Competitive Routing on a Bounded-Degree Plane Spanner

Prosenjit Bose, Rolf Fagerberg, André van Renssen and Sander Verdonschot
Carleton University, University of Southern Denmark

August 4, 2012

Geometric Spanners

Given:

- Set of points in the plane

Goal:

- Approximate the complete Euclidean graph

Geometric Spanners

Given:

- Set of points in the plane

Goal:

- Approximate the complete Euclidean graph

Geometric Spanners

Given:

- Set of points in the plane

Goal:

- Approximate the complete Euclidean graph
shortest path $\leq k$. Euclidean distance

Competitive Routing

Given:

- Geometric spanner
- Using only local information

Goal:

- Find a short path between any two vertices

$$
\text { path length } \leq r \text {. Euclidean distance }
$$

Previous Work

Half- θ_{6}-graph
 (Bonichon et al. 2010)

Previous Work

Bounded-degree variants (Bonichon et al. 2010)

Half- θ_{6}-graph
(Bonichon et al. 2010)

Competitive routing
 (Bose et al. 2012)

Previous Work

Bounded-degree variants (Bonichon et al. 2010)

Half- θ_{6}-graph
 (Bonichon et al. 2010)

Competitive routing on bounded-degree variants (This result)

Competitive routing (Bose et al. 2012)

Half- θ_{6}-graph

- 6 Cones around each vertex: 3 positive, 3 negative

Half- θ_{6}-graph

- Connect to 'closest' vertex in each positive cone

Half- θ_{6}-graph

- Connect to 'closest' vertex in each positive cone

Half- θ_{6}-graph

- Connect to 'closest' vertex in each positive cone

Bounded Degree

- Negative cones can have unbounded in-degree.

Bounded Degree

- Negative cones can have unbounded in-degree.

Bounded Degree

- Consecutive vertices are connected by a canonical path.

Bounded Degree

- Keep the edge to the closest vertex...

Bounded Degree

- Keep the edge to the closest vertex and the extreme edges.

Bounded Degree

- Keep the edge to the closest vertex and the extreme edges.

Bounded Degree

- Edges on the canonical path are always extreme.

Bounded Degree

- There is an approximation path for every removed edge.

Bounded Degree

- Result: A 3-spanner of the half- θ_{6}-graph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a positive cone:

- Follow the edge in that cone

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we did not mark a side yet:

- Follow an edge in that cone
- Follow an edge to the shorter side
- Follow an edge to the longer side and mark the shorter side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the half- θ_{6}-graph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the bounded-degree subgraph.

Routing Algorithm

If t lies in a negative cone and we marked a side:

- Follow the edge closest to the marked side

In the bounded-degree subgraph.

Conclusion

- Bounded-degree spanners allow competitive routing.

Conclusion

- Bounded-degree spanners allow competitive routing.
- Routing ratio can be improved by storing information at vertices.

