Flips in Edge-Labelled Triangulations

Prosenjit Bose ${ }^{1}$ Anna Lubiw ${ }^{2}$ Vinayak Pathak ${ }^{2}$ Sander Verdonschot ${ }^{1}$

${ }^{1}$ Carleton University
${ }^{2}$ University of Waterloo

28 May 2015

Triangulations

- Graphs where all faces are triangles

Flips

- Replace edge by other diagonal of quadrilateral

Flips

- Replace edge by other diagonal of quadrilateral
- Diagonals have unique labels

Flip graphs

- Vertex = triangulation, Edge = flip

Flip graphs

- Vertex = triangulation, Edge = flip

History

- Introduced by Wagner in 1936
- Flip graph of combinatorial triangulations is connected
- Diameter:
- $O\left(n^{2}\right)$ - Wagner, 1936

History

- Introduced by Wagner in 1936
- Flip graph of combinatorial triangulations is connected
- Diameter:
- $O\left(n^{2}\right)$ - Wagner, 1936
- $O(n)$ - Sleator et al., 1992
- $8 n$ - O(1) - Komuro, 1997
- $6 n-O(1)$ - Mori et al., 2001
- $5.2 n-0(1)$ - Bose et al., 2014
- $5 n-0(1)$ - Cardinal et al., 2015

History

- Triangulation of convex polygon = binary tree
- Diameter $=2 n-10-$ Sleator et al., 1988

History

-What happens when the vertices are labelled?

- Diameter is $\Theta(n \log n)$ - Sleator et al., 1992

History

-What happens when the vertices are labelled?

- Diameter is $\Theta(n \log n)$ - Sleator et al., 1992
-What happens when edges are labelled?

Upper bound

- Transform T_{1} into T_{2}

Upper bound

- Transform T_{1} into T_{2}
- Via canonical form T_{C}

Upper bound

- Transform T_{1} into T_{2}
- Via canonical form T_{C}
- We only need to show $T \mapsto T_{C}$

Transform into canonical

- Ignore labels
- Sort

Sorting

- We can exchange adjacent diagonals

Sorting

- We can exchange adjacent diagonals

- We can do insertion sort

Sorting

- We can exchange adjacent diagonals

- We can do insertion sort
- Flip graph is connected!
- Diameter is $O\left(n^{2}\right)$

Sorting

- We can exchange adjacent diagonals

- We can do insertion sort
- Flip graph is connected!
- Diameter is $O\left(n^{2}\right)$
- Can we do better?

Quicksort

- Partition on the median

Quicksort

- Partition on the median
- Flip all neutral edges
- Reverse
- Recurse

Reverse

- Reversing two edges is easy:

Reverse

- Reversing two edges is easy:

- Reversing more:
- Flip middle pair "up"
- Recurse on the rest
- Reverse middle pair

Reverse

- Reversing two edges is easy:

- Reversing more:
- Flip middle pair "up" - O(1) $=O(n)$ flips total
- Recurse on the rest $-T(n-2)$
- Reverse middle pair - O(1)

Quicksort

- Partition on the median
- Flip all neutral edges - O(n)
- Reverse - O(n)
$=O(n \log n)$ flips total
- Recurse - $2 T(n / 2)$

Transform into canonical

- Ignore labels - O(n)
- Sort - O($n \log n)$

Upper bound

- Transform T_{1} into T_{2}
- Via canonical form T_{C}
- We only need to show $T \mapsto T_{C}-O(n \log n)$

Upper bound

- Transform T_{1} into $T_{2}-O(n \log n)$
- Via canonical form T_{C}
- We only need to show $T \mapsto T_{C}-O(n \log n)$

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992)
Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{0(n+m)}$, regardless of labellings.

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992)
Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{0(n+m)}$, regardless of labellings.

- There are over n ! edge-labelled triangulations:

$$
\begin{aligned}
2^{O(n+d)} & \geqslant n! \\
O(n+d) & \geqslant \log n! \\
d & \geqslant \Omega(n \log n)
\end{aligned}
$$

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992)
Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{0(n+m)}$, regardless of labellings.

- There are over n ! edge-labelled triangulations:

$$
\begin{aligned}
2^{O(n+d)} & \geqslant n! \\
O(n+d) & \geqslant \log n! \\
d & \geqslant \Omega(n \log n)
\end{aligned}
$$

Theorem
The diameter of the flip graph is $\Theta(n \log n)$.

Combinatorial triangulations

- Not all flips are valid

Combinatorial triangulations

- Transform to a canonical form $-O(n)$
- Sort the labels - ?

Combinatorial triangulations

- Exchange spine edge with incident non-spine edge

Combinatorial triangulations

- Exchange spine edge with incident non-spine edge
- Flip graph is connected!

Combinatorial triangulations

- Faster: reorder all labels around inner vertex at the same time

Combinatorial triangulations

- Faster: reorder all labels around inner vertex at the same time
- Flip external edge

Combinatorial triangulations

- Faster: reorder all labels around inner vertex at the same time
- Flip external edge
- Use convex polygon result

Combinatorial triangulations

- Faster: reorder all labels around inner vertex at the same time
- Flip external edge
- Use convex polygon result

Combinatorial triangulations

- Faster: reorder all labels around inner vertex at the same time
- Flip external edge
- Use convex polygon result
- Swap boundary edges in

Combinatorial triangulations

- Faster: reorder all labels around inner vertex at the same time
- Flip external edge - O(1)
- Use convex polygon result $-O(n \log n)$
- Swap boundary edges in - O(n)

Combinatorial triangulations

- Transform to a canonical form $-O(n)$
- Sort the labels $-O(n \log n)$

Combinatorial triangulations

- Transform to a canonical form $-O(n)$
- Sort the labels $-O(n \log n)$

Theorem
The diameter of the flip graph is $\Theta(n \log n)$.

General polygons

- Flip graph might be disconnected

General polygons

- Diagonals form equivalence classes (orbits)

General polygons

- Diagonals form equivalence classes (orbits)

General polygons

- Diagonals form equivalence classes (orbits)

General polygons

- Diagonals form equivalence classes (orbits)
- Orbit Conjecture: We can transform T_{1} into T_{2} iff edges with the same label are in the same orbit
- Clearly necessary
- True for spiral polygons

Open problems

- Settle the Orbit Conjecture for general polygons and triangulations of points in the plane

Open problems

- Settle the Orbit Conjecture for general polygons and triangulations of points in the plane
- Is it NP-hard to compute the flip distance between two edge-labelled triangulations?
- Variation: allow duplicate labels

