Flips in Edge-Labelled Triangulations

Prosenjit Bose¹ Anna Lubiw² Vinayak Pathak² Sander Verdonschot¹

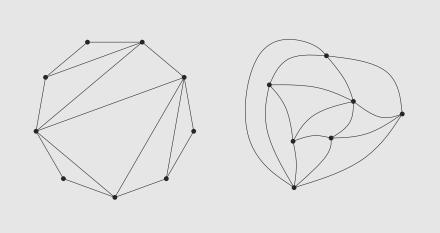
¹Carleton University

²University of Waterloo

28 May 2015

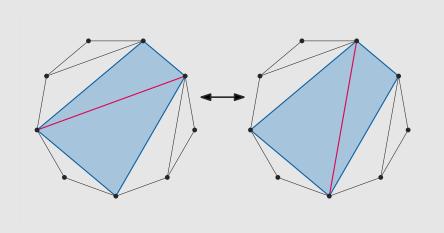
Triangulations

• Graphs where all faces are triangles



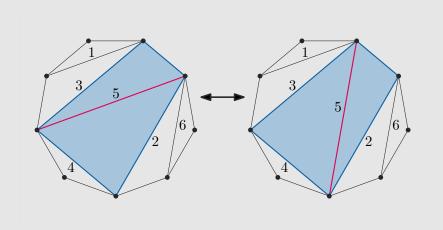
Flips

· Replace edge by other diagonal of quadrilateral



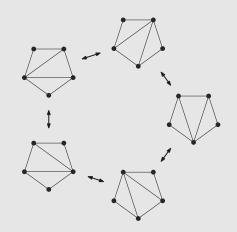
Flips

- Replace edge by other diagonal of quadrilateral
- Diagonals have unique labels



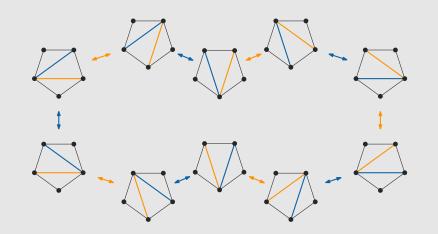
Flip graphs

• Vertex = triangulation, Edge = flip



Flip graphs

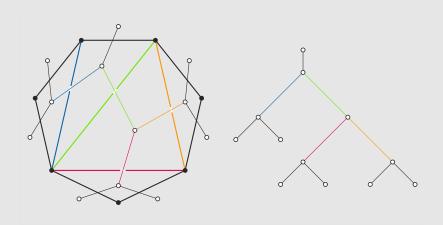
• Vertex = triangulation, Edge = flip



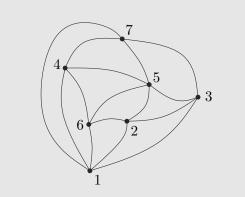
- Introduced by Wagner in 1936
 - Flip graph of combinatorial triangulations is connected
- Diameter:
 - *O*(*n*²) Wagner, 1936

- Introduced by Wagner in 1936
 - Flip graph of combinatorial triangulations is connected
- Diameter:
 - *O*(*n*²) Wagner, 1936
 - *O*(*n*) Sleator et al., 1992
 - 8*n* O(1) Komuro, 1997
 - 6*n O*(1) Mori et al., 2001
 - 5.2*n* O(1) Bose et al., 2014
 - 5*n* O(1) Cardinal et al., 2015

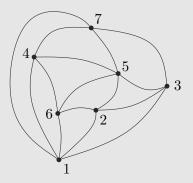
- Triangulation of convex polygon = binary tree
- Diameter = 2n 10 Sleator et al., 1988



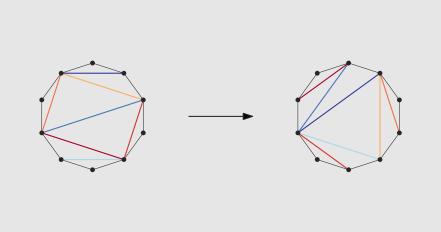
- · What happens when the vertices are labelled?
 - Diameter is $\Theta(n \log n)$ Sleator et al., 1992



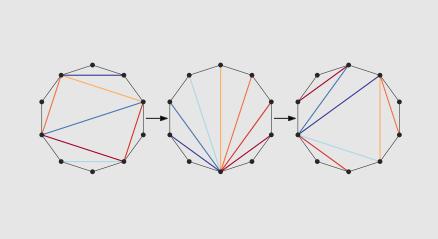
- · What happens when the vertices are labelled?
 - Diameter is $\Theta(n \log n)$ Sleator et al., 1992
- What happens when edges are labelled?



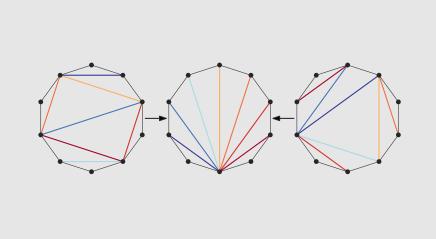
• Transform T_1 into T_2



- Transform T_1 into T_2
- Via canonical form T_C

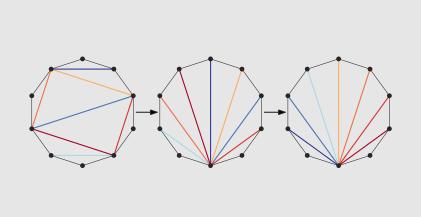


- Transform T_1 into T_2
- Via canonical form T_C
- We only need to show $T \mapsto T_C$

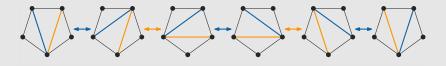


Transform into canonical

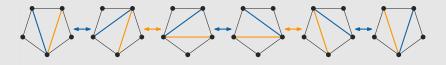
- Ignore labels
- Sort



• We can exchange adjacent diagonals

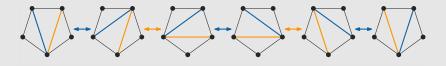


· We can exchange adjacent diagonals



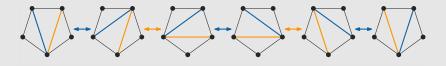
· We can do insertion sort

• We can exchange adjacent diagonals



- We can do insertion sort
 - Flip graph is connected!
 - Diameter is $O(n^2)$

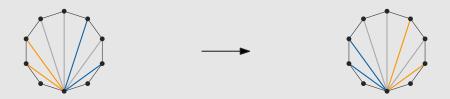
• We can exchange adjacent diagonals



- · We can do insertion sort
 - Flip graph is connected!
 - Diameter is $O(n^2)$
- · Can we do better?

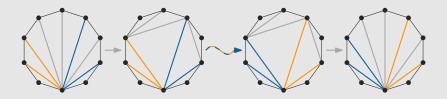
Quicksort

· Partition on the median



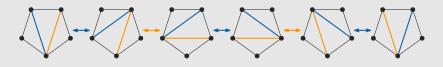
Quicksort

- · Partition on the median
- Flip all neutral edges
- Reverse
- Recurse



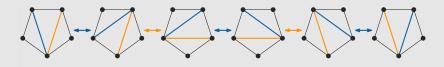
Reverse

· Reversing two edges is easy:

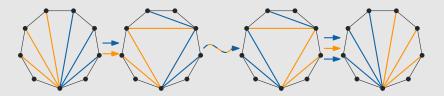


Reverse

· Reversing two edges is easy:

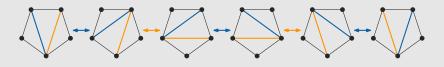


- · Reversing more:
 - Flip middle pair "up"
 - · Recurse on the rest
 - Reverse middle pair

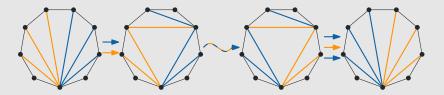


Reverse

Reversing two edges is easy:



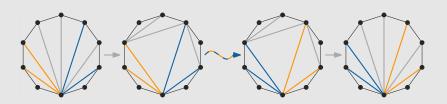
- · Reversing more:
 - Flip middle pair "up" O(1) = O(n) flips total
 - Recurse on the rest -T(n-2)
 - Reverse middle pair O(1)



Quicksort

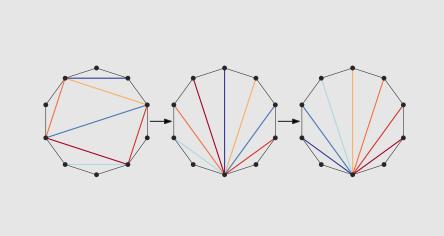
- · Partition on the median
- Flip all neutral edges -O(n)
- Reverse O(n)
- Recurse -2T(n/2)

 $= O(n \log n)$ flips total

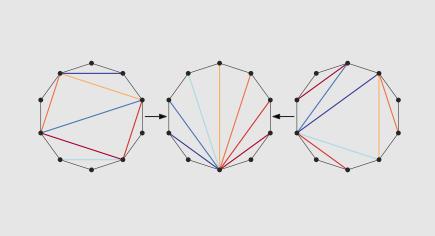


Transform into canonical

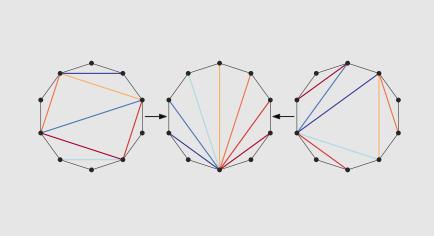
- Ignore labels -O(n)
- Sort $O(n \log n)$



- Transform T_1 into T_2
- Via canonical form T_C
- We only need to show $T \mapsto T_C O(n \log n)$



- Transform T_1 into $T_2 O(n \log n)$
- Via canonical form T_C
- We only need to show $T \mapsto T_C O(n \log n)$



Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of

triangulations reachable from T by a sequence of m flips is at most $2^{O(n+m)}$, regardless of labellings.

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{O(n+m)}$, regardless of labellings.

• There are over *n*! edge-labelled triangulations:

$$2^{O(n+d)} \ge n!$$

$$O(n+d) \ge \log n!$$

$$d \ge \Omega(n \log n)$$

Lower bound

Theorem (Sleator, Tarjan, and Thurston, 1992) Given a triangulation T of a convex polygon, the number of triangulations reachable from T by a sequence of m flips is at most $2^{O(n+m)}$, regardless of labellings.

• There are over *n*! edge-labelled triangulations:

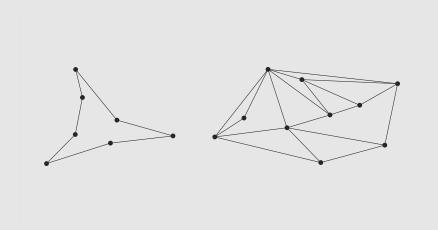
```
2^{O(n+d)} \ge n!
O(n+d) \ge \log n!
d \ge \Omega(n \log n)
```

Theorem

The diameter of the flip graph is $\Theta(n \log n)$.

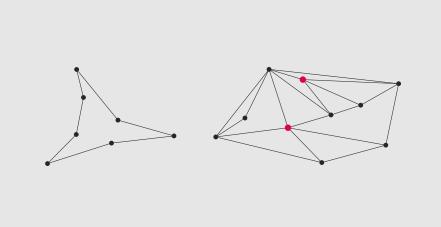
Pseudo-triangulations

All faces are <u>pseudo-triangles</u>



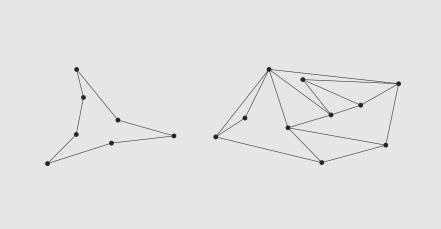
Pseudo-triangulations

- All faces are <u>pseudo-triangles</u>
- <u>Pointed</u>: all vertices are incident to a reflex angle (> π)



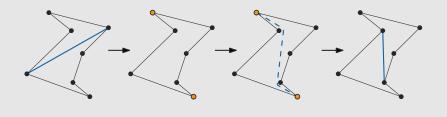
Pseudo-triangulations

- All faces are <u>pseudo-triangles</u>
- Pointed: all vertices are incident to a reflex angle (> π)



Flips

- · Remove edge, leaving a pseudo-quadrilateral
- · Find corners opposite removed edge
- · Insert connecting geodesic



Theorem (Bereg, 2004)

Any pointed pseudo-triangulation can be transformed into any other with $O(n \log n)$ flips.

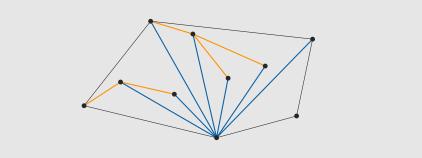
Theorem (Bereg, 2004)

Any pointed pseudo-triangulation can be transformed into any other with $O(n \log n)$ flips.

What happens when edges are labelled?

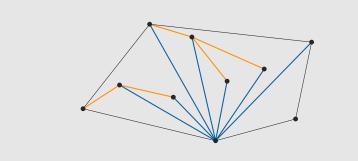
Left-shelling pseudo-triangulation

- · Add vertices in clockwise order around bottom vertex
 - Connect to bottom (bottom edge)
 - Add tangent to convex hull (top edge)



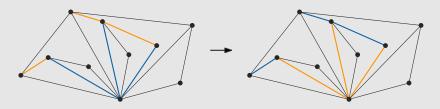
Left-shelling pseudo-triangulation

- · Add vertices in clockwise order around bottom vertex
 - Connect to bottom (bottom edge)
 - Add tangent to convex hull (top edge)
- This is our canonical form
- · Problem reduces to sorting labels

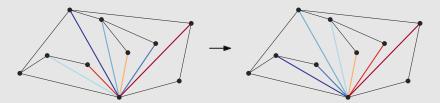


Tools

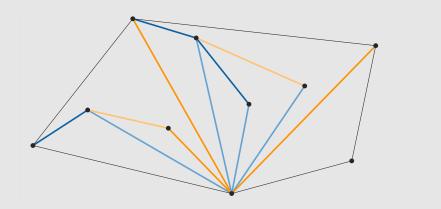
· Sweep: exchange labels on top and bottom pairs



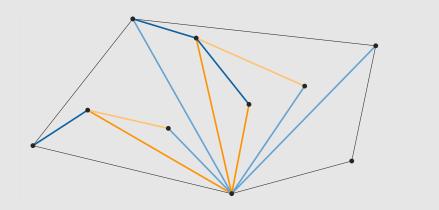
· Shuffle: reorder bottom labels



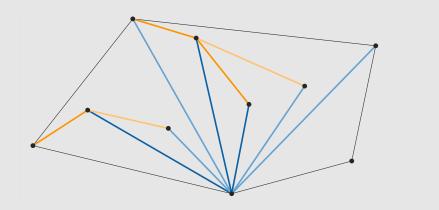
· Identify out-of-place top and bottom labels



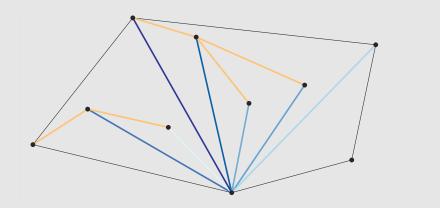
• Pair these up (Shuffle)



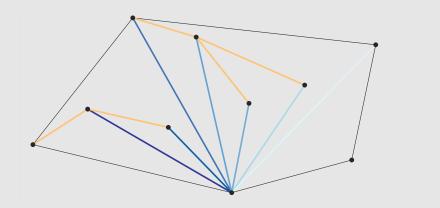
• Exchange them (Sweep)



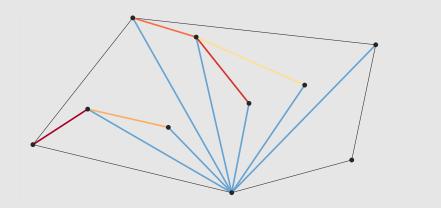
• Sort bottom labels (Shuffle)



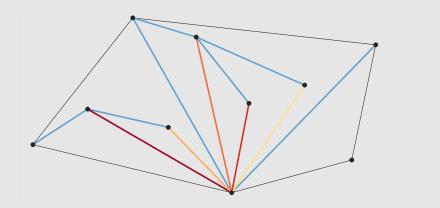
• Sort bottom labels (Shuffle)



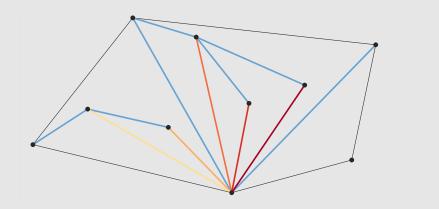
• Move all top labels down (Sweep)



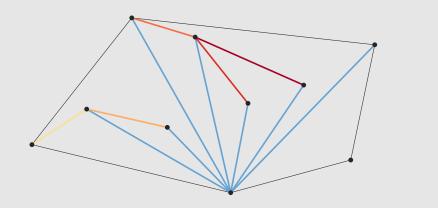
• Move all top labels down (Sweep)



• Sort them (Shuffle)



• Move them back (Sweep)



Upper bound

Theorem

We can sort the labels of a left-shelling pseudo-triangulation with O(1) shuffles and sweeps.

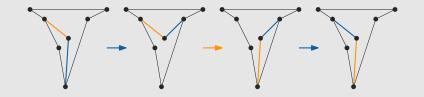
Upper bound

Theorem

We can sort the labels of a left-shelling pseudo-triangulation with O(1) shuffles and sweeps.

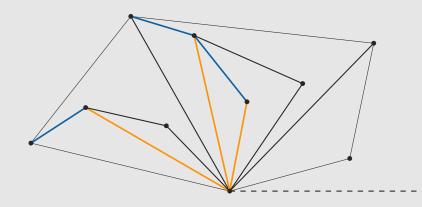
· How do we shuffle and sweep?

· Easy for degree-2 vertices:

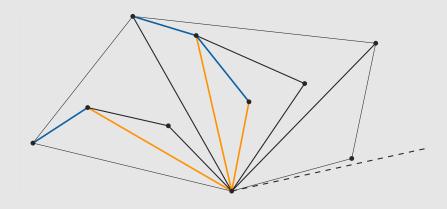


· Idea: make every vertex degree-2 at some point

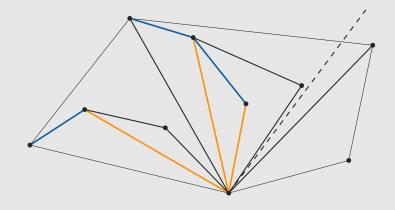
• Shoot a ray from v_{bottom} to the right



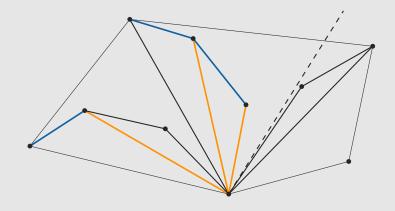
· Sweep it counter-clockwise through the point set



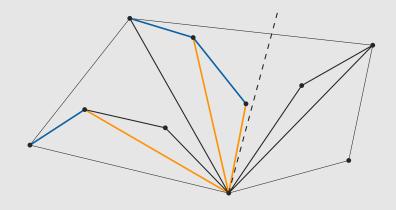
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



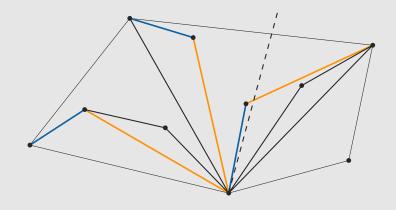
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



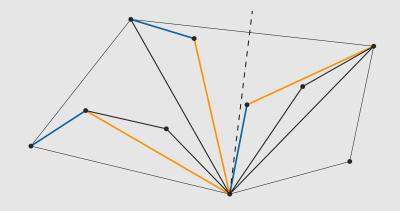
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



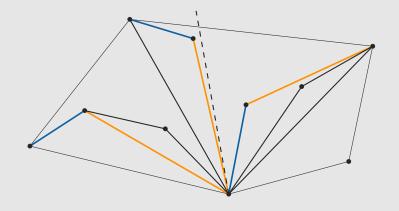
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



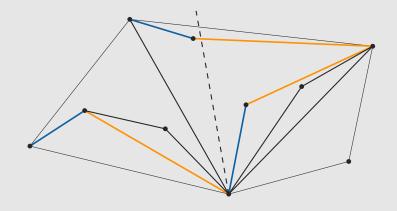
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



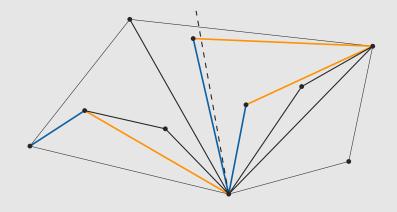
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



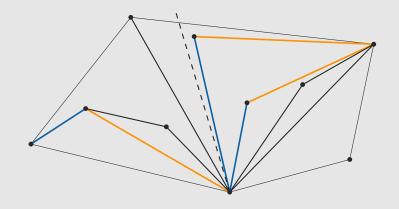
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



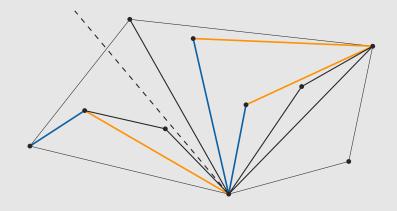
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



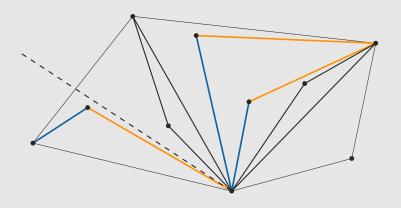
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



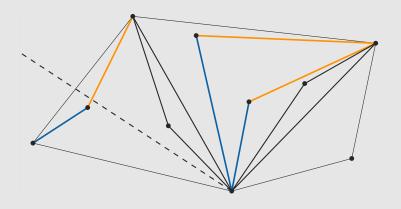
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



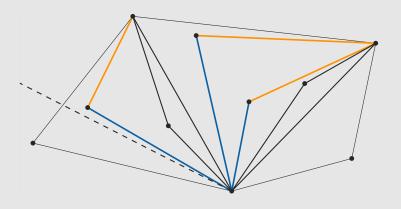
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



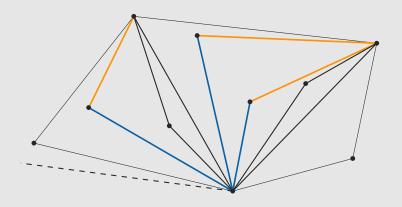
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



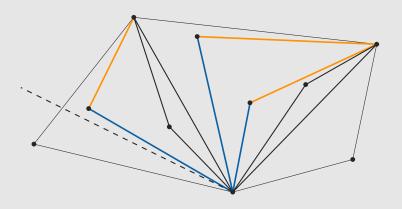
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



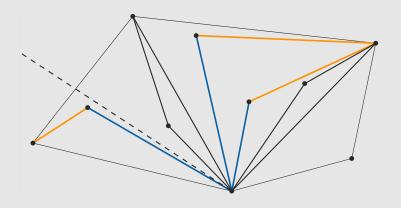
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



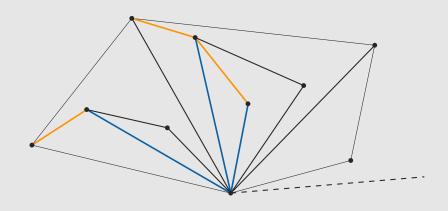
- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge



- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge

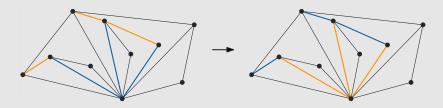


- When it passes a vertex:
 - Swap the top and bottom edge, if necessary
 - Flip the top edge

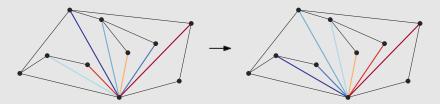


Tools

• Sweep: exchange labels on top and bottom pairs -O(n)

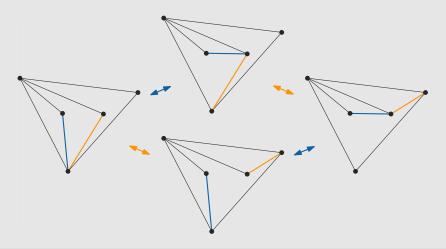


• Shuffle: reorder bottom labels

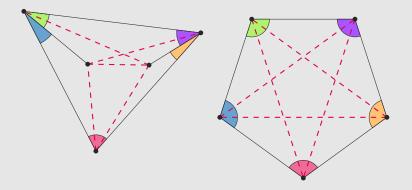


• Base case: can we swap the diagonals of a pseudo-pentagon?

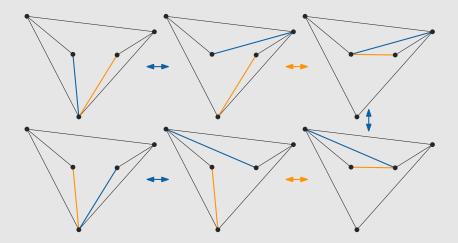
- Base case: can we swap the diagonals of a pseudo-pentagon?
- Not always!



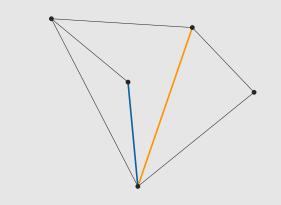
· Possible iff the pseudo-pentagon has five bitangents



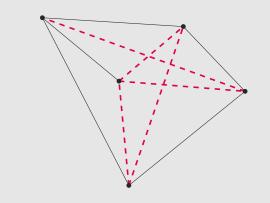
· Possible iff the pseudo-pentagon has five bitangents



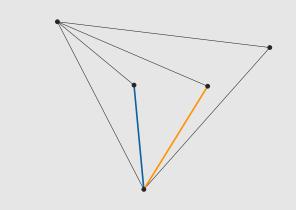
• This is enough:



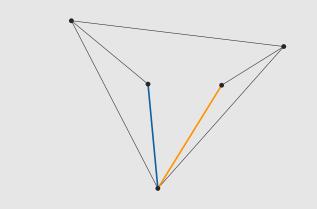
This is enough:



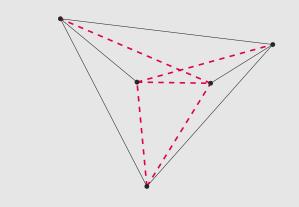
• This is enough:



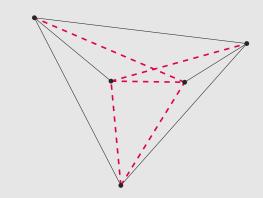
• This is enough:



This is enough:



• This is enough:



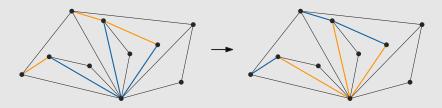
Theorem

We can swap two consecutive bottom edges with O(1) flips.

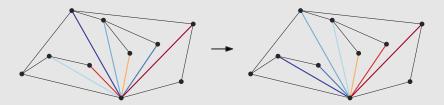
Sander Verdonschot Flips in Edge-Labelled Triangulations

Tools

• Sweep: exchange labels on top and bottom pairs -O(n)



• Shuffle: reorder bottom labels – $O(n^2)$



Upper bound

Theorem

We can sort the labels of a left-shelling pseudo-triangulation with O(1) shuffles and sweeps.

Theorem We can transform any edge-labelled pointed pseudo-triangulation into any other with $O(n^2)$ flips.

Upper bound

Theorem

We can sort the labels of a left-shelling pseudo-triangulation with O(1) shuffles and sweeps.

Theorem We can transform any edge-labelled pointed pseudo-triangulation into any other with $O(n^2)$ flips.

· Can we do better?

Upper bound

Theorem

We can sort the labels of a left-shelling pseudo-triangulation with O(1) shuffles and sweeps.

Theorem We can transform any edge-labelled pointed pseudo-triangulation into any other with $O(n^2)$ flips.

· Can we do better? I don't know.

Lower bound

Triangulation of convex polygon pointed pseudo-triangulation

Theorem The diameter of the flip graph is $\Omega(n \log n)$.

Open problems

• Close the $\Omega(n \log n) - O(n^2)$ gap for edge-labelled pointed pseudo-triangulations

Open problems

- Close the $\Omega(n \log n) O(n^2)$ gap for edge-labelled pointed pseudo-triangulations
- Is it NP-hard to compute the flip distance between two edge-labelled triangulations?
 - Variation: allow duplicate labels

Open problems

- Close the $\Omega(n \log n) O(n^2)$ gap for edge-labelled pointed pseudo-triangulations
- Is it NP-hard to compute the flip distance between two edge-labelled triangulations?
 - Variation: allow duplicate labels
- Settle the *Orbit Conjecture* for triangulations of points in the plane
 - e "flips to" f if there is a triangulation where flipping e gives f
 - T_1 can be transformed into T_2 iff for all labels ℓ , the edge with label ℓ in T_1 flips to the edge with label ℓ in T_2
 - Clearly necessary. Sufficient?

Bonus: Combinatorial triangulations



Bonus: Combinatorial triangulations

