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A universal point-set supports a crossing-free drawing of any planar graph. For a planar
graph with n vertices, if bends on edges of the drawing are permitted, universal point-sets
of size n are known, but only if the bend points are in arbitrary positions. If the locations of
the bend points must also be specified as part of the point-set, we prove that any planar
graph with n vertices can be drawn on a universal set S of O (n2/ log n) points with at
most one bend per edge and with the vertices and the bend points in S . If two bends
per edge are allowed, we show that O (n log n) points are sufficient, and if three bends per
edge are allowed, O (n) points are sufficient. When no bends on edges are permitted, no
universal point-set of size o(n2) is known for the class of planar graphs. We show that
a set of n points in balanced biconvex position supports the class of maximum-degree-3
series-parallel lattices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A set of points supports the drawing of a graph G if there is a one-to-one mapping f of the vertices of G to the points so
that for all pairs of edges (a,b), (c,d) in G (where a,b, c,d are distinct), segments f (a) f (b) and f (c) f (d) do not intersect.
A set of points that supports the drawing of all n-vertex graphs in some class is called cuniversal for that class, or simply
universal if the class is all planar graphs. The size of any universal point-set for planar graphs requires at least 1.235n points
as shown by Kurowski [1] (see also Chrobak and Karloff [2]). Early graph drawing results, such as the canonical ordering
technique of de Fraysseix, Pach, Pollack [3] and Schnyder’s embedding [4] demonstrate that an n × n grid of points is a
universal point-set. However, no universal point-set of size o(n2) is known.

Smaller universal point-sets for sub-classes of planar graphs are known. For example, any outerplanar graph can be
drawn on any set of n points in general position [5]. Indeed, if the point-set is in convex position, then it supports exactly
the family of outerplanar graphs. Determining other families of planar graphs for which universal point-sets of size n exist
is an interesting problem. We examine a particular type of point-set, of size n, in which points are arranged in biconvex
position, and show that it supports the drawing of all maximum-degree-3 series-parallel lattices, a class of graphs that
contains members that are not outerplanar.
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Table 1
Summary of results – cardinality of universal point-sets for classes of graphs. The first and last results are well
known. All other results are new.

Graphs Number of points Number of bends Reference

Outerplanar n 0 [5]
3SP lattice n 0 Theorem 1
Planar O (n) 3 Theorem 2
Planar O (n logn) 2 Theorem 2
Planar O (n2/ log n) 1 Theorem 2
Sub-Hamiltonian O (n logn) 1 Section 2.2
Sub-Hamiltonian O (n) 2 Section 2.1
Planar O (n2) 0 [3,4]

The main contributions in this paper are stated in Theorems 1 and 2, and pertain to universal point-sets for straight-line
drawings, and drawings with bends respectively.

Theorem 1. For all n, there exist universal point-sets of cardinality n that support the family of maximum-degree-3 series-parallel
lattices with n vertices.

Suppose we relax the definition of support to allow edges of the graph to map to polylines composed of (at most) k + 1
line segments. In other words, we allow edges that “bend” at most k times. In this case, universal point-sets of size n exist
for two bends [6] and even one bend [7]. However, these results assume that the bend points can be placed in arbitrary
locations and these bend points are not included as part of the universal point-set. It is natural to ask if there exists a
point-set that supports all planar graphs where each vertex and each bend point occurs at a point in the set. As before, we
require all pairs of edges (a,b) and (c,d) (where a,b, c,d are distinct) to map to non-intersecting polylines. Previous to
this paper, no such point-set of cardinality o(n2) was known for any value of k. Extending the results of [7] and [6] in a
straightforward manner imply point-sets of size O (n3). For k = 3,2,1, we present such universal point-sets of cardinality
O (n), O (n log n), and O (n2/ logn) respectively. Our analyses of these cardinalities are tight; no lower bounds other than
Ω(n) are known for these cases.

Theorem 2. For all n, there exist universal point-sets of cardinality O (n), O (n log n), and O (n2/ log n) that support the drawing of all
n-vertex planar graphs with at most three, two, or one bend per edge, respectively.

The paper is organized as follows. In Sections 2.1, 2.2, 2.3 the effect of allowing bend points on edges is considered,
when the bend points must also be located at points of the supporting point-set. Universal point-sets are constructed for
three cases: when at most three, two, or one bend(s) per edge are permitted, thus establishing Theorem 2. One consequence
of our construction is that the class of sub-Hamiltonian graphs (i.e. a planar graph that can be made Hamiltonian by the
addition of edges while preserving planarity) can be universally supported efficiently (i.e. with fewer bends).

In Section 3 a particular point-set (called biconvex) of size n is considered and we show a class of planar graphs for
which it is universal. An application of this result to simultaneous embeddings and other consequences are discussed.
Table 1 summarizes our results in terms of which sets of planar graphs can be supported on point-sets of a given cardinality
with a specified number of bends.

We adopt standard notation from the graph drawing literature and we assume all graphs have n vertices.
Two of our results rely on point-sets that have a specific form; see, for example, Fig. 10. Two non-intersecting non-linear

curves λ1 and λ2 are defined to be biconvex if: each of the curves λ1 and λ2 is convex, the convex hull of the 4 endpoints
of the two curves completely contains the two curves, and the line segment joining any point a of λ1 to any point b of λ2
does not intersect either curve except at a and b.

Without loss of generality, we assume the existence of a horizontal line separating the two curves with λ1 below λ2.
A point-set all of whose points lie on two curves that are biconvex is said to be in biconvex position. We note that point-
sets in such a configuration have been used in other contexts under different names, for example as a double-chain in the
triangulation enumeration literature.

2. Universal point-sets for drawing planar graphs with bends

In this section we establish Theorem 2 by constructing universal point-sets for each of the three cases: 3, 2 or 1 bend per
edge allowed. A fundamental tool in our constructions for universal point-sets with bends is the following result proving
the existence of a book embedding of planar graphs in which the edges are permitted to cross the spine [8]. A monotone
topological book embedding of a planar graph G is a planar drawing such that all vertices of G are represented as distinct
points on a spine (i.e. the x-axis), and each edge is either represented as an arc in the bottom page (below the x-axis), or as
an arc in the top page (above the x-axis), or as the concatenation of two arcs: the first (leftmost) in the bottom page and
the second in the top page with their common crossing point between spine points. See Fig. 1.
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Fig. 1. A graph and a monotone topological book embedding of it.

Fig. 2. Example of an embedding of the graph of Fig. 1 on a biconvex point-set using three bends per edge. The circles on the upper curve are the bend
points b1, . . . ,b2a . The circles on the lower curve are bend points at dummy vertices. For clarity, the curvature is exaggerated and only the first 14 of the
36 upper curve points and 11 of the 26 lower curve points in the universal point-set are shown.

Theorem 3. (See [8].) Every planar graph has a proper monotone topological book embedding which can be computed in time linear
in the size of the graph.

2.1. A set of Θ(n) points for drawing planar graphs with 3 bends per edge

Lemma 4. There exists a universal set of 10n − 18 points that supports the drawing of planar graphs with 3 bends per edge.

Proof. Before introducing the (fixed) universal point-set, we first outline how the graph will be processed. Consider a proper
monotone topological book embedding of the input graph. For each edge that intersects the spine, introduce a dummy vertex
creating an augmented two page book embedding with the vertices of the spine drawn on a horizontal line. There are at most
n + m � 4n − 6 vertices on the spine. Imagine a horizontal line slightly above the spine that intersects all arcs in the top
page – call these points of intersection from left to right b1, . . . ,b2a where a is the number of arcs. Note that a � 3n − 6.

Consider a point-set that lies on two curves in biconvex position and consists of 6n − 12 points on the top curve and
4n − 6 points on the bottom curve. We prove that any such point-set is universal for drawing planar graphs with at most
three bends per edge. For any specific graph, its augmented two page book embedding defines the drawing and requires at
most 10n − 18 points. The at most 4n − 6 vertices on the spine (including dummy vertices) are assigned, in order, to the
first points on the bottom curve. The bend points b1, . . . ,b2a are assigned to the first 2a points of the upper curve in left to
right order and then each arc in the top page is drawn using the associated bend points. These polylines do not intersect
since the upper curve is convex and any segment joining the two curves does not properly intersect these curves. The arcs
in the bottom page can be drawn with no bends – they are chords of the bottom curve. Each arc in the top page uses two
bend points. Substituting a bend point for each of the dummy vertices results in a drawing with at most three bends per
edge. Refer to Fig. 2 for an example of the construction. �

Note that a sub-Hamiltonian planar graph corresponds exactly to a graph that has a two page (unaugmented) book
embedding [8]. Since such graphs do not require dummy vertices, they can be drawn with at most two bends per edge.

2.2. A set of Θ(n log n) points for drawing planar graphs with 2 bends per edge

Before describing our universal point-sets for the two bend case, we describe the geometric idea underlying our con-
struction. Similar to Section 2.1, we draw the spine vertices of an augmented two page book embedding on a set of points
that lie on a slightly concave curve close to the x-axis. This implies that all the arcs in the bottom page of the book em-
bedding can be drawn as straight line segments. For arcs in the top page, if the arc is from the ith to the (i + j)th spine
vertex, it is drawn to bend at a point at level j. We place approximately n/ j bend points approximately equally spaced
in the x-dimension at level j, since only n/ j top arcs can have “length” j. The bend point that lies between the ith and
(i + j)th spine vertices is used by this arc. Each level is at a y-coordinate that is large enough that the drawing of an arc
that uses a bend point at a lower level “nests” inside any drawing of an arc from the same vertex using a higher level bend
point. Of course, for each j > n/2, there can be only one arc of “length” j and it uses a single bend point at level j. The
total number of bend points we place is O (n log n).
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Fig. 3. A 2-bend universal point-set for 4-vertex planar graphs. The y-axis is not to scale.

Lemma 5. There exists a universal set of Θ(n log n) points that supports the drawing of planar graphs with 2 bends per edge.

Proof. Let N = 4n − 6 and refer to Fig. 3. The following point-set is a 2-bend-universal point-set for n-vertex planar graphs:
Place points at (x,0) for x = 1, . . . , N . (Actually, place points at (x, x(N−x)

N2 ) so that they lie on a slightly concave curve,

but for clarity we omit this technical detail in the following.) Let g(i, j) = j� i
j �. For j = 1,2, . . . , N , place the set of points

{(g(i, j) + min{ j, N
2 } − 1

2 , y j) | i = 1,2, . . . , N − j} (avoiding duplicates) where y j satisfies y1 = 1 and y j+1 > N y j for 1 �
j < N − 1. Notice that the number of points on line y j is at most � N

j � since it is the number of distinct values of � i
j � for

1 � i � N − j, which is at most 1 + � N− j
j � = � N

j �. Fig. 3 shows the set of points for n = 4.
To embed a given n-vertex planar graph G , first construct a proper monotone topological book embedding of G with

vertices on the x-axis and introduce dummy vertices on the arcs that cross the x-axis. Let G ′ be the resulting graph, which
has (at most) 3n − 6 additional vertices and arcs. Place the vertices of G ′ on the points (x,0), x = 1, . . . , N , preserving their
order from the book embedding. Let vx be the vertex at point (x,0).

For every arc (vi, vi+ j) in G ′ above the x-axis in the book embedding, draw a one-bend polyline from (i,0) to (g(i, j) +
min{ j, N

2 } − 1
2 , y j) to (i + j,0). For every arc (vi, vi+ j) in G ′ below the x-axis in the book embedding, draw the straight

polyline from (i,0) to (i + j,0). We will show that no two polylines above the x-axis cross in this drawing by an analysis
of the slopes of the segments of the polylines.

For any arc (vi, vi+ j) above the x-axis in G ′ , let �x and �y be the difference in the x- and y-coordinates respectively
of vi and the bend point of arc (vi, vi+ j). We first show that 1

2 � �x � N
2 . If j � N

2 , then �x = g(i, j) + j − 1
2 − i and, by

definition, 0 � i − g(i, j) � j − 1, thus �x ∈ [1 − j + j − 1
2 , j − 1

2 ] ⊆ [ 1
2 , N

2 ]. If j > N
2 , then i < N

2 (otherwise i + j > N), thus
i < j and g(i, j) = 0; thus �x = 0 + N

2 − 1
2 − i which is less than N

2 and at least 1
2 since i < N

2 and thus i � N
2 − 1 (since N

is even).
Consider now two arcs (vi, vi+ j) and (vi′ , vi′+ j′ ) above the x-axis where i � i′ . Since the arcs do not intersect in the

book embedding, we have i′ + j′ � i + j, and so 0 � i′ − i � j − j′ with at least one inequality being strict (otherwise the
two arcs have identical endpoints). Thus j′ < j. We now show that the slope of the initial segment of the polyline for
arc (vi, vi+ j) is greater than that of the first segment for arc (vi′ , vi′+ j′ ) and that the slope of the second segment of the
polyline for arc (vi, vi+ j) is less than that of the one for arc (vi′ , vi′+ j′ ). Since the first segments of each polyline have
positive slopes and the second segments have negative slopes, the polylines do not intersect above the x-axis, that is, the
“nesting” of the book embedding arcs is preserved.

Again, defining �x and �y as above for the first segment of the polyline in G ′ of arc (vi, v j), and defining similarly
�′

x and �′
y for the first segment of the polyline in G ′ of arc (vi′ , vi′+ j′ ), we have that both 1

2 � �x � N
2 and 1

2 � �′
x � N

2 .

This implies that �x � N
2 � N�′

x . On the other hand, y j � y j′+1 > N y j′ , thus �y > N�′
y . Hence, �y

�x
>

N �′
y

N �′
x

, which is our

slope requirement for the segments incident to vi and vi′ in arcs (vi, vi+ j) and (vi′ , vi′+ j′ ) respectively. A similar argument
establishes our slope requirement for the segments incident to vi+ j and vi′+ j′ in arcs (vi, vi) and (vi′ , vi′+ j′ ) respectively.

Note also that �y
�x

> 1
N (since �y � 1 and �x � N

2 ), thus the segments do not properly intersect the slightly concave arc of

parabola which support the vertices vi and whose slope is in [− 1
N , 1

N ] for x in [0, N].
Such a universal point-set consists of at most N + ∑N

j=1� N
j � = Θ(N log N) = Θ(n log n) points as candidate bend points

for edges in the top page, and 4n − 6 points on the x-axis to support the augmented spine. �
Sub-Hamiltonian graphs require only one bend per edge using this construction, since they have a book embedding

containing no dummy vertices.
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Fig. 4. The one-bend drawing of the three edges, in the top page or crossing the spine, and incident to v0 = w1 in the graph of Fig. 1 following the
construction of [7]. The points p6 and p7 are not shown since the figure is to scale.

2.3. A set of Θ(n2/ log n) points for drawing planar graphs with 1 bend per edge

In [7], the authors describe a universal set of n points on which all planar graphs with n vertices can be drawn with at
most one bend per edge. Although not noted in that paper, their construction trivially yields a universal set of size Θ(n3)

of points for the bend locations. We show here how to reduce the size of the universal set of bend points to Θ(n2/ log n)

while preserving a linear size universal set of points for the vertices. Our construction being similar to that in [7], we recall
briefly this construction, referring to Figs. 1 and 4.

Given a planar graph G with n vertices, we embed the graph on vertices pi = (−2i, i) for i = 0, . . . ,n−1 with at most one
bend per edge, as follows. We first compute a proper monotone topological book embedding, Γ of G . We relabel the vertices
of that book embedding from right to left, as v0, . . . , vn−1. We then map these vertices to p0, . . . , pn−1, respectively. All the
edges below the spine are drawn as straight-line segments. The others are drawn with a bend point as follows: Consider
an edge whose rightmost vertex is vi and that intersects the spine on the interval [vu+1, vu) (inclusive of vu+1 – which is
left of vu – for the case where the leftmost endpoint of the edge is vu+1). Such an edge is drawn with a bend point on
the horizontal line through pu and in the vertical strip delimited by pi and pi+1 (recall that the vi are drawn at the pi ). In
what follows, the horizontal line through pu is called the bend line through pu . This construction requires a set of candidate
bend points of size Θ(n3) since inside every vertical strip, on every bend line, there need to be up to n − i − 1 candidate
bend points (for every possible edge with right endpoint pi ).

We show how this construction can be modified to contain only a subquadratic universal set of points for the bends
while preserving a linear size universal set of points for the vertices.

Lemma 6. There exists a universal set of Θ(n2/ log n) points that supports the drawing of planar graphs with 1 bend per edge.

Proof. The proof is organized as follows. We first add some isolated “dummy” vertices in the topological book embedding
Γ of the input graph G . With a slight modification of the construction of [7], we can reduce the number of candidate bend
points in each vertical strip bounded by pi+1 and pi to at most one per bend line, resulting in an overall total of Θ(n2);
moreover, no drawing will use more than one candidate bend point from any bend line.

We then show how we can reduce the number of candidate bend points from Θ(n2) to Θ(n2/ logn). We do this by first
describing our construction of a universal set of points for the bends, then proving that the size of this set is Θ(n2/ log n),
then verifying that the construction of [7] (slightly modified to only use the reduced number of candidate bend points) is
still valid. This final step of verifying that the (slightly modified) construction of [7] gives a crossing-free drawing of any
planar graph on our universal point-set is almost the same as in [7]. Since this proof is fairly long – though not particularly
difficult – we do not duplicate it here; instead we give an alternate argument by describing motions of the bend points in
the construction of [7] to locations in our Θ(n2/ log n) point-set that do not introduce any crossings. �
2.3.1. Augmented topological book embedding

We consider, as in [7], a proper monotone topological book embedding Γ of our input graph G (see Fig. 1). On the spine
of Γ , add isolated dummy vertices as follows (see Fig. 5(a)): Between any two vertices v and w of G that are consecutive
on the spine of Γ , with v to the left of w , add dv dummy vertices to the spine of Γ , where dv is the number of edges
of G that cross the spine between v and w plus the number of top-page edges of Γ having leftmost endpoint v . More
precisely, in the interval (v, w), we add on the spine one dummy vertex between each pair of consecutive spine-crossing
edges as well as between the rightmost spine-crossing edge and w; the remaining vertices are added between v and the
leftmost spine-crossing edge (or between v and w if there is no spine-crossing edge). If w is mapped to pi , then the dummy
vertices will be mapped to pi+1, . . . , pi+dv and v will be mapped to pi+dv +1, providing a separate bend line for each edge
intersecting the segment [pi+dv+1, pi) and guaranteeing that at most one bend point is drawn on every bend line (though
the bend line supports many candidate bend points). Since the number of edges of a planar graph is at most 3n − 6, we add
at most that number of isolated vertices and the total number of vertices is less than 4n. Let Γ ′ be the resulting graph.

2.3.2. Modification of the construction of [7] leading to Θ(n2) candidate bend points
We show how a slight modification of the construction of [7] on this augmented graph Γ ′ leads to a quadratic universal

set of points for the bends. Refer to Fig. 5(b). Since Γ ′ has no more than 4n vertices, we construct a set of 4n points
p0, . . . , p4n−1 as in [7] that will support the vertices v0, v1, . . . of any augmented graph Γ ′ . We assume from this point
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Fig. 5. (a) Augmented topological book embedding Γ ′ of the graph Γ of Fig. 1. The isolated dummy vertices are drawn as circles. (b) One-bend drawing of
the three top-page or spine-crossing edges incident to v0 of Γ ′ (the same edges as in Fig. 4) in the construction using Θ(n2) candidate bend points, which
are drawn as crosses; one arc is drawn curved because the figure is not to scale.

on that each vertex vi of Γ ′ is mapped to the point pi . We then place vertically above every point pi one candidate bend
point on every bend line. More precisely, we place candidate bend points at integer heights between i + 1 and n − 1 above
pi , and, since we do not want to consider a candidate bend point that coincides with pi , we place one to the right of pi (at
the same height) and sufficiently close to pi . These points will serve as candidate bend points in the vertical strip delimited
by pi and pi−1, that is, every top-page edge or spine-crossing edge of Γ ′ having rightmost endpoint vi−1 will use one of
these bend points. All the edges of Γ ′ that are below the spine are drawn as straight-line segments, as explained above and
as in [7]. We now describe how to draw the edges that lie at least partially above the spine.

Let vi represent an original (non-dummy) vertex of G and let vi−1, . . . , vi−dvi
represent the dummy vertices to the right

of vi (thus vi−dvi −1 is the next original vertex of G to the right of vi on the spine of Γ ′). Now consider the collection of
dvi edges of G that gave rise to these dummy vertices; they are the top-page edges having left endpoint vi along with the
edges that cross the spine of Γ between vertices vi and vi−dvi −1. Denote these edges by e1, . . . , edvi

, where the first edges
to appear in the list are the edges with left endpoint vi , ordered by their clockwise order at vi , and the last edges to appear
in the list are those that cross the spine between vi and vi−dvi −1 in the (left to right) order that they cross the spine. Each
edge ek in this list will have its bend point on the bend line at height i −k (that is, the bend line through pi−k); if the right
endpoint of edge ek is vr , then ek will use the candidate bend point vertically above pr+1. For each edge e in G , denote by
h(e) the height of the bend point for edge e in the drawing. Note that at most one bend point from any bend line will be
used, and thus that h(·) induces a total ordering on the top-page and spine-crossing edges of Γ ′ . Moreover, this ordering
(for decreasing h(·)) is the same as the ordering obtained by concatenating, for all vertices of Γ ′ considered from left to
right, the edges e1, . . . , edvi

in the order described above.
To understand why no two of the one-bend polylines intersect properly, we describe a motion that carries the bend

points in the original construction of [7] to the bend points in our construction. We consider two consecutive motions. The
first one ensures that bend points end up being drawn on distinct bend lines. Note that in the original construction the
bend points of two edges of Γ ′ are drawn on the same bend line if and only if both edges have the same leftmost endpoint
or if they intersect the spine between the same two consecutive vertices; by definition of the dummy vertices of Γ ′ , this
may only happen for two top-page edges that share the same left endpoint.

Consider then a vertex vi that is the left endpoint of k edges in the top page of Γ ′ . Denote these edges by e1, . . . , ek in
their counterclockwise order at vi . These edges (in order) are drawn in the original construction with bend points, ordered
from left to right, at the height of pi−1. Considering the edges e1, . . . , ek in that order, we move the bend point of e j along
its rightmost segment in the direction of its rightmost endpoint until it reaches height h(e j) (i.e., we shorten the rightmost
segment). All movements take place in the quadrilateral region bounded from above and on the right by edge ek (whose
bend point does not move), from below by the horizontal line through pi , and on the left by the segment pi pi−k . Since no
edges other than e1, . . . , ek intersect that region, we do not create any intersections during the motion. Furthermore, at the
end of this motion, no two bend points lie on the same bend line.1 For the second motion, consider any point pi . All the
edges whose right endpoint is pi have their bend point drawn in the vertical strip bounded by the vertical lines through

1 During this motion, edges e1, . . . , ek may sweep over some vertices in pi−1, . . . , pi−k+1. We thus do not ensure that the topology (actually, the isotopy)
of the augmented graph Γ ′ is preserved, but this is not an issue since the dummy vertices vi−1, . . . , vi−k+1 are not part of the input graph G and thus are
not ultimately drawn.
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Fig. 6. Placement of candidate bend points in the strip Si . The figure is not to scale.

pi+1 and pi . We can thus move these bend points to the left boundary of the strip, without creating any intersection by
moving them one by one, starting in every strip by the bottommost bend points.2 This motion results in the drawing we
described above.

2.3.3. Construction of a Θ(n2/ log n) size universal set for the bend points
We obtain a subquadratic-size universal set of points as follows. As above, we construct a set P of 4n points p0, . . . , p4n−1

as in [7] that will support the vertices of any augmented graph Γ ′ . We then define a set of vertical strips S0, . . . , Sm , where
m ∈ Θ(n/ log n), that are disjoint and that together contain all of the points p0, . . . , p4n−2 (and possibly contain p4n−1 as
well). For each vertical strip Si we will describe how to place Θ(n) candidate bend points in Si which will be used by edges
with right endpoint in Si while avoiding intersections among edges. Note that Sm may also contain p4n−1 but it need not
since p4n−1 is not the right endpoint of any edge. The drawing of Γ ′ will then be obtained, from the drawing using Θ(n2)

candidate bend points, by moving every bend point to the left (on the same bend line) until it reaches one (not necessarily
the first one) of the new Θ(n2/ log n) candidate bend points.

Let N = 4n − 1, the height of p4n−1, and refer to Fig. 6. We simultaneously construct a subsequence pu0 , . . . , pum of P
along with a set q0, . . . ,qm of points on the bend line at height N such that qi and pui define the left and right boundaries,
respectively, of Si .

Let u0 = 0, so pu0 = p0. The point q0 is defined to be the intersection of the bend line at height N with the line
pu0 pu0+1 = p0 p1. Let pu1 be the rightmost point of p0, . . . , p4n−1 that is to the left of q0 (or vertically aligned with q0).
The second point q1, is the intersection of the bend line at height N with the line pu1 pu1+1. Inductively, the point pui is
used to define qi , as the point at which the bend line at height N intersects the line through pui and pui+1; qi is then used
to define pui+1 as the rightmost p j to the left of qi (or vertically aligned with qi ). The construction ends at the first value
of m for which qm is to the left of p4n−2.

Before proving that the number of vertical strips S0, . . . , Sm is in Θ(n/ log n), we complete the description of our set of
candidate bend points. Refer to Fig. 6. Consider the vertical strip Si bounded by qi on its left side and pui on its right side
(we assume Si is open on its left side and closed on its right side). For each pair p j , p j+1 of consecutive points of P in Si ,
define Li, j to be the portion of the line p j p j+1 that has p j as its right endpoint and the intersection of line p j p j+1 with
the vertical line through qi as its left endpoint. Near each point on segment Li, j having integer height strictly larger than
j, we place a candidate bend point at that height and infinitesimally to the right of Li, j . We do this so that the segments
from candidate bend points to p j do not overlap, and so that the candidate bend point at height j + 1 is distinct from p j+1.
Moreover, we require that between two of these candidate bend points, the higher ones are moved to the right more than
the lower ones, so that a segment connecting p j to a lower bend point is below any segment connecting p j to a higher

2 To avoid placing a bend point exactly at the location of pi+1, we specify that the bend point at height pi+1 be moved to the left until it is slightly to
the right of pi+1.
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Fig. 7. The segment pib intersects the segment p j p j+1. The figure is not to scale.

bend point. We also place a candidate bend point at every point of the vertical line through qi with integer y-coordinate
from ui+1 to N .3 Call this set of candidate bend points Bi and let B = ⋃i=m

i=0 Bi .

2.3.4. The number of vertical strips is in Θ(n/ log n)

We prove here that the number of vertical strips S0, . . . , Sm is in Θ(n/ log n). We first prove that the index ui of pui

satisfies ui+1 = ui +�log(N − ui + 1)	. Recall that u0 = 0 and that the points pi have coordinates (−2i, i). By definition pui+1

is the rightmost point of p0, . . . , p4n−1 that is to the left of qi (or vertically aligned with qi). The x-distance between pui

and qi is, as shown on Fig. 6, 2ui (N − ui). Thus the x coordinate of qi is −(2ui + 2ui (N − ui)). By definition of pui+1 we have
2ui+1−1 < 2ui + 2ui (N − ui) � 2ui+1 . Thus ui+1 = ui + �log(N − ui + 1)	 or equivalently ui+1 = ui + �log(4n − ui)	.

Since Si is open on the left side and closed on the right side, the strips are non-intersecting and by construction every
element of P (except possibly p4n−1) is contained in one of the strips. Note that ui+1 is the size of the intersection of P
with S0 ∪ · · · ∪ Si and so ui+1 − ui is the size of P ∩ Si . We have thus established that each Si contains �log(4n − ui)	 points
of P . In fact, Si contains the �log(4n − ui)	 rightmost vertices remaining in P after having removed the ui rightmost of its
vertices – that is, those in S0 ∪ · · · ∪ Si−1. Moreover, m is such that P minus the points in S0 ∪ · · · ∪ Sm contains at most
one point (since two points are sufficient for defining a strip). It follows that m is the number of iterations (over i) of the
process of removing iteratively from a set K (K is initially P ) of size 4n, �log(|K |)	 elements until it is of size at most 1.

So, define, for every k � 1, T (k) to be the number of iterations required to make a set K of size k at most 1 by repeatedly
removing �log(|K |)	 of its elements. We claim that T (k) = T (k/2) + Θ(k/ log k). To see this, note that as long as we have
removed fewer than k/2 elements of K , we have that �log(k)	 � �log(|K |)	 � �log(k/2)	 = �log(k)	 − 1. In other words, as
long as |K | � k/2, an iteration removes at least �log(k)	 − 1 elements from K . Thus, the number of iterations required to
make |K | < k/2 is at most k/2

�log(k)	−1 , or Θ(k/ log(k)), and so T (k) = T (k/2) + Θ(k/ log k). The Master theorem then yields
that T (k) = Θ(k/ log k), which establishes that the number of vertical strips created is Θ(n/ log n).

2.3.5. The number of candidate bend points in every strip Si is in Θ(n)

We now prove that for each i = 0, . . . ,m, |Bi| is in Θ(n). The line pi pi+1 has equation y = −2−i x + i − 1 and intersects
the line y = N at x = −2i[N − i +1]. The line x = −2i[N − i +1] intersects the line p j p j+1 (which has equation y = −2− j x+
j −1) at y = (N − i +1)/2 j−i + j −1. Thus, on the line p j p j+1, we place (N − i +1)/2 j−i + j −1− j = (N − i +1)/2 j−i −1 > 0
candidate bend points. How many bend points will this yield in total for strip Si ? We have some number, call it k + 1, of
these line segments p j p j+1, starting with j = i, giving the sum

∑ j=i+k
j=i [(N − i + 1)/2 j−i − 1] <

∑ j=i+k
j=i (N − i + 1)/2 j−i <

∑ j=∞
j=i (N − i + 1)/2 j−i = ∑ j′=∞

j′=0 (N − i + 1)/2 j′ = 2(N − i + 1) = O (n). Adding the linear number of candidate bend points
on the vertical line through qi results in Bi having size in Θ(n).

2.3.6. One-bend drawing of Γ ′ with vertices in P and bend points in B
Now we show that Γ ′ can be drawn with at most one bend per edge such that its vertices are in P and its bend

points are in B . The construction is the same as the one described above with Θ(n2) candidate bend points except for the
x-coordinates of the bend points that are used. In particular, vertices vi are still mapped to the pi (except that the dummy
vertices in Γ ′ are not actually drawn), and an edge vi v j completely in the bottom page of Γ ′ is drawn as the straight line
segment pi p j . As before, an edge vi v j that is partially in the top page of Γ ′ is drawn with a bend point whose height is
the same as before, and denoted h(vi v j). Note that it is still the case that at most one bend point on any bend line is used.
Contrary to the previous construction, the bend point of an edge vi v j (with vi left of v j ) is chosen in B as follows. Let Sk
be the vertical strip that contains p j . The candidate bend point that we choose for edge vi v j is the one that lies just to
the right of the segment Lk, j (the part of the ray from p j through p j+1 that lies in Sk) if that segment extends to height
h(vi v j); otherwise, the bend point is chosen on the vertical left side of Sk (at height h(vi v j)).

3 We actually place these bend points infinitesimally close to the right of the vertical line through qi , only to ensure in the following arguments that
these points belong to Si (which is open on the left).
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To complete the proof, it suffices to show that no two edges of Γ ′ have drawings whose one-bend polylines intersect
(except possibly at their endpoints). As mentioned earlier, this proof is very similar to that in [7] and we do not duplicate
these arguments here. Instead, we argue that we can move the bend points used in the previous construction (having
Θ(n2) candidate bend points) to locations in our Θ(n2/ log n) point-set B without introducing any crossings. We obtain our
drawing on the Θ(n2/ logn) point-set from the drawing on the Θ(n2) point-set by moving each bend point to the left (on
the same bend line) until it reaches its prescribed location.

Consider an edge e whose left and right endpoints are pi and pk , respectively, and whose bend point b lies at the height
of p j (and thus i > j > k); see Fig. 7. Let b0 be the initial location of the bend point in the drawing on the Θ(n2) point-set,
and b1 be its final location in the drawing on the Θ(n2/ log n) point-set. We first argue that when b moves on its bend line
from b0 to b1, the edge e never intersects any vertex p� , � 
= i,k.

Indeed, first observe that by the definition of b1 (see Fig. 6), segment pkb does not intersect any vertex other than pk
for any b between b0 and b1. Second, segment pib does not intersect any vertex other than pi because, by definition of the
points p0, . . . , p4n−1, segment pib intersects segment p j p j+1 (see Fig. 7 and [7, Lemma 6]), thus the line pib leaves all the
vertices pi−1, . . . , p j+1 strictly above it and all the other vertices (distinct from pi ) strictly below it (for any position of b at
the height of p j , strictly to the right of p j and to the left of p0).

Hence, when the bend point of an edge e moves between b0 and b1, the edge e does not intersect any vertex (except
its endpoints). Observe that if only one edge e moves at a time, its bend point b cannot intersect another edge e′ before
edge e intersects the bend point of e′; indeed, no two bend points lie at the same height and, as b moves to the left, edge
e remains a concave chain of two segments having negative slopes. Thus, it only remains to prove that, if only one edge e
moves at a time, it does not intersect any other bend point.

First, observe that, when b moves from b0 to b1, the left segment pib of edge e intersects no other bend point. Indeed,
there is no other bend point at the height of b, and since segment pib intersects the segment p j p j+1 (see Fig. 7), the
horizontal rays from the p� , � > j, and directed to the right (rays which support the bend points above b) do not intersect
segment pib.

It thus remains to prove that, when b moves from b0 to b1, the right segment bpk of edge e intersects no other bend
point. Note first that the segment bpk remains during the motion inside the vertical slab Su that contains pk , thus segment
bpk cannot intersect any bend point outside of Su . To prove that bpk intersects no bend point inside Su , we consider the
motions of the edges in the right order, that is the increasing order of the height of their bend points. Then, by construction
of the Θ(n2/ log n) candidate bend points, the edge bpk cannot intersect any other bend point. Indeed, it may only intersect
the bend points in Su that are below b (and left of pk), and these are either on the vertical line bounding Su on its left,
or below the line pkb1. Hence, by considering the motions of the bend points in the given order, the motions do not create
any intersection, which completes the proof. �
3. Biconvex point-sets

Any point-set in general position supports the class of outerplanar graphs [5]. Indeed a point-set in convex position
supports exactly the class of outerplanar graphs, and no other planar graphs. Motivated by this insight we now consider the
class of planar graphs that are supported by a point-set in which n/2 points are on one convex curve and the remainder are
on another convex curve – in biconvex position. Clearly outerplanar graphs can be supported by this point-set and efficient
algorithms such as that developed by Bose [9] exist. We show that any (n/2,n/2) biconvex point-set is universal for a
subclass of the series-parallel graphs (Theorem 8) and thus establish Theorem 1. Since our purpose is to exhibit universal
point-sets for classes of planar graphs, the balancing condition is critical and since the number of vertices could be odd, the
balancing must allow for one vertex to be placed arbitrarily. Henceforth denote by n the number of vertices of the given
graph.

A planar graph G is biconvex if there exists a crossing-free straight-line drawing Γ of G with all vertices located on the
curves λ1 and λ2.

A planar graph G is balanced biconvex if it is biconvex with a drawing Γ in which the numbers of vertices on the two
curves differ by at most one; more formally if:

• For n even, n/2 vertices are on λ1 and n/2 vertices on λ2 (called uniform and denoted as Γ =).
• for n odd, either:

– n−1
2 vertices are on λ1 and n+1

2 vertices are on λ2 (called top-heavy and denoted as Γ +), or
– n+1

2 vertices are on λ1 and n−1
2 vertices are on λ2 (called bottom-heavy and denoted as Γ+).

It is convenient to be less explicit about the provided point-set and focus on the biconvexity property. The following
lemma formalizes that this is sufficient to claim a universal biconvex point-set of suitable size, since, intuitively, we can
shift any biconvex drawing on one point-set to any other point-set with the same numbers of points on the two curves.

Lemma 7. If a graph G on n vertices has a balanced biconvex drawing, then every balanced biconvex point-set of size n supports G.
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Proof. A drawing with n/2 vertices on each of two biconvex curves specifies a particular embedding of the graph. Let
u, v , w be three consecutive vertices on one of the two curves. Then v and its incident edges can be shifted to any
location between u and w without creating a crossing and without changing the circular ordering around all vertices – thus
preserving the specified embedding. A given drawing can be shifted onto any particular point-set, of appropriate cardinality,
by preserving the ordering of the vertices along each curve. �

As a result of Lemma 7, we may shift our attention to drawings on biconvex curves since a particular point-set is not
required.

3.1. Series-parallel graphs and their decomposition trees

The class of graphs that we intend to demonstrate to be balanced biconvex, is a subclass of series-parallel graphs, whose
definition we now recall. Although this definition is stated in terms of a directed graph, it is ultimately the underlying
undirected graph that we require.

A two terminal series-parallel digraph (also called TTSP-digraph) is a planar digraph recursively defined as follows [10,11]:

• A directed edge joining two vertices forms a TTSP-digraph.
• Let G ′ and G ′′ be two TTSP-digraphs; the digraph obtained by identifying4 the sink of G ′ with the source of G ′′ (Series

Composition) is also a TTSP-digraph.
• Let G ′ and G ′′ be two TTSP-digraphs; the digraph obtained by identifying the source of G ′ with the source of G ′′ , and

the sink of G ′ with the sink of G ′′ (Parallel Composition) is also a TTSP-digraph.

A TTSP-digraph has one source and one sink which are called its poles. Also, a TTSP-digraph is always acyclic and admits a
planar embedding with the poles on the same face.

A TTSP-digraph is a TTSP lattice if for every directed edge (u, v), there is no directed path from u to v that does not
contain (u, v). Note that a TTSP lattice cannot have multiple edges.

The undirected underlying graph of a TTSP-digraph is called a two terminal series-parallel graph or TTSP-graph for short;
similarly, the undirected underlying graph of a TTSP-lattice is called a two terminal series-parallel lattice or TTSP-lattice for
short. We further shorten these terms in the current paper and refer to them as series-parallel (SP).

Associated with a series-parallel graph is a decomposition tree which identifies the operations required to construct the
graph. The proofs of several of our lemmas rely on such a decomposition tree, called an SPQ∗-tree.

An SPQ∗-tree of a TTSP-graph is a simplification of the definition of SPQ∗R-trees of general biconnected graphs [12],
or, equivalently, of general st-graphs. An SPQ∗R-tree is a tree having four types of nodes, S-, P -, R-, and Q ∗-nodes, which
describes a decomposition of G into its triconnected components; more precisely, an S-node represents a series component,
a P -node represents a parallel component, an R-node represents a rigid component (i.e. a component that is a triconnected
graph), and each Q ∗-node represents a simple path of G . If G is series-parallel, its associated SPQ∗R-tree has no R-nodes
and its structure can be described only in terms of S-, P -, and Q ∗-nodes. Also, since G is a TTSP-graph the description of
the decomposition process can be further simplified, as described below.

A separation pair of G is a pair of vertices such that the removal of these vertices disconnects G . A split pair of G is either
a separation pair or a pair of adjacent vertices of G . A split component of G with respect to a split pair {u, v} is either the
edge (u, v) or a maximal subgraph C of G such that C is an uv-graph and {u, v} is not a split pair of C .

Let G be a TTSP-graph with source pole u and sink pole v . An SPQ∗-tree T of G describes a recursive decomposition
of G with respect to its split pairs. Intuitively, T represents a natural way to describe G in terms of its series and parallel
compositions.

More formally, T is a rooted tree whose nodes are of three types: S , P , and Q ∗ . Each node μ of T has an associated
TTSP-graph (possibly with multiple edges), called the skeleton of μ and denoted by skeleton(μ). Tree T is recursively defined
according to the following cases:

Chain case: G consists of a simple path from u to v . Then, T consists of a single Q ∗-node μ. Graph skeleton(μ) is G itself.
Series case: Graph G is not a biconnected graph. Let u2, . . . , uk (k � 2) be the cut-vertices of G of degree 3 or more. Since

G is planarly biconnectible, each cut-vertex ui (i = 2, . . . ,k) is contained in exactly two connected components
Gi and Gi−1; also, u is in G1 and v is in Gk . Each Gi is a TTSP-graph with poles ui, ui+1 (i = 1, . . . ,k), where
u1 = u, and uk+1 = v . Then, the root of T is an S-node μ. The skeleton(μ) consists of the chain e1, . . . , ek , where
ei = (ui, ui+1) (for i = 1, . . . ,k). Node μ has children ν1, . . . , νk , where νi is the root of the SPQ∗-tree Ti of Gi
(i = 1, . . . ,k). Graph Gi is called the pertinent graph of νi , and edge ei is called the virtual edge of νi in skeleton(μ).

Parallel case: Graph G is a biconnected graph with at least two split components with respect to the split pair {u, v}. Denote
these split components G1, . . . , Gk (k � 2). Each Gi (i = 1, . . . ,k) is a TTSP-graph with poles u and v . Then, the
root of T is a P -node μ. The graph skeleton(μ) consists of a bundle of parallel edges ei from u to v (i = 1, . . . ,k).

4 I.e. coalescing.
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Node μ has children ν1, . . . , νk , where νi is the root of the SPQ∗-tree Ti of Gi (i = 1, . . . ,k). Graph Gi is called the
pertinent graph of νi , and edge ei is called the virtual edge of νi in skeleton(μ).

3.2. 3SP lattices

A series-parallel graph in which every vertex is of maximum-degree-3 is denoted as 3SP. It is the class of 3SP lattices
that we will show to be balanced biconvex. We distinguish between two critical cases. If both the source and sink of a 3SP
lattice have degree � 2 then the graph is called thin and otherwise (i.e. if either pole has degree 3) it is called thick.

There are several simple properties of the decomposition tree T associated with a given 3SP lattice G:

• The parent of an S-node of T must be a P -node.
• A P -node cannot have two P children5 (maximum-degree 3 constraint would be violated).
• An S-node can have an arbitrary number of children, however no two consecutive children can be P -nodes (maximum-

degree 3 constraint would be violated).
• If G is biconnected then the root of T must be a P -node.
• If G is not biconnected then the root of T must be either an S- or Q ∗-node.

Further constraints on the decomposition tree will be exploited for special cases, for example if G is thin.
Our construction is recursive and attempts to contain the drawing of the SP lattice in a box spanning the biconvex curves

with a balanced number of vertices on each curve and with s and t forming a diagonal of the box. Unfortunately, such a
strong invariant cannot be maintained and slightly weaker conditions must be carefully considered.

A series-parallel digraph with poles s and t is bottom-cornered if it is balanced biconvex with a drawing Γ = (n even) or
Γ+ (n odd) such that:

1. There exists a box (i.e. a convex quadrilateral) B(s, t) with s on λ1 and t on λ2, st forms one diagonal of B , and the
other diagonal has one corner on λ1 and one on λ2, and

2. The entire drawing lies inside B .

See Fig. 14 for an example. Similarly, a series-parallel digraph with poles s and t is top-cornered if it is balanced biconvex
with a drawing Γ = (n even), or Γ + (n odd) such that conditions 1 and 2 hold.

Finally, if a series-parallel graph is both top-cornered and bottom-cornered, it is called double-cornered – i.e. if n is odd,
there exist two drawings Γ + and Γ+ both of which satisfy conditions 1 and 2. See Fig. 10 for example.

In some situations, only weaker conditions on the drawings of a series-parallel graph can be maintained, in which one
of t or s is contained strictly inside a box rather than on the diagonal forming the box:

1′ . There exists a box B(s, x) with s on λ1 and x on λ2, sx forms one diagonal of B(s, x), and the other diagonal has one
corner on λ1 and one on λ2 and t is on λ2 inside B(s, x).

1′′ . There exists a box B(x, t) with x on λ1 and t on λ2, xt forms one diagonal of B(x, t), and the other diagonal has one
corner on λ1 and one on λ2 and s is on λ1 inside B(x, t).

A series-parallel graph with source s and sink t is sink-covered if it is balanced biconvex and conditions 1′ and 2 hold
(see Fig. 18 for example); similarly, if conditions 1′′ and 2 hold, then the graph is source-covered.

Theorem 8. The class of 3SP lattices is balanced biconvex.

It is the class of 3SP lattices that we now show to be balanced biconvex. There are several cases to consider depending
on whether the graph is biconnected or not, and whether the graph is thin or thick. Our proof is recursive in nature –
interior components are replaced by appropriate balanced boxes. Lemmas 9–15 distinguish and organize these cases and
Fig. 8 provides a simple example of each case, the type of drawing obtained, and the prerequisite lemmas used in the proof.

The following invariant is maintained in Lemmas 9, 10 and 11 and is used inductively.

Invariant I: Let T be the decomposition tree. For all nodes μ of T with poles sμ and tμ , and for every edge (u, v) of Gμ

such that u 
= sμ and v 
= tμ , u and v are drawn on opposite curves and there exists a box B(u, v) that is empty except for
the edge (u, v).

Fig. 9 provides an example of the technique used. In this example, the 3SP lattice with poles s1 and t3 is not biconnected
and has one (global) pole of degree 3, and thus Lemma 15 will apply. Since this graph consists of a series of 3 component
SP lattices, with poles (s1, t1), (t1, s3), and (s3, t3) Lemmas 10, 9, and 14 respectively are applied. The first two SP lattices
can be drawn double-cornered, however the third is bottom-half-cornered.

5 Furthermore, only at the topmost level can a P -node have even a single child that is a P -node.
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Fig. 8. Roadmap of the various cases.

Fig. 9. Example construction (3 edges are drawn curved for clarity).
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Fig. 10. (Lemma 9) Paths are double-cornered.

Fig. 11. (Lemma 10) Base case: 2 chains from s to t; (A) odd, odd ⇒ Γ =; (B) even, even ⇒ Γ =; (C) and (D) even, odd ⇒ Γ + , or Γ+ .

Lemma 9. A simple path consisting of n � 2 vertices from s to t is double-cornered.

Proof. Refer to Fig. 10. Let the neighbor of s be s′ and the neighbor of t be t′ . If n is even, the path can alternately place
vertices on λ1 and λ2, as in Fig. 10. If n is odd, then either s′ or t′ can be relocated to the opposite curve to produce
top-heavy or bottom-heavy drawings. �
3.3. Thin 3SP lattices

This subsection considers those lemmas used for subcases that are thin.

Lemma 10. Let G be a biconnected thin 3SP lattice. Then G is double-cornered.

Proof. Consider the decomposition tree T of G . Since G is biconnected, the root of T is a P -node. The lemma is proven by
induction on the number of P -nodes in T and invariant I is maintained throughout.

Base case: The simplest form of a biconnected thin 3SP lattice consists of two chains from s to t , i.e. the decomposition
tree is a single P -node with two Q ∗ children. Lemma 9 is applied carefully on each chain depending on the parity of the
number of vertices on each chain to obtain double-cornered drawings – the cases are shown in Fig. 11.

Let l and r denote the number of vertices on the left and right chains respectively, excluding s and t . Since G is a lattice,
l, r � 1. We choose a point on λ1 for s and a point on λ2 for t . Box B(s, t) is split into two sub-boxes: B(s,a) and B(b, t),
where a is a point on λ2 left of t and b a point on λ1 right of s. If l and r are both odd, then n is even and a uniform
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Fig. 12. (Lemma 11) Both s and t have degree 2.

Fig. 13. (Lemma 11) Both s and t have degree 1.

drawing Γ = is produced with the left chain in box B(s,a) and the right chain in B(b, t) and each box is uniform. If l and
r are both even, then n is even and a uniform drawing Γ = is produced with the left chain in box B(s,a) bottom-heavy,
and the right chain in B(b, t) top-heavy. In the final case, one of l and r is odd and the other is even, and thus n is odd.
A bottom-heavy drawing is produced by drawing the even chain in the box B(s,a) bottom-heavy, and the odd chain in
B(b, t) uniform. A top-heavy drawing uses B(s,a) for the odd chain drawn uniform, and B(b, t) for the even chain drawn
top-heavy. Thus, G is double-cornered.

Inductive case: Assume by induction that every biconnected, thin 3SP lattice whose decomposition tree has less than k
P -nodes is double-cornered and respects invariant I and let G be a biconnected, thin 3SP lattice whose decomposition tree
T has k P -nodes.

Visit T from the leaves to the root and let ν be the first encountered P -node. All children of ν are Q ∗-nodes. Let μ be
the parent of ν and let ρ be the parent of μ in T . Note that μ is an S-node and ρ is a P -node. Furthermore, neither sν ≡ sμ
nor tν ≡ tμ , since G is a biconnected, thin 3SP graph. Replace Gν with an edge (sν, tν ) which we call a virtual edge, and
let G ′ be the resulting biconnected, thin 3SP lattice with corresponding decomposition tree T ′ . Since T ′ has fewer than k
P -nodes, G ′ is double-cornered and its drawing, Γ ′ , satisfies invariant I . Consider the box B(sν, tν) in Γ ′ and the pertinent
graph Gν of ν in T . Applying the base case, Gν can be double-cornered in B(sν, tν), thus providing a double-cornered
drawing for G . �

We now extend the previous lemma by considering thin 3SP lattices that are not biconnected.

Lemma 11. Let G be a thin 3SP lattice with source s and sink t. If either deg(s) = deg(t) = 1 or deg(s) = deg(t) = 2 then G is
double-cornered.

Proof. Case 1 (both s and t have degree 2): Refer to Fig. 12. If G is biconnected, then the previous lemma applies, so assume
G is not biconnected, with decomposition tree T . Let μ be the root of T with children ν1, . . . , νk in left-to-right order. Note
that μ is an S-node and both ν1 and νk are P -nodes. Also, if ν j and νl are two P -nodes, there exists a Q ∗-node νx with
j < x < l, i.e. ν1, . . . , νk is an alternating sequence of P -nodes (odd subscripts) and Q ∗-nodes (even subscripts). For each
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Fig. 14. (Lemma 12) Bottom-cornered.

P -node ν j , the pertinent graph Gν j satisfies Lemma 10 and thus is double-cornered. Each ν j is drawn in a box between the
box of Gν j−2 and the box of Gν j+2 .

For each Q ∗-node νi , consider the box Bi defined by the diagonally opposite corners tνi−1 and sνi+1 . Draw Gνi as de-
scribed in Lemma 9 and observe that the resulting drawing is double-cornered.

Case 2 (both s and t have degree 1): Refer to Fig. 13. Both the leftmost child ν1 and rightmost child νk of μ are Q ∗-
nodes. Consider the subgraph G ′ of G obtained by deleting the pertinent graphs Gν1 and Gνk . Either G ′ satisfies Lemma 10
or the previous case of this proof and thus G ′ can be double-cornered. Let Γ ′ be the corresponding balanced biconvex
drawing. We choose a point s on the curve opposite to that of sν1 , and a point t on the curve opposite to that of tνk , and
so that the box defined by s and t contains Γ ′ . We now draw Gν1 in the box B(s, tν1 ) and Gνk in the box B(sνk , t) by using
Lemma 9. The resulting drawing is double-cornered. �

Lemma 12. Let G be a thin 3SP lattice with source s and sink t. If deg(s) = 1 and deg(t) = 2 (respectively deg(s) = 2 and deg(t) = 1)
then G is bottom-cornered (resp. top-cornered).

Proof. First case: deg(s) = 1 and deg(t) = 2. Refer to Fig. 14. Let T be the decomposition tree of G . Let μ be the root of T
with children ν1, . . . , νk in left-to-right order. Note that μ is an S-node and that ν1 is a Q ∗-node and νk is a P -node. Let s′
be the (single) neighbor of s. Remove edge (s, s′) from G and call the resulting thin 3SP lattice G ′ . There are now two cases
to examine. Assume first that both the source s′ and the sink t′ of G ′ are of degree 2. Then G ′ satisfies the condition of
Lemma 11 and hence is double-cornered; let Γ ′ be the corresponding drawing. Assume without loss of generality that s′ is
the leftmost vertex on the bottom curve λ1. We compute a drawing Γ of G by adding a vertex s left of s′ on λ1 and adding
the edge (s, s′). This drawing is boxed but bottom-heavy since s is on the same curve as s′ . Thus Γ is bottom-cornered.

Assume now that s′ has degree 1. Let the decomposition tree of G ′ be T ′ with root μ′; let the children of μ′ be
ν ′

1, . . . , ν
′
k . Recall that ν ′

1 is a Q ∗-node. Delete Gν ′
1

from G ′ and call the resulting thin 3SP lattice G ′′ . By Lemma 11 G ′′ is
double-cornered and has a drawing Γ ′′ . Assume sν ′

2
is on λ1. Choose a point s′ on λ2 such that B(s′, sν ′

2
) does not intersect

Γ ′′ . Draw Gν ′
1

in B(s′, sν ′
2
) via Lemma 9. Let Γ ′ be the resulting drawing and observe that Γ ′ is uniform but not boxed

since s′ and t′ are on the same curve. We draw s at a point on λ1 such that s is left of any other vertex of Γ ′ and add edge
ss′ . Since Γ ′ is uniform, Γ is bottom-cornered.

For the second case, the roles of s and t can be reversed in the above proof to construct a drawing that is top-
cornered. �
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Fig. 15. (Lemma 13 case 1) (A) Sketch of graph; (B) Decomposition tree; (C) Drawing.

3.4. Thick 3SP lattices

The next sequence of lemmas pertains to the cases when the global poles have degree 3. The drawings obtained rely
on the previous lemmas and are balanced biconvex, but may not be double-cornered. We start with the cases when G is
biconnected.

Lemma 13. Let G be a biconnected 3SP lattice with source s and sink t. If deg(s) = deg(t) = 3 then G is balanced biconvex.

Proof. We partition this situation into three cases. Let T be the decomposition tree of G and let μ be the root of T .
Case 1: G consists of three series components (S or Q ∗) combined in parallel. Note that μ is thus a P -node with exactly

three children each of which is an S-node or a Q ∗-node. Let ν1, ν2, and ν3 be the three children of μ in left-to-right order.
Observe that for each νi (i = 1,2,3) both the leftmost and rightmost child of νi is a Q ∗-node if νi is a S-node. Let s′

3 (resp.
t′

3) be the neighbor of s (resp. t) in Gν3 . Let G ′ be the subgraph of Gν3 obtained by deleting vertices s and t from Gν3 .
Graph G ′ is a thin 3SP lattice that satisfies the hypothesis of Lemmas 11, or 12. Let G ′′ be the subgraph of G obtained by
deleting all vertices of G ′ . Graph G ′′ is a biconnected thin 3SP lattice that satisfies the conditions of Lemma 10. We now
place 4 points on λ1 and λ2 as shown in Fig. 15. Via Lemma 10, we box G ′′ into B(s, t) and using one of Lemmas 11, or
12, we box G ′ into B(s′

3, t′
3) and add the segments corresponding to the edges (s, s′

3) and (t, t′
3). Let Γ ′ be the drawing of

G ′ and Γ ′′ be the drawing of G ′′ . If G ′ was boxed into B(s′
3, t′

3) by using Lemma 12 case 1, then Γ ′ is bottom-heavy. Let n′′
be the number of vertices of G ′′ . If n′′ is even, then Γ is bottom-heavy. If n′′ is odd, then by Lemma 10, we can make Γ ′′
top-heavy and so Γ is uniform. A similar argument applies if Lemma 12 case 2 is used to compute Γ ′ , in which case Γ is
either top-heavy or uniform. Finally, if Lemma 11 applies, then Γ ′ is double-cornered and hence Γ is uniform.

There are two further forms. In both forms, s is the pole of some P -node, as is t .
Case 2: The P -nodes are on opposite sides of the two chains from s to t . See Fig. 16. Here μ is a P -node with children ν1

and ν2 in left-to-right order. Also, the leftmost child of ν1 is a P -node and the rightmost child is a Q ∗-node. Symmetrically,
the leftmost child of ν2 is a Q ∗-node and its rightmost child is a P -node.

Let G ′ be the subgraph of Gν1 obtained by deleting t from Gν1 , and let G ′′ be the subgraph of Gν2 obtained by deleting
s from Gν2 . Let t′ be the sink of G ′ , and s′′ be the source of G ′′ . Observe that G ′ satisfies the hypothesis of either Lemma 11
or Lemma 12 case 2; G ′′ satisfies the hypothesis of either Lemma 11 or Lemma 12 case 1. We construct a drawing Γ of G
as shown in Fig. 16C, where Γ ′ and Γ ′′ represent the drawings of G ′ and G ′′ respectively. Let n′ (resp. n′′) be the number
of vertices of G ′ (resp. G ′′). If at least one of n′ or n′′ is an even integer, then by construction, Γ is either uniform, or
top-heavy, or bottom-heavy. Assume that both n′ and n′′ are odd integers and that G ′ satisfies Lemma 11. We can compute
Γ ′ so that it is top-heavy, while Γ ′′ will be computed as a bottom-heavy drawing by either Lemma 11 or Lemma 12 case 1.
Hence, Γ is uniform. Similarly, if n′ and n′′ are both odd and G ′′ satisfies Lemma 11, Γ is uniform. Finally, if G ′ satisfies
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Fig. 16. (Lemma 13 case 2) s and t both have degree 3. (A) Sketch of graph; (B) Decomposition tree; (C) Drawing.

Fig. 17. (Lemma 13 case 3) s and t both have degree 3. (A) Sketch of graph; (B) Decomposition tree; (C) Drawing.

Lemma 12 case 2 and G ′′ satisfies Lemma 12 case 1, and n′ and n′′ are both odd, we have that Γ ′ is top-heavy, Γ ′′ is
bottom-heavy, and thus Γ is uniform.

Case 3: The decomposition tree has one chain that starts and ends with Q ∗-nodes. See Fig. 17. Suppose ν1 is the node
of the decomposition tree that starts and finishes with a P -node, and ν2 starts and finishes with Q ∗-nodes. Let G ′ be the
subgraph Gν1 and G ′′ be the subgraph of Gν2 obtained by deleting s and t from Gν2 . Then G ′ satisfies the conditions of
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Fig. 18. (Lemma 14) Sketch of graph; Decomposition tree; Drawing.

Fig. 19. (Lemma 14) Flip and wind.

Lemma 11 case 1, and can be drawn double-cornered as Γ ′ . G ′′ satisfies Lemma 11, or 12; its drawing, Γ ′′ can be drawn
and the edges ss′ and t′t can be added. Since Γ ′ is double-cornered, the balancing conditions are easily satisfied. �
Lemma 14. Let G be a biconnected 3SP lattice with source s and sink t. If deg(s) = 2 and deg(t) = 3 (respectively deg(s) = 3 and
deg(t) = 2) then G is sink-covered (resp. source-covered).

Proof. Case 1: deg(s) = 2 and deg(t) = 3. Let T be the decomposition tree of G and let μ be the root of T . Thus μ is a
P -node with exactly two children ν1, and ν2 in left-to-right order. Note that at most one of them can be a Q ∗-node and
that exactly one of them has a P -node as its rightmost child (namely the P -node having t as one of its poles) – assume
without loss of generality the latter is ν1. Let G ′ be the subgraph of Gν2 obtained by deleting s and t from Gν2 , and let s′
and t′ be the source and sink of G ′ . If G ′ satisfies the hypothesis of Lemma 11 or 12 case 2, we construct a sink-covered
drawing Γ of G as follows. Choose 4 points s, t, s′, t′ on λ1 and λ2 as shown in Fig. 18. Via Lemma 12, we draw Gν1 in
B(s, t), and by using either Lemma 11 or 12, we draw G ′ in B(s′, t′). Finally, we add the segments corresponding to the
edges (s, s′) and (t, t′). The resulting drawing Γ is sink-covered by construction – t is inside the box B(s, t′) and since the
drawing of G ′ is either uniform or top-heavy, while the drawing of Gν1 is either uniform or bottom-heavy, the total drawing
is not unbalanced.

Consider now the case in which G ′ satisfies the hypothesis of Lemma 12 case 1. Let n′ be the number of vertices of G ′
and let n1 be the number of vertices of Gν1 . If either n′ or n1 is an even integer, then a sink-covered drawing Γ of G is
constructed as in the previous case; see Fig. 18. Namely, in this case either the drawing of Gν1 or of G ′ is uniform and thus
Γ is either uniform or bottom-heavy.

Otherwise, both n′ and n1 are odd and we construct a uniform drawing Γ of G as follows. Let G ′ be the subgraph of G ′
obtained by deleting s′ from G ′ . Let s′ be the source of G ′; observe that the sink of G ′ is t′ . Since G ′ has an even number
of vertices, it has a uniform drawing Γ ′ in a box B(s′, t′) and we define this box as shown in Fig. 19. Finally, we add vertex
s′ on the top curve and add segments corresponding to the edges (s, s′) and (s′, s′) as in Fig. 19. Observe that the drawing
of Gν1 is bottom-heavy and the drawing of G ′ is uniform. Since s′ is located on the top curve, the drawing Γ is uniform.
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Fig. 20. (Lemma 15) Not biconnected and s or t has degree 3. Sketch of graph. Decomposition tree. Drawing.

Fig. 21. (Lemma 15) Flip operation.

For the second case, the roles of s and t can be reversed in the above proof to construct a drawing that is source-
covered. �

In the final case, G is not biconnected and at least one of the global poles has degree 3.

Lemma 15. Let G be a 3SP lattice with source s and sink t. If deg(s) = 3 or deg(t) = 3 then G is balanced biconvex.

Proof. Refer to Fig. 20. Assume first that neither s nor t have degree 1. If G is biconnected then Lemma 14 or Lemma 13
would apply, so we consider the case that G is not biconnected. Let T be the decomposition tree of G and let μ be the
root of T . Then μ is an S-node and has at least three children. In the simplest case, these three children can be labeled
ν1, ν2, ν3 in left-to-right order with ν1 and ν3 being P -nodes, and ν2 being a Q ∗-node. In general, the first and last child
of μ are P -nodes, but there is a series of children between them starting and ending with Q ∗-nodes. For convenience, we
collapse this intermediate series into a single child ν2 of root μ. A biconvex drawing Γ of G is computed as follows. Define
three boxes, as in Fig. 20. Draw Gν1 in B(sν1 , tν1), Gν2 in B(sν2 , tν2 ), and Gν3 in B(sν3 , tν3 ), by using Lemmas 10 and 14 for
Gν1 and Gν3 , and using Lemma 11 for Gν2 . Let n1 be the number of vertices of Gν1 , n2 be the number of vertices of Gν2 ,
and n3 be the number of vertices of Gν3 . Observe that Gν2 satisfies the hypothesis of Lemma 11 and hence if n2 is odd, the
biconvex drawing of Gν2 inside B(sν2 , tν2 ) can be chosen to be top-heavy or bottom-heavy. Hence if n2 is odd, independent
of whether n1 and n3 are odd or even, Γ can be computed so that the number of vertices in the top curve differs by at
most one from the number of vertices in the bottom curve. If n2 is even, we distinguish two subcases:
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Fig. 22. (Lemma 15) deg(s) = 1, deg(t) = 3. Sketch of graph. Decomposition tree. Drawing.

Fig. 23. (Lemma 15) Flip operation.

• Either n1 or n3 is even. In this case, either the drawing of Gν1 or of Gν3 is balanced. Since n2 is even, also the drawing
of Gν2 is balanced. As a result the number of vertices of Γ in the top curve differs by at most one from the number of
vertices in the bottom curve.

• Both n1 and n3 are odd. If both the drawing Γ1 of Gν1 is source-covered and the drawing Γ3 of Gν3 is sink-covered (i.e.
Γ1 is computed via Lemma 14 case 2, and Γ3 via Lemma 14 case 1) it may happen that Γ1 and Γ3 are both top-heavy
or both bottom-heavy. If this is the case, then we modify Γ as follows. Refer to Fig. 21 where we assume both are
bottom-heavy. We flip Γ3, which produces a top-heavy drawing Γ ′

3. The flipping operation is possible because within
Gν2 , there is a single edge into tν2 and Lemma 11 ensures that tν2 is on a corner of the box containing Gν2 . After
the flip the drawing of Γν2 is also top-heavy but the drawing Γ1 remains bottom-heavy, so the drawing Γ is uniform.
Note that Γ2 without the shared poles sν2 and tν2 remains balanced. The case where Γ1 and Γ3 are both top-heavy
is symmetric. Finally, observe that if one of Γ1 and Γ3 is top-heavy and the other is bottom-heavy, then Γ is already
uniform and no flipping operation is required.

Now assume s has degree 1 and t has degree 3. The root μ of T has in its simplest form two children ν1 and ν2 in
left-to-right order, such that ν1 is a Q ∗-node, while ν2 is a P -node. More generally, μ has a series of children starting and
finishing with Q ∗-nodes followed by a P -node. For convenience, we consider the initial series of children as a single child
ν1, and the final P -node labeled ν2. We define two boxes as in Fig. 22. We then compute a cornered drawing Γ1 of Gν1 in
box B(p,q) such that s ≡ p and q ≡ tν1 . We compute a drawing Γ2 of Gν2 inside B(q, r). Observe that since Gν2 satisfies
the hypothesis of Lemma 14 it is sink-covered and thus t is not mapped to r but is contained in the box B(q, r). Since Gν1

satisfies Lemma 11, we compute Γ1 so that it is either uniform or top-heavy. Let Γ be the resulting drawing. If Γ1 and Γ2
are both uniform, then since tν1 is a common vertex of both drawings, Γ must be bottom-heavy. If Γ1 (resp. Γ2) is uniform
and Γ2 (resp. Γ1) is top-heavy then Γ is necessarily uniform.
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If Γ1 and Γ2 are both top-heavy then Γ is top-heavy. It remains to consider the case that Γ1 is uniform and Γ2 is
bottom-heavy. This case is handled with a flip operation as demonstrated in Fig. 23. Flipping Γ2 makes it top-heavy and the
resulting drawing becomes uniform. �

The above lemmas enumerate all possible maximum-degree-3 series-parallel lattices and demonstrate constructively that
all such graphs are balanced biconvex, and hence establish Theorem 1. Biconvex point-sets are the only known point-sets
of size n that universally support some class of planar graphs other than the outerplanar graphs.

The relevance of the lattice constraint in our technique is evident in the base case of Lemma 10. If one of the two chains
in that case were the single edge (s, t), then in order to achieve a balanced partition of the vertices, the drawing would
necessarily be either sink-covered or source-covered instead of double-cornered. Subsequent lemmas, such as Lemma 11,
rely on their subgraphs being double-cornered in order to produce an appropriate drawing. Fig. 20 displays a situation in
which the maximum-degree 3 constraint is critical to our construction. In that figure, neither s nor t is on a diagonal of
the box containing the drawing. If in addition, there existed a path s, v, t , the path could not be drawn, even though the
graph would be a valid 4SP lattice. It is unlikely that the approach taken in this paper can be modified to accommodate the
removal of either of these two constraints. We conjecture that neither the class of 3SP graphs,6 nor the class of 4SP lattices
is balanced biconvex.

It is clear that the class of maximal planar graphs is not balanced biconvex for n � 4, since in any biconvex drawing,
there exists a face of size at least 4.

3.5. Application and remark

An immediate consequence of Theorem 1 concerns the simultaneous embedding of planar graphs. A set of planar graphs
G1, . . . , Gk (k � 2) each having n vertices has a simultaneous embedding without mapping if there exists a set S of n points
that supports the straight-line drawing of G1, . . . , Gk . It is not known whether such a simultaneous embedding exists when
G1, . . . , Gk are general planar graphs. Braß et al. [13] observed that if G1 is a planar graph and G2, . . . , Gk are outerpla-
nar graphs, then a simultaneous embedding without mapping for G1, . . . , Gk exists. The following corollary is a similar
observation in this context.

Corollary 16. Let G1, . . . , Gk (k � 2) be a set of 3SP lattices, all having n vertices. There exists a simultaneous embedding without
mapping for the set G1, . . . , Gk.

3.6. Unbalanced biconvex point-sets

More generally, biconvex drawings may have h vertices on one curve and n − h on the other curve. Any graph that is
biconvex drawable (for any value of h) is clearly sub-Hamiltonian, and indeed a stronger condition holds. If the drawing
is converted to a book embedding by rotating and translating the vertices on the lower curve, then the resulting book
embedding consists of two subgraphs of cycles (one of h vertices and one of n − h vertices) each of which is individually
outerplanar (edges are crossing-free on the upper side of the book embedding). And edges between the two outerplanar
graphs are on the lower side of the spine and are nested and hence do not cross.

We now show that Theorem 8 is tight in the sense that not every (unbalanced) biconvex point-set is universal for the
class of 3SP lattices. We first observe a simple property of any biconvex drawing.

Lemma 17. If G is a graph with n vertices that is (k,n − k) biconvex drawable, then there exists a set of k vertices in G whose removal
results in an outerplanar graph.

Proof. Consider a (k,n − k) biconvex drawing of G . Removal of the k vertices on one curve, leaves a graph with n − k
vertices all on one curve – such a graph is necessarily outerplanar. �
Theorem 18. For every value of n there exists a 3SP lattice G with n vertices such that in every biconvex drawing of G, there are at
least �n/7� vertices on both of the two curves.

Proof. Consider a biconvex drawing of the diamond graph D in Fig. 24. Since it is not outerplanar, any biconvex drawing of
it requires that both curves contain vertices.

Create a chain of �n/7� diamonds and add a path of n − 7 · �n/7� vertices to create a graph G with n vertices that is a
3SP lattice and requires the removal of at least �n/7� vertices to make it outerplanar (since each diamond is independent).
Now suppose there exists a biconvex drawing of G in which one of the curves contains fewer than �n/7� vertices. By the

6 Rather than lattices.
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Fig. 24. Chain of diamonds.

previous lemma, there then exists some set of fewer than �n/7� vertices whose removal yields an outerplanar graph, which
is a contradiction. �

Characterizing and efficiently recognizing those graphs that can be drawn biconvex (balanced or not), remains an inter-
esting open question.

4. Conclusions and open problems

Our main contributions in this paper are stated in Theorems 1 and 2. In the former, we prove that any balanced biconvex
point-set supports the straight-line drawing of any 3SP lattice, and in the latter, we supply universal point-sets for drawings
of any planar graph with a small number of bends per edge. Since these results pertain to universal point-sets, they trivially
imply corollaries in the context of simultaneous graph drawing (without mapping), since any number of graphs can be
simultaneously drawn on a universal point-set.

There remain many open problems including determining whether every pair of planar graphs on n vertices can be
simultaneously embedded (with no bends). Closing the gap between the upper and lower bounds of the cardinality of a
universal point-set for planar graphs with no bends allowed also remains open. When k bends per edge are permitted,
universal point-sets of smaller asymptotic cardinality may be determined for k = 1,2.
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