Dynamic Graph Coloring

Luis Barba ¹ Jean Cardinal ² Matias Korman ³ Stefan Langerman ² André van Renssen ^{4,5} Marcel Roeloffzen ^{4,5} Sander Verdonschot ⁶

¹ETH Zürich

²Université Libre de Bruxelles

³Tohoku University

⁴National Institute of Informatics

⁵JST, ERATO, Kawarabayashi Large Graph Project

⁶Carleton University

July 31, 2017

- Maintain a proper coloring of a changing graph:
 - Add & remove edges
 - · Add & remove vertices with incident edges

· Easy! Recompute the coloring for every change

Easy! Recompute the coloring for every change
 ⇒ Limit the number of vertex color changes

- Easy! Recompute the coloring for every change
 ⇒ Limit the number of vertex color changes
- Easy! Use a new color for every change

- Easy! Recompute the coloring for every change \Rightarrow Limit the number of vertex color changes
- Easy! Use a new color for every change \Rightarrow Limit the number of colors

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update
- No vertex recolorings $\Rightarrow \frac{2n}{\log n}$ colors for $\log n$ -colorable graph [Halldórsson & Szegedy, 1992]

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update
- No vertex recolorings $\Rightarrow \frac{2n}{\log n}$ colors for $\log n$ -colorable graph [Halldórsson & Szegedy, 1992]

Our results

- O(d)-approximate coloring with $O(dn^{(1/d)})$ recolorings
- $O(dn^{(1/d)})$ -approximate coloring with O(d) recolorings

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update
- No vertex recolorings $\Rightarrow \frac{2n}{\log n}$ colors for $\log n$ -colorable graph [Halldórsson & Szegedy, 1992]

Our results

- O(d)-approximate coloring with $O(dn^{(1/d)})$ recolorings
- $O(dn^{(1/d)})$ -approximate coloring with O(d) recolorings
- Maintaining a c-coloring requires $\Omega(n^{\frac{2}{c(c-1)}})$ recolorings

Vertices are placed in buckets

· Each bucket has a fixed size and its own set of colors

Initially, all vertices are in the reset bucket

· When a bucket fills up, it is emptied in the next one

· When a bucket fills up, it is emptied in the next one

• New vertices also go to the first bucket (d+1)-approximate coloring with $O(dn^{1/d})$ recolorings per update

Upper bound: small-buckets

- Split each big bucket into $n^{1/d}$ smaller ones
- $O(dn^{1/d})$ -approximate coloring with d + 2 recolorings per update

• Warm-up: 2-coloring a forest

• Build 3 stars of size n/3

· Connect 2 with the same color root

· Connect 2 with the same color root

· Connect 2 with the same color root . Repeat

· Connect 2 with the same color root . Repeat

- · Connect 2 with the same color root . Repeat
- Maintaining a 2-coloring of a forest requires $\Omega(n)$ recolorings per update

3-coloring a forest

• Build $n^{1/3}$ stars of size $n^{2/3}$

Assign most common leaf colour to trees

• Keep at least $n^{1/3}/3$ with the same color

• Keep at least $n^{1/3}/3$ with the same color

• Group into 3 big trees, each with $n^{1/3}/9$ small trees

• Group into 3 big trees, each with $n^{1/3}/9$ small trees

· If at any point, a small tree has no blue children, reset

· If at any point, a small tree has no blue children, reset

Roots of small trees are orange or red

Connect two big trees with same root color

• Forces $\Omega(n^{1/3})$ recolorings

• Repeat $n^{1/3}$ times or until we reset

• Repeat $n^{1/3}$ times or until we reset

• $\Omega(n^{2/3})$ recolorings either way, for $O(n^{1/3})$ updates

• Maintaining a 3-coloring of a forest requires $\Omega(n^{1/3})$ recolorings per update

Theorem

For constant c, the number of recolorings per update required to maintain a c-coloring of a forest is

$$\Omega(n^{\frac{2}{c(c-1)}}).$$

Summary

- Maintain an O(d)-approximate coloring with $O(dn^{(1/d)})$ vertex recolorings per update
- Maintain an $O(dn^{(1/d)})$ -approximate coloring with O(d) vertex recolorings per update
- Maintaining a *c*-coloring requires $\Omega(n^{\frac{2}{c(c-1)}})$ recolorings per update

Questions?