Dynamic Graph Coloring

Luis Barba ${ }^{1}$ Jean Cardinal ${ }^{2}$ Matias Korman ${ }^{3}$ Stefan Langerman ${ }^{2}$ André van Renssen ${ }^{4,5}$ Marcel Roeloffzen ${ }^{4,5}$ Sander Verdonschot ${ }^{6}$

${ }^{1}$ ETH Zürich
${ }^{2}$ Université Libre de Bruxelles
${ }^{3}$ Tohoku University
${ }^{4}$ National Institute of Informatics
${ }^{5}$ JST, ERATO, Kawarabayashi Large Graph Project
${ }^{6}$ Carleton University
July 31, 2017

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph

Problem

- Maintain a proper coloring of a changing graph:
- Add \& remove edges
- Add \& remove vertices with incident edges

Problem

- Easy! Recompute the coloring for every change

Problem

- Easy! Recompute the coloring for every change \Rightarrow Limit the number of vertex color changes

Problem

- Easy! Recompute the coloring for every change \Rightarrow Limit the number of vertex color changes
- Easy! Use a new color for every change

Problem

- Easy! Recompute the coloring for every change \Rightarrow Limit the number of vertex color changes
- Easy! Use a new color for every change \Rightarrow Limit the number of colors

Problem

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update

Problem

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update
- No vertex recolorings $\Rightarrow \frac{2 n}{\log n}$ colors for $\log n$-colorable graph [Halldórsson \& Szegedy, 1992]

Problem

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update
- No vertex recolorings $\Rightarrow \frac{2 n}{\log n}$ colors for $\log n$-colorable graph [Halldórsson \& Szegedy, 1992]

Our results

- $O(d)$-approximate coloring with $O\left(d n^{(1 / d)}\right)$ recolorings
- $O\left(d n^{(1 / d)}\right)$-approximate coloring with $O(d)$ recolorings

Problem

- Trade off the number of colors vs vertex color changes
- Optimal coloring $\Rightarrow \Omega(n)$ vertex recolorings per update
- No vertex recolorings $\Rightarrow \frac{2 n}{\log n}$ colors for $\log n$-colorable graph [Halldórsson \& Szegedy, 1992]

Our results

- $O(d)$-approximate coloring with $O\left(d n^{(1 / d)}\right)$ recolorings
- $O\left(d n^{(1 / d)}\right)$-approximate coloring with $O(d)$ recolorings
- Maintaining a c-coloring requires $\Omega\left(n^{\frac{2}{c(c-1)}}\right)$ recolorings

Upper bound: big-buckets

- Vertices are placed in buckets

Upper bound: big-buckets

- Each bucket has a fixed size and its own set of colors

Upper bound: big-buckets

- Initially, all vertices are in the reset bucket

Upper bound: big-buckets

- Changed vertices are placed in the first bucket

Upper bound: big-buckets

- Changed vertices are placed in the first bucket

Upper bound: big-buckets

- Changed vertices are placed in the first bucket

Upper bound: big-buckets

- Changed vertices are placed in the first bucket

Upper bound: big-buckets

- When a bucket fills up, it is emptied in the next one

Upper bound: big-buckets

- When a bucket fills up, it is emptied in the next one

Upper bound: big-buckets

- New vertices also go to the first bucket

Upper bound: big-buckets

- New vertices also go to the first bucket

Upper bound: big-buckets

- New vertices also go to the first bucket

Upper bound: big-buckets

- New vertices also go to the first bucket

Upper bound: big-buckets

- New vertices also go to the first bucket

Upper bound: big-buckets

- New vertices also go to the first bucket

Upper bound: big-buckets

- New vertices also go to the first bucket ($d+1$)-approximate coloring with $O\left(d n^{1 / d}\right)$ recolorings per update

Upper bound: small-buckets

- Split each big bucket into $n^{1 / d}$ smaller ones
- $O\left(d n^{1 / d}\right)$-approximate coloring with $d+2$ recolorings per update

Lower bound

- Warm-up: 2-coloring a forest

Lower bound

- Build 3 stars of size $n / 3$

Lower bound

- Connect 2 with the same color root

Lower bound

- Connect 2 with the same color root

Lower bound

- Connect 2 with the same color root . Repeat

Lower bound

- Connect 2 with the same color root . Repeat

Lower bound

- Connect 2 with the same color root . Repeat
- Maintaining a 2-coloring of a forest requires $\Omega(n)$ recolorings per update

Lower bound

-3-coloring a forest

Lower bound

- Build $n^{1 / 3}$ stars of size $n^{2 / 3}$

Lower bound

- Assign most common leaf colour to trees

Lower bound

- Keep at least $n^{1 / 3} / 3$ with the same color

Lower bound

- Keep at least $n^{1 / 3} / 3$ with the same color

Lower bound

- Group into 3 big trees, each with $n^{1 / 3} / 9$ small trees

Lower bound

- Group into 3 big trees, each with $n^{1 / 3} / 9$ small trees

Lower bound

- If at any point, a small tree has no blue children, reset

Lower bound

- If at any point, a small tree has no blue children, reset

Lower bound

- Roots of small trees are orange or red

Lower bound

- Connect two big trees with same root color

Lower bound

- Forces $\Omega\left(n^{1 / 3}\right)$ recolorings

Lower bound

- Repeat $n^{1 / 3}$ times or until we reset

Lower bound

- Repeat $n^{1 / 3}$ times or until we reset

Lower bound

- $\Omega\left(n^{2 / 3}\right)$ recolorings either way, for $O\left(n^{1 / 3}\right)$ updates

Lower bound

- Maintaining a 3-coloring of a forest requires $\Omega\left(n^{1 / 3}\right)$ recolorings per update

Lower bound

Theorem

For constant c , the number of recolorings per update required to maintain a c-coloring of a forest is

$$
\Omega\left(n^{\frac{2}{व(c-1)}}\right) .
$$

Summary

- Maintain an $O(d)$-approximate coloring with $O\left(d n^{(1 / d)}\right)$ vertex recolorings per update
- Maintain an $O\left(d n^{(1 / d)}\right)$-approximate coloring with $O(d)$ vertex recolorings per update
- Maintaining a c-coloring requires $\Omega\left(n^{\frac{2}{c(c-1)}}\right)$ recolorings per update

Questions?

