Competitive Routing on a Bounded-Degree Plane Spanner

Prosenjit Bose, Rolf Fagerberg, André van Renssen and Sander Verdonschot

Carleton University, University of Southern Denmark

August 4, 2012

Geometric Spanners

Given:

• Set of points in the plane

Goal:

• Approximate the complete Euclidean graph

Geometric Spanners

Given:

• Set of points in the plane

Goal:

• Approximate the complete Euclidean graph

Given:

• Set of points in the plane

Goal:

• Approximate the complete Euclidean graph

Competitive Routing

Given:

- Geometric spanner
- Using only local information

Goal:

• Find a short path between any two vertices

Half- θ_6 -graph (Bonichon et al. 2010)

=

Bounded-degree variants (Bonichon et al. 2010)

Half- θ_6 -graph (Bonichon et al. 2010)

Competitive routing (Bose et al. 2012) Bounded-degree variants (Bonichon et al. 2010)

Half- θ_6 -graph (Bonichon et al. 2010)

Competitive routing on bounded-degree variants (This result)

Competitive routing (Bose et al. 2012)

• 6 Cones around each vertex: 3 positive, 3 negative

• Connect to 'closest' vertex in each positive cone

5 / 10

• Connect to 'closest' vertex in each positive cone

• Connect to 'closest' vertex in each positive cone

• Negative cones can have unbounded in-degree.

• Negative cones can have unbounded in-degree.

• Consecutive vertices are connected by a *canonical path*.

• Keep the edge to the closest vertex...

• Keep the edge to the closest vertex and the extreme edges.

• Keep the edge to the closest vertex and the extreme edges.

• Edges on the canonical path are always extreme.

• There is an *approximation path* for every removed edge.

• Result: A 3-spanner of the half- θ_6 -graph.

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

- If t lies in a positive cone:
 - Follow the edge in that cone

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

If *t* lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

In the half- θ_6 -graph.

If *t* lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

In the half- θ_6 -graph.

If *t* lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

In the half- θ_6 -graph.

If t lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

If t lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

If t lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

If t lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

If t lies in a negative cone and we marked a side:

• Follow the edge closest to the marked side

• Bounded-degree spanners allow competitive routing.

- Bounded-degree spanners allow competitive routing.
- Routing ratio can be improved by storing information at vertices.