time and space requirements of this backup tree are
O(n log n) [8].

3.2 The Primary Tree

Like a range tree, a biased range tree is an augmented data structure consisting of a primary tree whose
nodes store secondary structures. However, in a range tree the primary tree is a binary search tree that
discriminates based only on the x-coordinate of the query point q. In order to achieve optimal expected
query time, this turns out to be insufficient, so instead biased range trees use a variation of a k-d tree as
the primary tree.

The primary tree is constructed in a top-down fashion. Each node v of T is associated with a region
r(v) whose closure is a rectangle. The region associated with the root of T is all of R2. We say that a
node v is bad if its depth is at least dlog2 ne and r(v) ∩ S 6= ∅. A node v is split if v its depth is less
than dlog2 ne, and r(v) ∩ S 6= ∅. The two children of a split node v are associated with the two regions
obtained by removing a horizontal or vertical strip s(v) from r(v) depending on whether the depth of v
is even or odd, respectively. We call a node v at even distance from the root a vertical node, otherwise
we call v a horizontal node.

Refer to Figure 2. For a vertical node v, we denote its children by left(v) and right(v) and call them
the left child and right child of v, depending on which side of the vertical strip (left or right) they are.
For uniformity, we will also call the children of a node v that is split with a horizontal strip left(v) and
right(v). The child below the strip is denote by left(v) and the child above the strip is denoted by right(v).
Similarly, the left and right boundaries of a strip s(v) at a horizontal node v refer to the bottom and top
sides of s(v). Note that, with these conventions, if the query point q is in r(left(v)) then R(q) intersects
r(right(v)). However, if q ∈ r(right(v)) then R(q) does not intersect r(left(v)). Similarly, for a query
point q ∈ s(v), the query range R(q) intersects r(right(v)) but not r(left(v))

All that remains is to define the strip s(v) for each node v. If v is a leaf then we use the convention
that s(v) = r(v). If v is not a leaf then s(v) ⊆ r(v) is selected as a maximal strip containing no point
of r(v) ∩ S in its interior, that is closed on its right side and open on its left side and such that each of
the at most two components of r(v) \ s(v) has probability at most Pr(r(v))/2. Suppose v is a vertical
node. Then let r(v)1, . . . , r(v)k, be a partitioning of r(v) into strips, in left-to-right order, obtained by
drawing a vertical line through each of the k points in S ∩ r(v). We use the convention that each strip
is closed on its right side and open on its left side. Then there is a unique strip s(v) = r(v)i such that

5

right(v)

left(v)

Cx(left(v)) right(v)left(v)Cy(left(v))
(a) (b)

Figure 3: The catalogues of (a) a horizontal node v and (b) a vertical node v.

∑i−1
j=1 Pr(r(v)j) ≤ Pr(r(v))/2 and

∑k
j=i+1 Pr(r(v)j) < Pr(r(v))/2. For a horizontal node v, the definition

of s(v) is analagous except we use horizontal lines through each point of r(v) ∩ S.
Note that for a node v that is not a leaf, we use the convention that s(v) contains its right side but

not its left side and that r(right(v) and r(left(v)) are the two components of r(v) \ s(v). This implies
that r(left(v)) and/or r(right(v)) may be empty, in which case left(v), respectively, right(v) is a leaf of T .
With these definitions, for any point q ∈ R2 there is exactly one vertex v of T such that q ∈ s(v).

The following two properties are easily derived from the definition of T and are necessary to prove
the optimality of biased range trees:

1. Any node v at depth i in T has Pr(s(v)) ≤ Pr(r(v)) ≤ 1/2i.

2. For any node v of T , if Pr(r(v)) > 0, then the closure of r(v) contains at least one point of S.

Point 1 above follows immediately from the definition of s(v). Next we explain the logic leading to
Point 2. If r(v) contains a point of S then so does the closure of r(v). If r(v) = ∅, then Pr(r(v)) = 0.
Otherwise, r(v) 6= ∅ and r(v) has no point of S in its interior. Then consider the parent w of v. Since s(w)
does not contain r(v) there must be a point of S on the boundary of s(w) that is also on the boundary of
r(v). Therefore r(v) contains this point in its closure.

3.3 The Catalogues

The nodes of the tree T are augmented with additional data structures called catalogues that hold subsets
of S. Each node v has two catalogues, Cx(v) and Cy(v) that store subsets of S sorted by their x-,
respectively, y-, coordinate. Intuitively, Cx(v) stores points that are “above” r(v) and Cy(v) stores points
that are “to the right of” r(v). (Refer to Figure 3.) More precisely, if v is a horizontal node, then
Cx(left(v)) = (s(v) ∪ r(right(v))) ∩ S and Cy(left(v)) = ∅. If v is a vertical node, then Cy(left(v)) =
(s(v) ∪ r(right(v))) ∩ S and Cx(left(v)) = ∅. For any node v that is the root of T or a right child of its
parent, Cx(v) = Cy(v) = ∅.

Consider any node v that is not a bad leaf and any point q ∈ s(v). If v has a left child then let
v1 = left(v), otherwise, let v1 = v. Let v1, . . . , vk denote the path from v1 to the root of T (see Figure 4).
Then the catalogues of v1, . . . , vk have the following properties:

6

Figure 4: The area covered by catalogues on the path v to the root of T . The × symbol shows the
location of the query point q.

1. The points in the catalogues of v1, . . . , vk are above or to the right of q. That is, for each 1 ≤ i ≤ k,
all points in Cy(vi), respectively, Cx(vi) have their x-, respectively, y-, coordinate greater than or
equal to qx, respectively, qy.

2. All catalogues at nodes in v1, . . . , vk are disjoint. That, is, for each 1 ≤ i ≤ j ≤ k, Cx(vi)∩Cx(vj) =
∅, Cy(vi) ∩ Cy(vj) = ∅, Cx(vi) ∩ Cy(vj) = ∅, and Cx(vj) ∩ Cy(vi) = ∅.

3. The catalogues at nodes v1, . . . , vk contain all points in the query range R(q). That is,

R(q) ∩ S ⊆
k⋃
i=1

(Cx(vi) ∪ Cy(vi)) .

Note that, points 1, 2 and 3 above imply that determining |R(q) ∩ S| can be done by solving a
sequence of 1-sided range queries in the x- and y-catalogues of v1, . . . , vk. However, performing these
queries individually would take too long.

To speed up the process of navigating the catalogues of T , fractional cascading [6] is used. Starting at
the root of T and as long as v is not a leaf, a fraction of the data in Cx(v) is cascaded into Cx(right(v)) and
Cx(left(v)). As well, a fraction of the data in Cy(v) is cascaded into both Cy(right(v)) and Cy(left(v)).
Note that this cascading is done only to speed up navigation between the catalogues of T . Although
fractional cascading introduces extra data into the catalogues of T we will continue to use the notations
Cx(v) and Cy(v) to denote the set of points contained in the catalogues of v before fractional cascading
takes place.

Finally, each catalogue Cx(v) and Cy(v) is indexed by a biased binary search tree Tx(v), respectively,
Ty(v). If v is the left child of its parent, then the weight of an interval (a, b] in Tx(v), respectively, Ty(v)
is given by the probability that qx, respectively, qy, is in the interval (a, b] when q is drawn according to
the distribution D|s(parent(v)). Otherwise (v is not a left child), the weight of an interval is determined
by the distribution D|s(v).

7

3.4 Construction Time and Space Requirements

The biased range tree data structure is now completely defined. The structure consists of a backup tree,
a primary tree, and the catalogues of the primary tree. We now analyze the construction time and space
requirements of biased range trees.

The backup tree has size O(n log n) and can be constructed in O(n log n) time [8, Theorem 5.11]. To
construct the primary tree quickly we presort the points of S by their x and y coordinates. Since the
primary tree has height O(log n), it is then easily constructed in O(n log n) time. Ignoring any copies of
points created by fractional cascading, each point in S occurs in at most 2 catalogues at each level of
the primary tree. Thus, the sizes of all catalogues (before fractional cascading) is O(n log n) and these
catalogues can be constructed in O(n log n) time (because of elements of S are presorted; see de Berg et
al [8, Section 5.3] for details). The fractional cascading between catalogues does not increase the size of
catalogues by more than a constant factor since each catalogue is cascaded into only a constant number
of other catalogues [6].

In summary, given the point set S and access to the distribution D, a biased range tree for (S,D) can
be constructed in O(n log n) time and requires O(n log n) space.

3.5 The Query Algorithm

The algorithm to answer a 2-sided range query q = (qx, qy) proceeds in three steps:

1. The algorithm navigates the tree T from top to bottom to locate the unique node v such that
q ∈ s(v). This step takes O(dT (q)) time, where dT (q) is the depth of the node v. If v is a bad leaf
(so dT (q) ≥ log n) then the algorithm performs a range query in O(log n) time using the backup
range tree and the query algorithm does not execute the next two steps.

2. If v has a left child then let u = left(v), otherwise let u = v. The algorithm uses Tx(u) and Ty(u) to
locate qx and qy, respectively, in the catalogues Cx(u) and Cy(u), respectively.

3. The algorithm walks back from u to the root of T , locating q in the catalogues of all nodes on
this path and computing the results of the range counting query as it goes. Thanks to fractional
cascading, each step of this walk can be done in constant time, so the overall time for this step is
also O(dT (q)).

Observe that Steps 1 and 3 of the query algorithm each take O(dT (q)) time. The time needed to
accomplish Step 2 of the algorithm depends on exactly what is in the catalogues Cx(u) and Cy(u), and
will be the first quantity we study in the next section.

4 Optimality of Biased Range Trees

In this section we show that the expected query time of biased range trees is as good as the expected
query time of any comparison tree. The expected query time has two components. The first component
is the expected depth, dT (q), of the node v such that s(v) contains q. The second component is the
expected cost of locating q in the catalogues of u (recall that u = left(v) or u = v if v has no left child).
We will show that each of these two components is a lower bound on the expected cost of any decision
tree for two-sided range searching on S where queries come from distribution D. In order to simplify
notation in this section we will use the convention Pr(v) = Pr(s(v)) is the probability that a search
terminates at node v of T .

4.1 The Catalogue Location Step

First we show that the expected cost of locating q in the two catalogues, Cx(u) and Cy(u) is a lower
bound on the expected cost of any decision tree for answering 2-sided range queries in S. The intuition

8

behind this proof is that, in order to correctly answer range counting queries, any decision tree for
range counting must locate the x-coordinate of q with respect to the x-coordinates of all points above q.
Similarly, it must locate the y-coordinate of q with respect to the y-coordinates of all points to the right
of q. The structure of the catalogues ensures that biased range trees do this in the most efficient manner
possible.

Lemma 1. Let S be a set of n points and let D be a probability measure over R2. Let T ∗ be any decision
tree for 2-sided range counting in S and let C2(S,D) denote the expected cost of locating q in Step 2 of the
biased range tree query algorithm on the biased range tree T = T (S,D). Then

µD(T ∗) = Ω(C2(S,D)) .

Proof. We first observe that, by definition,

C2(S,D) =
∑
v∈T

Pr(v)
(
µD|s(v)(Tx(u)) + µD|s(v)(Ty(u))

)
.

Consider some node v of T . For a point q ∈ s(v), all of the points in Tx(v) are points that may or may
not be in the query range R(q) depending on where exactly q is located within s(v). This implies that,
if T ∗ correctly answers range queries for every point q ∈ s(v) then it must determine the location of the
x-coordinate of q with respect to all points in Tx(v). More precisely, the leaves of T ∗ could be relabelled
to obtain a comparison tree that determines, for any q ∈ s(v), which interval of Tx(v) contains qx. Since
Tx(u) is a biased search tree for the probability measure D|s(v), this implies that

µD|s(v)(T
∗) ≥ µD|s(v)(Tx(u))− 1 .

Similarly, the same argument applied to Ty(v) yields

µD|s(v)(T
∗) ≥ µD|s(v)(Ty(u))− 1 .

We can now complete the proof with

µD(T ∗) =
∑
v∈T

Pr(v) · µD|s(v)(T
∗)

≥
∑
v∈T

Pr(v) ·max
{
µD|s(v)(Tx(u)), µD|s(v)(Ty(u))

}
− 1

≥
∑
v∈T

1
2

Pr(v) ·
(
µD|s(v)(Tx(u)) + µD|s(v)(Ty(u))

)
− 1

=
1
2
· C2(S,D)− 1 = Ω(C2(S,D)) .

4.2 The Tree Searching Step

Next we bound the expected depth dT (q) of the node v of T such that q ∈ s(v). We do this by showing
that any decision tree T ∗ for range counting in S must solve a set of point location problems and that
the expected depth of v is a lower bound on the complexity of solving these problems.

We say that a set of rectangles is HV-independent if no horizontal or vertical line intersects more
than one rectangle in the set. We say that a set {v1, . . . , vk} of nodes in T is HV-independent if the set
{r(v1), . . . , r(vk)} is HV-independent.

Lemma 2. Let S be a set of n points and let D be a probability measure over R2. Let T = T (S,D) be
the biased range tree for (S,D) and label each node of T white or black, such that all white nodes are at
distance at most i from the root of T . Then, if T contains more than γi white nodes then T contains an
HV-independent set of white nodes of size Ω((γ/

√
2)i).

9

Proof. Define a graph G = (V,E) whose vertices are the white nodes of T and for which uv ∈ E if and
only if there is a horizontal or vertical line that intersects both r(u) and r(v). Note that an independent
set of vertices in G is an HV-independent set of which nodes in T . Thus, it suffices to find a sufficiently
large independent set in G

A well-know result on k-d trees states that, for a k-d tree of height i, any horizontal or vertical line
intersects at most 2di/2e rectangles of the k-d tree [8, Lemma 5.4]. Therefore, since T is a k-d tree,2 the
number of edges in G is at most |V | · 2di/2e. This implies that G has a vertex v of degree at most 2di/2e+1

and this is also true of any vertex-induced subgraph of G.
We can therefore obtain an independent set in G by repeatedly selecting a vertex v of degree 2di/2e+1,

adding v to the independent set and deleting v and its neighbours from G. Since, at each step we add
one vertex to the independent set and delete at most 2di/2e+1 + 1 vertices from G, this produces an
independent of size Ω(|V |/2i/2) = Ω((γ/

√
2)i), as required.

We can now provide the second piece of the lower bound.

Lemma 3. Let S be a set of n points and let D be a probability measure over R2. Let T ∗ be any comparison
tree that does range counting over S. Let C1(S,D) denote the expected depth of the node v of the biased
range tree T = T (S,D) such that q ∈ s(v). Then

µD(T ∗) = Ω(C1(S,D))

The proof of Lemma 3 is included in Appendix A.
And now the main event:

Theorem 2. Let S be a set of n points and let D be a probability measure over R2. Let T = T (S,D) be the
biased range tree for S and D and let T ∗ be any decision tree that answers range counting queries for S.
Then

µD(T ∗) = Ω(µD(T)) .

Proof. By the definition of C1 and C2, the expected cost of searching in T is µD(T) = O(C1(S,D) +
C2(S,D)). On the other hand, by Lemma 3 and Lemma 1 µD(T ∗) = Ω(max{C1(S,D), C2(S,D)}) =
Ω(C1(S,D) + C2(S,D)) = Ω(µD(T)). This completes the proof.

5 Summary, Discussion, and Conclusions

We have presented biased range trees, an optimal data structure for 2-sided orthogonal range counting
queries when the point set S and query distribution D is known in advance. The expected time required
to answer queries with a biased range tree, when the queries are distributed according to D, is within
a constant factor of any decision tree for answering range queries over S. Like standard range trees,
biased range trees use O(n log n) space and can also answer semigroup queries [10, 15].3 Although the
analysis of biased range trees is complicated, their implementation is not much more complicated than
that of standard range trees.

As a small optimization, the backup range tree data structure can be eliminated from biased range
trees. Instead, once the probability of a node v drops below 1/n the node can be split by ignoring the
distribution D and simply splitting the points of r(v)∩S into two sets of roughly equal size. This results
in a tree of depth at most 2(log n+ 1).

This work is just one of many possible results on distribution-sensitive range searching. Several open
problems immediately arise. Refer to Appendix B for a list of directions for future research.

2Although T is not exactly a k-d tree as described in Reference [8], the proof found there still holds.
3That biased range trees can answer semigroup queries follows from Properties 1–3 of the catalogues in Section 3.3.

10

References

[1] U. Adamy and R. Seidel. On the exact worst case query complexity of planar point location. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 609–618,
1998.

[2] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications
of the ACM, 18:509–517, 1975.

[3] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM, 23:214–229,
1980.

[4] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on Computing,
15:703–724, 1986.

[5] B. Chazelle. A functional approach to data structures and its use in multidimensional searching.
SIAM Journal on Computing, 17:427–462, 1988.

[6] B. Chazelle and L. J. Guibas. Fractional cascading: I. a data structuring technique. Algorithmica,
1:133–162, 1986.

[7] S. Collette, V. Dujmović, J. Iacono, S. Langerman, and P. Morin. Distribution-sensitive point loca-
tion in convex subdivisions. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008), 2008. Submitted to SIAM Journal on Computing, August 2007.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, Heidelberg, 1997.

[9] J. Erickson and P. K. Agarwal. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume 223
of Contemporary Mathematics, pages 1–56. American Mathematical Society Press, 1999.

[10] M. L. Fredman. A lower bound on the complexity of orthogonal range queries. Journal of the ACM,
28:696–705, 1981.

[11] G. S. Luecker. A data structure for orthogonal range queries. In Proceedings of the 19th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 28–34, 1978.

[12] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975.

[13] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

[14] C. E. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, pages
379–423 and 623–656, 1948.

[15] A. C. Yao. On the complexity of maintaining partial sums. SIAM Journal on Computing, 14:277–
288, 1985.

A Proof of Lemma 3

Proof of Lemma 3. Partition the nodes of T into groups G1, G2, . . . where Gi contains all nodes v such
that 1/2i ≤ Pr(v) ≤ 1/2i−1. Observe that the nodes in group Gi occur in the first i levels of T . Select
a constants γ and β with

√
2 < γ < β < 2 and define α = γ/

√
2. By repeatedly applying Lemma 2,

each group Gi can be partitioned into groups Gi,1, . . . , Gi,ti where, for each 1 ≤ j < ti, Gi,j is an
HV-independent set with |Gi,j | ≥ αi. Furthermore, |Gi,ti | ≤ γi. (Note that Gi,ti is not necessarily
HV-independent.)

11

Consider some group Gi,j for 1 ≤ j < ti. Let ` be a leaf of T ∗ and observe that, because the nodes
in Gi,j are independent and each one contains at least one point of S in its closure, there are at most
4 nodes v in Gi,j such that r(`) intersects the closure of r(v). (Otherwise r(`) contains a point of S in
its interior and therefore T ∗ does not solve the range counting problem for S.) Thus, by performing
2 additional comparisons, T ∗ can be used to determine which node of v ∈ Gi,j (if any) contains the
query point q in s(v). However, Gi,j contains Ω(αi) nodes and the search path for q terminates at each
of these with probability between 1/2i and 1/2i−1. Therefore, if we denote by Di,j the distribution D
conditioned on the search path for q terminating in one of the nodes in Gi,j then we have, by applying
Theorem 1,

µDi,j
(T ∗) + 2 ≥

∑
v∈Gi,j

Pr(v | Gi,j) log(1/Pr(v | Gi,j)

≥
∑
v∈Gi,j

Pr(v | Gi,j) log(Ω(αi))

≥ log(Ω(αi))
= i logα−O(1) .

Putting this all together, we obtain

µD(T ∗) =
∞∑
i=1

ti∑
j=1

Pr(Gi,j)µDi,j (T ∗)

≥
∞∑
i=1

ti−1∑
j=1

Pr(Gi,j)µDi,j
(T ∗)

≥
∞∑
i=1

ti−1∑
j=1

Pr(Gi,j)(i logα−O(1))

≥ (logα) ·
∞∑
i=1

ti−1∑
j=1

∑
v∈Gi,j

Pr(v) · d(v)−O(1)

= (logα) ·
∑
v∈T

Pr(v) · d(v)−
∞∑
i=1

∑
v∈Gi,ti

Pr(v) · d(v)−O(1)

≥ (logα) ·
∑
v∈T

Pr(v) · d(v)−
∞∑
i=1

i · Pr(Gi,ti)−O(1)

≥ (logα) ·
∑
v∈T

Pr(v) · d(v)−
dlogne∑
i=1

iγi/2i−1 −O(1)

≥ (logα) ·
∑
v∈T

Pr(v) · d(v)−O(1)

= Ω(C1(S,D)) ,

where the last inequality follows from the fact that γ/2 < 1.

To get some idea of the constants involved in the proof of Lemma 3, we can select γ = 1.6, so that
α = 1.6/

√
2 ≈ 1.13137085 and logα ≈ 0.178071905 and the O(1) term is approximately 20. Thus, for this

choice of parameters, the depth in T is competitive with T ∗ to within a factor of 1/0.178071905 ≈ 5.615
and an additive constant of 20. Alternatively, selecting γ = 1.8 gives a constant factor less than 3 and an
additive term of approximately 90.

12

Figure 5: Decomposing a 4-sided query into four 2-sided queries can produce a bad distribution of
2-sided queries.

B Open Problems

Open Problem 1. Are there efficient distribution-sensitive data structures for 3-sided and 4-sided orthogo-
nal range counting queries?

Note that a 4-sided orthogonal range counting query can be reduced to 4 2-sided orthogonal range
counting queries using the principle of inclusion-exclusion. Unfortunately, this reduction does not pro-
duce an optimal distribution-sensitive data structure. To see this, consider 4-sided queries consisting
of unit squares whose bottom left corner is uniformly distributed in the shaded region of Figure 5. All
such queries contain no points in the query region and all such queries can be answered in O(1) time
by simply checking that all four corners of the square are to the left of the point set. However, when we
decompose these queries into a four 2-sided queries we obtain 2-sided queries that require Ω(log n) time
to be answered.

Open Problem 2. Biased range trees require that the point set S and the distribution D be known in
advance. Is there a self-adapting version of biased range trees that, without knowing D in advance, can
answer m queries, each drawn independently from D in O(n log n+mµD(T ∗)) expected time?

Open Problem 3. Determine the worst-case or the average case constants associated with 2-dimensional
orthogonal range searching for comparison-based data structures. By applying the result of Adamy and
Seidel [1] on point location to the arrangement A described in Section 2 one immediately obtains an O(n2)
space data structure that answers queries using at most 2 log n + O(log log n) comparisons. Is there an
O(n log n) space structure with the same performance?

Open Problem 4. A point q ∈ Rd is maximal with respect to S ⊆ Rd if no point of S has every coordinate
larger than the corresponding coordinate of q. For d ≥ 3, is there a distribution-sensitive data structure
for testing if a query point q is maximal? For point sets in 2 dimensions, an orthogonal variant of the
point-location techniques of Collette et al [7] seems to apply.

Open Problem 5. Are there distribution-sensitive data structures for d-sided range search in point sets
in Rd? The current fastest structures for range search in point sets in Rd that use near-linear space have
Θ(logd−1 n) query time. Is there a structure that uses near-linear space and is optimal when the point set S
and the distribution D are known in advance?

13

