On Plane Constrained Bounded-Degree Spanners

Prosenjit Bose, Rolf Fagerberg, André van Renssen and Sander Verdonschot

Carleton University, University of Southern Denmark

April 15, 2012

Sander Verdonschot (Carleton University) Constrained Bounded-Degree Spanners

Geometric Spanners

Given:

• Set of points in the plane

Goal:

• Approximate the complete Euclidean graph

Geometric Spanners

Given:

• Set of points in the plane

Goal:

• Approximate the complete Euclidean graph

Given:

• Set of points in the plane

Goal:

• Approximate the complete Euclidean graph

- Small spanning ratio
- Planarity
- Bounded degree
- Small number of hops
- Low total edge length

- Small spanning ratio
- Planarity
- Bounded degree
- Small number of hops
- Low total edge length

• Empty square (L_1) Delaunay triangulation ≤ 3.16 (Chew - 1986)

- = 2.61 (Bonichon et al. 2012)
- Empty circle (L_2) Delaunay triangulation ≤ 5.08 (Dobkin *et al.* - 1987) ≤ 2.42 (Keil, Gutwin - 1992)
- Empty equilateral triangle Delaunay triangulation
 = 2 (Chew 1989)

Equivalent to half- θ_6 -graph (Bonichon *et al.* - 2010)

Degree	k	Authors	
27	10.02	Bose <i>et al.</i> - 2005	
23	7.79	Li, Wang - 2004	
17	28.54	Bose <i>et al.</i> - 2009	
14	3.53	Kanj, Perković - 2008	
6	98.91	Bose <i>et al.</i> - 2012	
6	6	Bonichon <i>et al.</i> - 2010	

Given:

- Set of points in the plane V
- Set of constraints $\subseteq V \times V$

Goal:

• Approximate visibility graph

Given:

• Set of points in the plane V

Goal:

• Approximate visibility graph

• Set of constraints $\subseteq V \times V$

Given:

- Set of points in the plane V
- Set of constraints $\subseteq V \times V$

Goal:

• Approximate visibility graph

Given:

- Set of points in the plane V
 Set of constraints ⊂ V × V
- Goal:
 - Approximate visibility graph

k	B.D.	Plane	Authors	Graph
$1 + \epsilon$			Clarkson - 1987	
$1 + \epsilon$	\checkmark		Das - 1997	
5.08		\checkmark	Karavelas - 2001	Delaunay triangulation
2.42		\checkmark	Bose, Keil - 2006	Delaunay triangulation
2		\checkmark	Our result	$Half extsf{-} heta_{6} extsf{-}graph$
6	\checkmark	\checkmark	Our result	$Half extsf{-} heta_6 extsf{-}graph$

• 6 Cones around each vertex: 3 positive, 3 negative

• Connect to 'closest' vertex in each positive cone

• Connect to 'closest' vertex in each positive cone

• Connect to 'closest' vertex in each positive cone

• Connect to 'closest' visible vertex in each positive cone

• Connect to 'closest' visible vertex in each positive cone

• Connect to 'closest' visible vertex in each positive subcone

• Connect to 'closest' visible vertex in each positive subcone

• Connect to 'closest' visible vertex in each positive subcone

April 15, 2012 10 / 15

The constrained half- θ_6 -graph is a 2-spanner of the visibility graph

The constrained half- θ_6 -graph is a 2-spanner of the visibility graph

Proof by induction on the area of the equilateral triangle

Induction hypothesis:

• there is a path of length at most one side plus the longer top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

Bounded-Degree subgraph

• A modification of the previous graph gives maximum degree 6 + c

Bounded-Degree subgraph

• A modification of the previous graph gives maximum degree 6 + c

- Improved the spanning ratio of the best known plane constrained spanner to 2
- Introduced the first plane constrained bounded-degree spanner, with a maximum degree of 6 + c
- Main open problem: Can we do better than 6 + c?