Making Triangulations 4-connected using Flips

Prosenjit Bose, Dana Jansens, André van Renssen, Maria Saumell and Sander Verdonschot

Carleton University

August 8, 2011

Flips

- Replace one diagonal of a quadrilateral with the other

Flips

- Replace one diagonal of a quadrilateral with the other

Flips

- Replace one diagonal of a quadrilateral with the other

Flip Graph

- Vertex for each triangulation
- Edge if two triangulations differ by one flip

Flip Graph

- Vertex for each triangulation
- Edge if two triangulations differ by one flip
- Flip Distance: shortest path in flip graph

Flip Graph

- Connected?

Flip Graph

- Connected?
- Yes - Wagner (1936)

Flip Graph

- Connected?
- Yes - Wagner (1936)
- Diameter?
- $O\left(n^{2}\right)$ - Wagner (1936)

Flip Graph

- Connected?
- Yes - Wagner (1936)
- Diameter?
- $O\left(n^{2}\right)$ - Wagner (1936)
- $8 n-54$ - Komuro (1997)
- $6 n-30$ - Mori et al. (2003)

Algorithm

Algorithm

Algorithm

Algorithm Mori et al.

Algorithm Mori et al.

4-connected \Rightarrow Hamiltonian

Algorithm Mori et al.

4-connected \Rightarrow Hamiltonian

Total: $6 n-30$

Algorithm Mori et al.

4-connected \Rightarrow Hamiltonian

Total: $6 n-305.2 n-24.4$

Making triangulations 4-connected

- Separating triangle: 3-cycle whose removal disconnects the graph

Making triangulations 4-connected

- Separating triangle: 3-cycle whose removal disconnects the graph
- No separating triangles \Longleftrightarrow 4-connected

Making triangulations 4-connected

- Separating triangle: 3-cycle whose removal disconnects the graph
- No separating triangles \Longleftrightarrow 4-connected
- Flipping an edge of a separating triangle removes it

Making triangulations 4-connected

- Separating triangle: 3-cycle whose removal disconnects the graph
- No separating triangles \Longleftrightarrow 4-connected
- Flipping an edge of a separating triangle removes it
- Prefer shared edges

Upper Bound

- To prove: $\#$ flips $\leq(3 n-6) / 5$

Upper Bound

- To prove: $\#$ flips $\leq(3 n-6) / 5$
- Charging scheme:
- Coin on every edge
- Pay 5 coins per flip

Paying for flips

- Invariant: Every edge of a separating triangle has a coin
- Charge the flipped edge
- Charge all edges that aren't shared

Paying for flips

- Free edge: edge that is not part of any separating triangle

Paying for flips

- Free edge: edge that is not part of any separating triangle
- Every vertex of a separating triangle is incident to a free edge inside the triangle

Paying for flips

- Free edge: edge that is not part of any separating triangle
- Invariant: Every vertex of a separating triangle is incident to a free edge inside the triangle that has a coin

Paying for flips

- Free edge: edge that is not part of any separating triangle
- Invariant: Every vertex of a separating triangle is incident to a free edge inside the triangle that has a coin
- Charge all free edges that aren't needed by other separating triangles

Which edges to flip?

- A deepest separating triangle is contained in the maximum number of separating triangles

Which edges to flip?

- A deepest separating triangle is contained in the maximum number of separating triangles
- Flip:
- An arbitrary edge
- Shared with other separating triangles
- Not shared with a containing triangle

Which edges to flip?

- A deepest separating triangle is contained in the maximum number of separating triangles
- Flip:
- An arbitrary edge
- Shared with other separating triangles
- Not shared with a containing triangle

Which edges to flip?

- A deepest separating triangle is contained in the maximum number of separating triangles
- Flip:
- An arbitrary edge
- Shared with other separating triangles
- Not shared with a containing triangle

Which edges to flip?

- Case 1: No shared edges

We can charge:
\square The flipped edge

- An unshared triangle edge
- An unshared free edge
- A superfluous free edge

Which edges to flip?

- Case 2: Shares edges with non-containing triangles

We can charge:
\square The flipped edge
\square An unshared triangle edge
o An unshared free edge

- A superfluous free edge

Which edges to flip?

- Case 3: Shares one edge with containing triangle

We can charge:
\square The flipped edge

- An unshared triangle edge
- An unshared free edge
- A superfluous free edge

Lower Bound

Lower Bound

- $(3 n-10) / 5$ edge-disjoint separating triangles

Summary

- Any triangulation can be made 4 -connected by $\left\lfloor\frac{3 n-6}{5}\right\rfloor$ flips
- There are triangulations where this requires $\left\lceil\frac{3 n-10}{5}\right\rceil$ flips

Summary

- Any triangulation can be made 4 -connected by $\left\lfloor\frac{3 n-6}{5}\right\rfloor$ flips
- There are triangulations where this requires $\left\lceil\frac{3 n-10}{5}\right\rceil$ flips
- A triangulation can be transformed into any other by $5.2 n-24.4$ flips

The End

Which edges to flip?

- Case 4: Shares an edge with containing triangle and one with non-containing triangle

We can charge:
\square The flipped edge

- An unshared triangle edge
o An unshared free edge
- A superfluous free edge

Which edges to flip?

- Case 5: Shares an edge with containing triangle and two with non-containing triangles

We can charge:
\square The flipped edge

- An unshared triangle edge
o An unshared free edge
- A superfluous free edge

