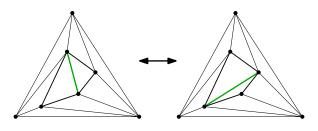
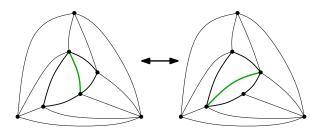
Making Triangulations 4-connected using Flips

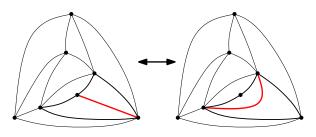

Prosenjit Bose, Dana Jansens, André van Renssen, Maria Saumell and Sander Verdonschot

Carleton University

August 8, 2011


Flips

• Replace one diagonal of a quadrilateral with the other


Flips

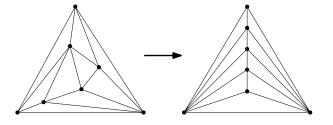
• Replace one diagonal of a quadrilateral with the other

Flips

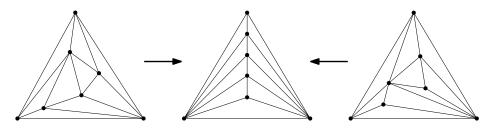
• Replace one diagonal of a quadrilateral with the other

- Vertex for each triangulation
- Edge if two triangulations differ by one flip

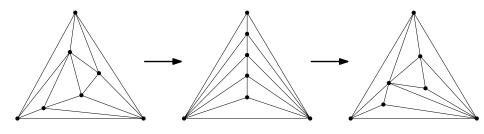
- Vertex for each triangulation
- Edge if two triangulations differ by one flip
- Flip Distance: shortest path in flip graph


• Connected?

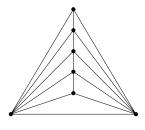
- Connected?
 - Yes Wagner (1936)

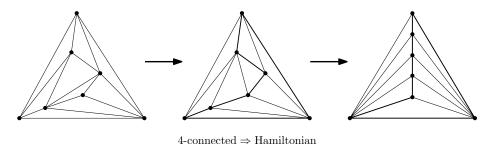

- Connected?
 - Yes Wagner (1936)
- Diameter?
 - $O(n^2)$ Wagner (1936)

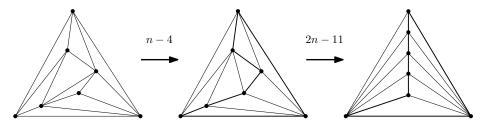
- Connected?
 - Yes Wagner (1936)
- Diameter?
 - $O(n^2)$ Wagner (1936)
 - 8*n* − 54 Komuro (1997)
 - 6*n* − 30 Mori *et al.* (2003)

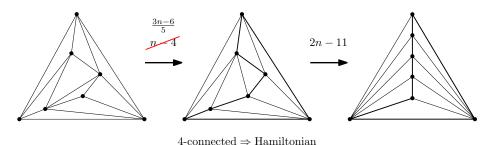

Algorithm

Algorithm



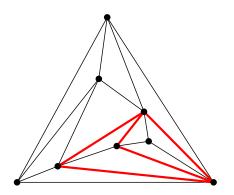

Algorithm



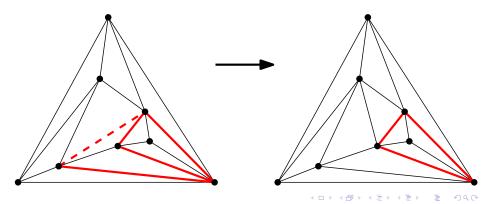


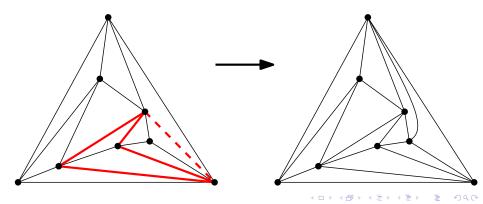
4-connected \Rightarrow Hamiltonian

Total: 6n - 30


nected ⇒ naminoman

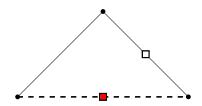
Total: 6n - 30 5.2n - 24.4


• Separating triangle: 3-cycle whose removal disconnects the graph

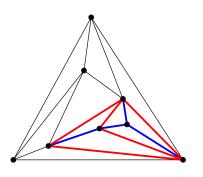

- Separating triangle: 3-cycle whose removal disconnects the graph
- ullet No separating triangles \iff 4-connected

- Separating triangle: 3-cycle whose removal disconnects the graph
- No separating triangles ← 4-connected
- Flipping an edge of a separating triangle removes it

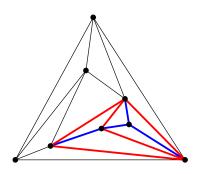
- Separating triangle: 3-cycle whose removal disconnects the graph
- No separating triangles ← 4-connected
- Flipping an edge of a separating triangle removes it
- Prefer shared edges

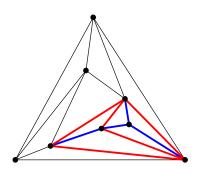

Upper Bound

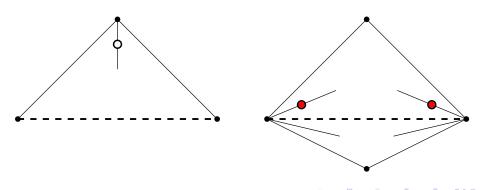
• To prove: $\# flips \le (3n - 6)/5$


Upper Bound

- To prove: $\# flips \le (3n 6)/5$
- Charging scheme:
 - Coin on every edge
 - Pay 5 coins per flip


- Invariant: Every edge of a separating triangle has a coin
- Charge the flipped edge
- Charge all edges that aren't shared


• Free edge: edge that is not part of any separating triangle

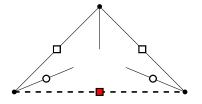

- Free edge: edge that is not part of any separating triangle
- Every vertex of a separating triangle is incident to a free edge inside the triangle

- Free edge: edge that is not part of any separating triangle
- *Invariant:* Every vertex of a separating triangle is incident to a free edge inside the triangle *that has a coin*

- Free edge: edge that is not part of any separating triangle
- Invariant: Every vertex of a separating triangle is incident to a free edge inside the triangle that has a coin
- Charge all free edges that aren't needed by other separating triangles

 A deepest separating triangle is contained in the maximum number of separating triangles

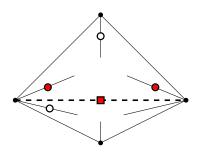
- A deepest separating triangle is contained in the maximum number of separating triangles
- Flip:
 - An arbitrary edge
 - Shared with other separating triangles
 - Not shared with a containing triangle


- A deepest separating triangle is contained in the maximum number of separating triangles
- Flip:
 - An arbitrary edge
 - Shared with other separating triangles
 - Not shared with a containing triangle

- A deepest separating triangle is contained in the maximum number of separating triangles
- Flip:
 - An arbitrary edge
 - Shared with other separating triangles
 - Not shared with a containing triangle

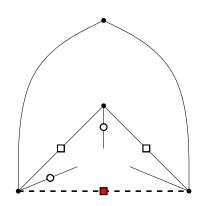
• Case 1: No shared edges

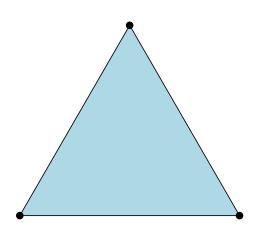
We can charge:

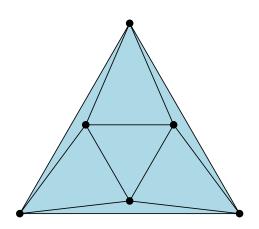

- The flipped edge
- ☐ An unshared triangle edge
- O An unshared free edge
- A superfluous free edge

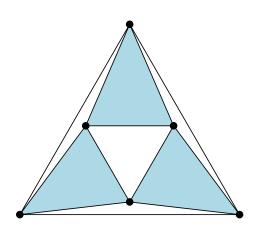
• Case 2: Shares edges with non-containing triangles

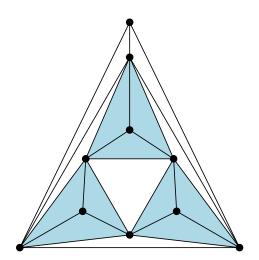
We can charge:

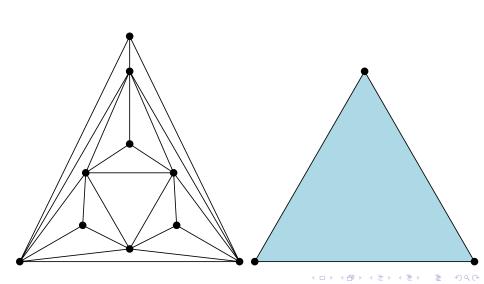

- The flipped edge
- □ An unshared triangle edge
- O An unshared free edge
- A superfluous free edge

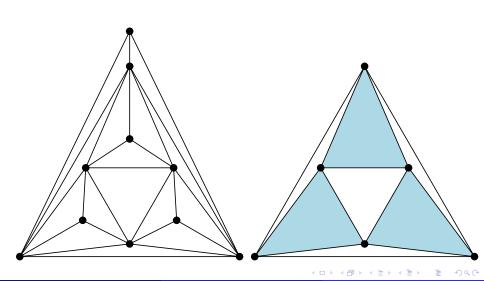

• Case 3: Shares one edge with containing triangle

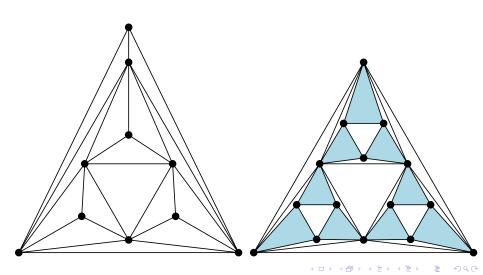

We can charge:

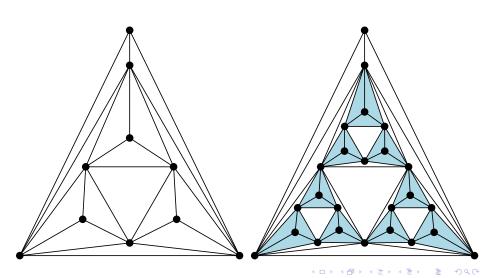

- The flipped edge
- □ An unshared triangle edge
- O An unshared free edge
- A superfluous free edge

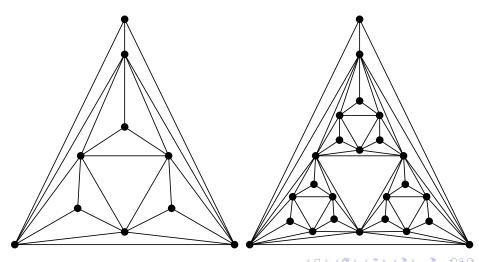



Lower Bound









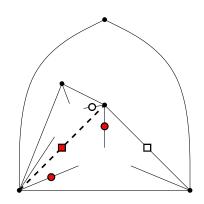
 \bullet (3n-10)/5 edge-disjoint separating triangles

Summary

- Any triangulation can be made 4-connected by $\lfloor \frac{3n-6}{5} \rfloor$ flips
- There are triangulations where this requires $\lceil \frac{3n-10}{5} \rceil$ flips

Summary

- Any triangulation can be made 4-connected by $\lfloor \frac{3n-6}{5} \rfloor$ flips
- ullet There are triangulations where this requires $\left\lceil \frac{3n-10}{5} \right\rceil$ flips
- ullet A triangulation can be transformed into any other by 5.2n-24.4 flips

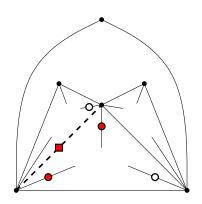

The End

Which edges to flip?

 Case 4: Shares an edge with containing triangle and one with non-containing triangle

We can charge:

- The flipped edge
- □ An unshared triangle edge
- O An unshared free edge
- A superfluous free edge



Which edges to flip?

• Case 5: Shares an edge with containing triangle and two with non-containing triangles

We can charge:

- The flipped edge
- □ An unshared triangle edge
- O An unshared free edge
- A superfluous free edge

