Flips in Edge-Labelled Triangulations

Prosenjit Bose¹ Anna Lubiw² Vinayak Pathak² Sander Verdonschot¹

¹Carleton University

²University of Waterloo

28 May 2015

Triangulations

• Graphs where all faces are triangles

Flips

· Replace edge by other diagonal of quadrilateral

Flips

- Replace edge by other diagonal of quadrilateral
- Diagonals have unique labels

Flip graphs

• Vertex = triangulation, Edge = flip

Flip graphs

• Vertex = triangulation, Edge = flip

- Introduced by Wagner in 1936
 - Flip graph of combinatorial triangulations is connected
- Diameter:
 - *O*(*n*²) Wagner, 1936

- Introduced by Wagner in 1936
 - Flip graph of combinatorial triangulations is connected
- Diameter:
 - *O*(*n*²) Wagner, 1936
 - *O*(*n*) Sleator et al., 1992
 - 8*n* O(1) Komuro, 1997
 - 6*n O*(1) Mori et al., 2001
 - 5.2*n* O(1) Bose et al., 2014
 - 5*n* O(1) Cardinal et al., 2015

- Triangulation of convex polygon = binary tree
- Diameter = 2n 10 Sleator et al., 1988

- · What happens when the vertices are labelled?
 - Diameter is $\Theta(n \log n)$ Sleator et al., 1992

- · What happens when the vertices are labelled?
 - Diameter is $\Theta(n \log n)$ Sleator et al., 1992
- What happens when edges are labelled?

• Transform T_1 into T_2

- Transform T_1 into T_2
- Via canonical form T_C

- Transform T_1 into T_2
- Via canonical form T_C
- We only need to show $T \mapsto T_C$

Transform into canonical

- Ignore labels
- Sort

• We can exchange adjacent diagonals

· We can exchange adjacent diagonals

· We can do insertion sort

• We can exchange adjacent diagonals

- We can do insertion sort
 - Flip graph is connected!
 - Diameter is $O(n^2)$

• We can exchange adjacent diagonals

- · We can do insertion sort
 - Flip graph is connected!
 - Diameter is $O(n^2)$
- · Can we do better?

Quicksort

· Partition on the median

Quicksort

- · Partition on the median
- Flip all neutral edges
- Reverse
- Recurse

Reverse

· Reversing two edges is easy:

Reverse

· Reversing two edges is easy:

- · Reversing more:
 - Flip middle pair "up"
 - · Recurse on the rest
 - Reverse middle pair

Reverse

Reversing two edges is easy:

- · Reversing more:
 - Flip middle pair "up" O(1) = O(n) flips total
 - Recurse on the rest -T(n-2)
 - Reverse middle pair O(1)

Quicksort

- · Partition on the median
- Flip all neutral edges -O(n)
- Reverse O(n)
- Recurse -2T(n/2)

 $= O(n \log n)$ flips total

Transform into canonical

- Ignore labels -O(n)
- Sort $O(n \log n)$

- Transform T_1 into T_2
- Via canonical form T_C
- We only need to show $T \mapsto T_C O(n \log n)$

- Transform T_1 into $T_2 O(n \log n)$
- Via canonical form T_C
- We only need to show $T \mapsto T_C O(n \log n)$

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of

triangulations reachable from T by a sequence of m flips is at most $2^{O(n+m)}$, regardless of labellings.

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{O(n+m)}$, regardless of labellings.

• There are over *n*! edge-labelled triangulations:

$$2^{O(n+d)} \ge n!$$

$$O(n+d) \ge \log n!$$

$$d \ge \Omega(n \log n)$$

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{O(n+m)}$, regardless of labellings.

• There are over *n*! edge-labelled triangulations:

```
2^{O(n+d)} \ge n!
O(n+d) \ge \log n!
d \ge \Omega(n \log n)
```

Theorem

The diameter of the flip graph is $\Theta(n \log n)$.

Not all flips are valid

- Transform to a canonical form -O(n)
- Sort the labels ?

· Exchange spine edge with incident non-spine edge

- · Exchange spine edge with incident non-spine edge
- Flip graph is connected!

Faster: reorder all labels around inner vertex at the same time

- · Faster: reorder all labels around inner vertex at the same time
 - Flip external edge

Sander Verdonschot

- Faster: reorder all labels around inner vertex at the same time
 - Flip external edge
 - Use convex polygon result

- Faster: reorder all labels around inner vertex at the same time
 - Flip external edge
 - Use convex polygon result

- Faster: reorder all labels around inner vertex at the same time
 - Flip external edge
 - Use convex polygon result
 - Swap boundary edges in

- Faster: reorder all labels around inner vertex at the same time
 - Flip external edge O(1)
 - Use convex polygon result $-O(n \log n)$
 - Swap boundary edges in -O(n)

- Transform to a canonical form -O(n)
- Sort the labels $-O(n \log n)$

- Transform to a canonical form -O(n)
- Sort the labels $-O(n \log n)$

Theorem The diameter of the flip graph is $\Theta(n \log n)$.

Flip graph might be disconnected

• Diagonals form equivalence classes (orbits)

• Diagonals form equivalence classes (orbits)

• Diagonals form equivalence classes (orbits)

- Diagonals form equivalence classes (orbits)
- Orbit Conjecture: We can transform T_1 into T_2 iff edges with the same label are in the same orbit
 - Clearly necessary
 - True for spiral polygons

Open problems

• Settle the Orbit Conjecture for general polygons and triangulations of points in the plane

Open problems

- Settle the Orbit Conjecture for general polygons and triangulations of points in the plane
- Is it NP-hard to compute the flip distance between two edge-labelled triangulations?
 - · Variation: allow duplicate labels