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Abstract

Flips in triangulations have received a lot of attention over the past decades. However,
the problem of tracking where particular edges go during the flipping process has not
been addressed. We examine this question by attaching unique labels to the triangulation
edges. We introduce the concept of the orbit of an edge e, which is the set of all edges
reachable from e via flips.

We establish the first upper and lower bounds on the diameter of the flip graph in this
setting. Specifically, we prove tight Θ(n log n) bounds for edge-labelled triangulations
of n-vertex convex polygons and combinatorial triangulations, contrasting with the
Θ(n) bounds in their respective unlabelled settings. The Ω(n log n) lower bound for the
convex polygon setting might be of independent interest, as it generalizes lower bounds
on certain sorting models. When simultaneous flips are allowed, the upper bound for
convex polygons decreases to O(log2 n), although we no longer have a matching lower
bound.

Moving beyond convex polygons, we show that edge-labelled triangulated polygons
with a single reflex vertex can have a disconnected flip graph. This is in sharp contrast
with the unlabelled case, where the flip graph is connected for any triangulated polygon.
For spiral polygons, we provide a complete characterization of the orbits. This allows
us to decide connectivity of the flip graph of a spiral polygon in linear time. We also
prove an upper bound of O(n2) on the diameter of each connected component, which is
optimal in the worst case. We conclude with an example of a non-spiral polygon whose
flip graph has diameter Ω(n3).
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1. Introduction

The problem of reconfiguring one triangulation to another is well-studied for
combinatorial triangulations, triangulations of points sets, and triangulations of polygons.
In all these settings, the basic reconfiguration operation is the flip operation that removes
one edge of the triangulation and adds another edge to obtain a new triangulation.5

Not every edge can always be flipped. The constraints on the edges involved in a flip
depend on the setting. The geometric setting refers to a triangulation of a point set (a
maximal set of non-crossing edges joining pairs of points) or polygon (a maximal set
of non-crossing chords inside the polygon). In both cases, a flip removes one diagonal
of a convex quadrilateral and replaces it by the other diagonal. In the combinatorial10

setting, a triangulation is a maximal planar graph with the clockwise order of edges
around each vertex specified. Here, a flip removes one edge and replaces it by the other
diagonal of the resulting quadrilateral, as long as the new edge is not already an edge of
the triangulation. When we replace an edge e by an edge f with a flip, we say that e
flips to f .15

Another way to view reconfigurations via flips is through the flip graph, which has a
vertex for each triangulation and an edge between two vertices if their corresponding
triangulations differ by a single flip. The most important property of flips is that they
can be used to reconfigure any triangulation into any other triangulation of the same
point set, polygon, or vertex set—that is, the flip graph is connected.20

Wagner [28] initiated the study of flips in 1936, by proving that the flip graph is
connected in the combinatorial setting. For points sets, connectivity of the flip graph
is a consequence of Lawson’s result [21] that any triangulation of a point set can be
flipped to the Delaunay triangulation, which then acts as a “canonical” triangulation
from which every triangulation can be reached. For triangulations of a polygon, the25

constrained Delaunay triangulation can be used in the same way to prove that the flip
graph is connected [3]. In Section 2, we discuss these results in more detail, along with
bounds on the number of flips required, i.e., bounds on the diameter of the flip graph.

Reconfiguration of triangulations via flips is of theoretical interest in the study of
associahedra [26] and mixing [22]. It also has more practical benefits in mesh generation30

and for finding triangulations that optimize certain quality measures [3, 11]. For a
broader overview of the literature on flips, we refer the reader to a survey by Bose and
Hurtado [5].

Despite the extensive literature on flips in many different settings, to our knowledge,
no one has specifically studied where individual edges move during the course of a35

sequence of flips in any setting. We say that an edge f is reachable from an edge e
if there is a sequence of edges e, . . . , f , such that for every two consecutive edges a
and b in the sequence, there exists a triangulation in which a flips to b. We define the
orbit of an edge e to be the set of all edges reachable from e. This gives rise to a very
natural question: What is the orbit of an edge? Although every triangulation can be40

flipped to every other, the orbits of edges can be very different. For example, some
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polygons have a unique triangulation, in which case the orbits are all singletons. At the
other extreme, a convex polygon has a single orbit containing all the diagonals. In the
geometric setting, the orbits are exactly the connected components of a graph introduced
by Eppstein [12] as the quadrilateral graph. This graph has a vertex for every diagonal45

and an edge between two vertices if their corresponding diagonals e and f intersect and
their endpoints form a convex quadrilateral that is empty.

An intriguing question is how orbits combine. In other words, we want to track
where multiple edges go during a sequence of flips. To address this question, we study
flips in edge-labelled triangulations: triangulations of a point set, polygon, or vertex set50

where each edge has a unique label from {1, . . . ,m}, where m is the number of edges.
If we flip an edge of an edge-labelled triangulation, the new edge is assigned the label
of the removed edge. In particular, this means that the set of edge labels is preserved
throughout any flip sequence. In the geometric setting, we often omit the labels on the
edges of the convex hull or on the boundary of the polygon, as these can never be flipped.55

Given two edge-labelled triangulations T and T ′ of the same point set, polygon, or
vertex set, it is not always possible to transform T to T ′ via a sequence of flips. For
example, when a polygon has a unique triangulation, no flips are possible, so if the
labellings of T and T ′ differ, no flip sequence can transform one to the other. A necessary
condition for such a flip sequence to exist is that each edge with label i in T ′ must be in60

the orbit of the edge with label i in T . We conjecture that this condition is also sufficient.

Orbit Conjecture. Given two edge-labelled triangulations, there is a sequence of flips
that transforms one into the other if and only if for every label, the initial and final edge
with that label lie in the same orbit.

The Orbit Conjecture is known to hold in some cases. A result by Eppstein [12]65

implies that the Orbit Conjecture holds for triangulations of point sets with no empty
pentagon. These point sets are highly degenerate since every set of ten points in general
position contains an empty pentagon. Eppstein showed that in this case every orbit is
a tree, and each triangulation contains exactly one edge from each orbit. There are a
few other results of a similar flavour. Cano et al. [9] proved the analogous statement for70

edge-labelled non-maximal plane graphs, although instead of flips, they “rotate" edges
around one of their endpoints. Hernando et al. [17] proved the analogous statement for
edge-labelled spanning trees of an underlying graph, where the “flip" operation consists
of removing an edge and replacing it elsewhere with the same label while maintaining
connectivity. They showed that the orbits are exactly the 2-connected components of the75

underlying graph. Pathak [23] generalized this result to labelled bases of a matroid.
Edge-labelled flips in triangulations of a convex polygon were independently studied

by Araujo-Pardo et al. [1], who mainly focused on the combinatorial properties of the
flip graph. In the unlabelled setting, the flip graph is known to be isomorphic to the
1-skeleton of a polyhedron, called the associahedron. Araujo-Pardo et al. proved that80

this is also the case for the edge-labelled setting, and called the resulting polyhedron
the colourful associahedron. As part of their proof, they show that the flip graph of
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edge-labelled triangulations of a convex polygon is connected, which implies the Orbit
Conjecture for this setting. A careful analysis of their argument shows that it gives
an upper bound on the diameter of the flip graph that is quadratic in the number of85

vertices of the polygon. In addition, they show that the colourful associahedron covers
the regular associahedron and fully characterize its automorphism group.

In this paper we address the Orbit Conjecture for edge-labelled triangulations of
polygons and edge-labelled combinatorial triangulations. We give an alternative proof
for the connectivity of the flip graph of edge-labelled triangulations of an n-vertex90

convex polygon that shows that the diameter is O(n log n), and we provide a matching
Ω(n log n) lower bound, which contrasts with the Θ(n) bound for unlabelled flips [26].

We also consider what happens when we allow multiple edges to be flipped
simultaneously. We prove that the simultaneous flip distance between two edge-labelled
triangulations of a convex polygon is O(log2 n), in contrast with the Θ(log n) bound95

established for the unlabelled setting [14].
After convex polygons, we consider spiral polygons (polygons with at most one reflex

chain). These may have multiple orbits, so the flip graph is not necessarily connected.
We again prove the Orbit Conjecture, and give a tight Θ(n2) worst case bound on the
diameter of each connected component of the flip graph. We also characterize the orbits,100

and show how to test in linear time whether there is a flip sequence that transforms one
given edge-labelled triangulation into another.

Turning to more general polygons, we give an example of a polygon with two reflex
chains whose flip graph is connected but has diameter Ω(n3). This is in stark contrast to
the Θ(n2) bound on the diameter of the flip graph in the unlabelled setting [3, 19], and105

the Θ(n2) bound for spiral polygons.
Finally, we consider the case of n-vertex edge-labelled combinatorial triangulations.

As for convex polygons, we prove the Orbit Conjecture by showing that the flip graph
is connected and has diameter Θ(n log n), contrasting with the Θ(n) bound for the
unlabelled case [27].110

2. Background

The original result on flips was due to Wagner [28], who showed that O(n2) flips
were sufficient to transform between any two given n-vertex combinatorial triangulations.
In particular, he showed that any triangulation can be transformed into one with two
dominant vertices, often referred to as Wagner’s canonical triangulation. The upper115

bound was first improved to linear by Sleator et al. [27]—this is optimal, since converting
a triangulation with constant maximum degree into Wagner’s canonical triangulation
immediately gives a linear lower bound. Currently, the best upper bound on the diameter
of the flip graph is 5n − 23 [10]. See Bose and Verdonschot [8] for a more detailed
history of this problem in the combinatorial setting.120

Combinatorial triangulations with vertex labels were studied by Sleator et al. [27] as
an intermediate form between unlabelled combinatorial triangulations and triangulations
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of a set of points in the plane. In this setting, they showed that O(n log n) flips are
sufficient to transform one vertex-labelled triangulation with n vertices into any other,
and that Ω(n log n) flips are sometimes necessary. Note that by transforming both the125

initial and final triangulation into Wagner’s canonical form without paying attention to
vertex labels, the problem becomes one of sorting vertex labels. This is essentially what
they do to prove the O(n log n) upper bound. For the Ω(n log n) lower bound, they show
that there are at most 9n+m distinct vertex-labelled triangulations that are reachable
from a given triangulation T via m flips. Since there are already (n − 3)! different ways130

to label the vertices of Wagner’s canonical triangulation, the Ω(n log n) lower bound
follows.

For n-vertex triangulations of point sets, Lawson [21] proved that given any triangu-
lation, a sequence of O(n2) flips suffices to transform it to the Delaunay triangulation.
For triangulations of an n-vertex polygon, Bern and Eppstein [3] showed that the flip135

graph is also connected and has diameter O(n2). Unlike in the combinatorial setting,
Hurtado et al. [19] proved that these quadratic bounds are tight by providing an Ω(n2)
lower bound.

Flips in triangulations of a convex polygon are especially interesting because they
correspond exactly to rotations in a binary tree. In this way, Sleator et al. [26] answered140

a question about the rotation distance between binary trees, by proving a tight bound
of 2n − 10 on the diameter of the flip graph. Recently, Pournin [25] found a purely
combinatorial proof of this bound, avoiding the use of hyperbolic geometry in the
original proof and establishing the bound even for small values of n.

The idea of performing flips in parallel was introduced by Hurtado et al. [18]. In145

the geometric setting, a set of edges may be simultaneously flipped if each edge is
flippable and no two edges are incident to the same triangle. Galtier et al. [14] showed
that Θ(n) simultaneous flips are sufficient and sometimes necessary to reconfigure
one triangulation of a point set or simple polygon to another. In the case of convex
polygons, they showed that Θ(log n) simultaneous flips were sufficient and sometimes150

necessary. Bose et al. [4] proved that Θ(log n) simultaneous flips are sufficient and
sometimes necessary in the combinatorial setting—in this case a simultaneous flip may
be performed even if some edges in the set cannot be individually flipped.

3. Convex polygons

In this section, we prove that the flip graph of edge-labelled triangulations of a155

convex polygon with n vertices is connected. Since all diagonals are in the same orbit,
this is equivalent to proving the Orbit Conjecture in this setting. Aurajo-Pardo et al. [1]
also proved this, but our proof gives a tight bound of Θ(n log n) on the diameter of the
flip graph. In addition, we show that O(log2 n) simultaneous flips are sufficient and
Ω(log n) simultaneous flips are sometimes necessary.160

Given a convex polygon with n vertices, label the vertices p1, . . . , pn in counter-
clockwise order and give each diagonal a unique label from the set {1, . . . , n−3}. Denote
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p1
p2
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p4

p5

p6 p7

p8

p9

p10

p11

Figure 1: A canonical triangulation with 11 vertices.

by T∗ the canonical triangulation where vertex p1 is dominant (see Figure 1). Let ρ
be the sequence of edge labels ordered in counter-clockwise order around p1, starting
with diagonal p1p3. Note that ρ is a permutation of [1..n − 3]. We denote this canonical165

triangulation by (T∗, ρ). The next lemma shows that in this canonical triangulation,
ordered subsequences can easily be reversed, which plays an important role for the
upper bound. Note the distinction between an ordered subsequence and a contiguous
subsequence. An ordered subsequence is a sequence consisting of a subset of the
elements of the original sequence in the same order as in the original. A contiguous170

subsequence is an ordered subsequence in which the elements are consecutive in the
original sequence.

a b
a a

b
b

b
b a b

aa

Figure 2: A sequence of five flips that reverses the order of the two diagonals of a pentagon.

Lemma 1. Given (T∗, ρ), let S be a contiguous subsequence of diagonals adjacent to
vertex p1, ordered in counter-clockwise order. Any ordered subsequence R = i1, . . . , ir
of S can be reversed with at most 2.5|S | flips.175

Proof. Note that the edges of R need not be consecutive. We use induction on |S |. In
the base case, |S | = 0 and we do not need any flips to reverse R, so let |S | > 0 and
assume that the lemma holds for any contiguous subsequence S′ with |S′ | < |S |.
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If there is any edge e in S that is not in R, we flip that edge. Now the remaining edges
of S form a contiguous subsequence of diagonals in a smaller convex polygon. Thus, we180

can reverse them with 2.5( |S | − 1) flips by induction. Flipping e back completes the
transformation, for a total of 2.5( |S | − 1) + 2 ≤ 2.5|S | flips.

Now consider the case where S = R. If |R| is odd, we can remove the middle
diagonal from R, bringing us back to the previous case, so assume that |R| is even. Then
the two middle diagonals, ir/2 and ir/2+1, can be swapped with five flips, as shown in185

Figure 2. But instead of completing this swap sequence, we halt it after the first three
flips. This leaves the edges out of the way of the remaining edges, which we then reverse
with 2.5(|S | − 2) flips by induction. Afterwards, we perform the final two flips to return
ir/2 and ir/2+1, bringing the total number of flips to 2.5( |S | − 2) + 5 = 2.5|S |. �

Using Lemma 1, we can sort ρ with O(n log n) flips, which gives us the following190

theorem.

Theorem 1. Any edge-labelled triangulation of a convex polygon with n vertices can
be transformed into any other edge-labelled triangulation using O(n log n) flips.

Proof. Wefirst ignore the labels and useO(n) flips to transform both initial triangulations
to the canonical triangulations (T∗, l ′1) and (T∗, l ′2), respectively. Next, we show that195

for any permutation ρ, the canonical triangulation (T∗, ρ) can be transformed into the
triangulation (T∗, ρ∗) using O(n log n) flips, where ρ∗ is the sorted permutation.

We sort the permutation ρ by imitating a version of quicksort that always uses the
median as pivot. This ensures that the O(n log n) bound holds even in the worst case.
Let ρi denote the i-th element in ρ and consider all i ∈ [1..n − 3] for which either: (1)200

i ≤ (n − 3)/2 and ρi > (n − 3)/2; or (2) i > (n − 3)/2 and ρi ≤ (n − 3)/2. Reverse the
subsequence formed by these values of i. By Lemma 1, this can be done with O(n) flips.
This ensures that edges whose label is below (n− 3)/2 lie in the first half of the sequence
and the larger labels lie in the second half. By recursively applying this operation to the
two halves, we sort the entire sequence using O(n log n) flips. �205

As a corollary to the O(n log n) upper bound, we can get an O(log n)-factor
approximation algorithm for computing the flip-distance.

Corollary 1. We can approximate in polynomial time the flip-distance between two
n-vertex edge-labelled triangulations T1 and T2 of a convex polygon within an O(log n)
factor of optimal.210

Proof. Call an edge e fixed if it satisfies the following properties: a) it occurs in both
T1 and T2; b) it has the same label in both T1 and T2; and c) the set of distinct labels that
occurs to the left of e in T1 is exactly the same as the set that occurs to the left of e in T2.
Since every non-fixed edge must be flipped at least once, we need at least k flips, where k
is the number of non-fixed edges. The set of fixed edges divides the polygon into several215

smaller convex polygons, each of which has a different edge-labelled triangulation in
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T1 and T2. Suppose the ith polygon has ni diagonals. We use the flip-sequence from
Theorem 1 on the ith polygon to perform the required transformation with O(ni log ni )
flips. The total number of flips is then

∑
i O(ni log ni ) ≤ O(k log k) , thus giving an

approximation factor of O(log n). �220

3.1. Lower bound
The lower bound uses a slightly modified version of the Ω(n log n) lower bound

for the vertex-labelled setting by Sleator, Tarjan, and Thurston [27]. We first give an
overview of their technique, before applying it to edge-labelled triangulations of a convex
polygon.225

Let a tagged half-edge graph be an undirected graph with maximum degree ∆, whose
vertices have labels called tags, and whose edges are split into two half-edges. Each
half-edge is incident to one endpoint, and labelled with an edge-end label in {1, . . . ,∆},
such that all edge-end labels incident on a vertex are distinct (see Figure 3a for an
example). A half-edge part is a half-edge graph in which some half-edges do not have a230

twin. Note that tags are not restricted to integers: they could be tuples, or even arbitrary
strings.

1
2 3

2 3

2 3

1

11

1 1

1

1

(a)

1
2 3

2 3
1

1
2 3

2 3
1

1
2 3

2 3
1

1
2 3

2 3
1

(b)

Figure 3: (a) A half-edge graph representation of a rooted binary tree. (b) A graph grammar for rotations in
binary trees. Correspondence between half-edges is indicated by a combination of colour and line style.

A graph grammar Γ is a sequence of production rules Γi = (L,→,T , R), where L
and R are half-edge parts with the same number of half-edges,→ is a correspondence
between the half-edges of L and R, and T is a function that computes the tags of vertices235

in R from those in L. A possible graph grammar for rotations in (unlabelled) binary
trees is depicted in Figure 3b.

Sleator, Tarjan, and Thurston prove the following theorem.

Theorem 2 (Sleator, Tarjan, and Thurston [27]). Let G be a tagged half-edge graph
with n vertices, Γ be a graph grammar, c be the number of vertices in left sides of Γ,240

and r be the maximum number of vertices in any right side of a production of Γ. Then
|R(G, Γ,m) | ≤ (c + 1)n+r ·m , where R(G, Γ,m) is the set of graphs obtainable from G
by derivations in Γ of length at most m.
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Recall that, by definition, the maximum degree of a tagged half-edge-graph is
bounded by a constant. Thus, we cannot apply this theorem directly to triangulations of245

a convex polygon. Instead, we turn to the dual graph. The augmented dual graph of a
triangulation of a convex polygon is a tagged half-edge graph G with two sets of vertices:
triangle-vertices T corresponding to the triangles of the triangulation, and edge-vertices
ECH corresponding to the boundary edges. One edge-vertex is designated as the root.

Two triangle-vertices are connected by an edge if their triangles are adjacent. All250

edge-vertices are leaves, each connected to the triangle-vertex whose triangle is incident
to their corresponding edge (see Figure 4). As every triangle has three edges, the
maximum degree of G is three. The edge towards the root receives edge-end label 1.
For a triangle-vertex, the other edge-end labels are assigned in counter-clockwise order,
as in Figure 3a.255

1
2

3

4
1 2

3 4

(∅,1,2)

(1,∅,∅) (2,3,4)

(3,∅,∅) (4,∅,∅)

root

Figure 4: An edge-labelled triangulation of a convex polygon with its augmented dual graph. The edge-labels
on the dual graph are shown to more clearly indicate the correspondence – they are actually labelled with
edge-end labels as in Figure 3a.

This is where we deviate slightly from the original paper. Since Sleator, Tarjan,
and Thurston were working in the vertex-labelled setting, they used the tags in the
augmented dual graph to encode the labels of the vertices around the corresponding
triangles. Instead, we use these tags to encode the edge-labels. Specifically, we tag
each triangle-vertex with a triple containing the edge-label of each edge of its triangle,260

starting from the edge closest to the root, and proceeding in counter-clockwise order.
Edges of the convex hull are assumed to have label ∅. Edge-vertices will not be involved
in any of the production rules, so they do not need tags.

As flips in the triangulation correspond to rotations in the augmented dual graph [26],
the graph grammar is identical to the graph grammar presented before. The only addition265

is the computation of new tags for the vertices on the right-hand side (see Figure 5).
This grammar has four vertices in left sides, and a maximum of two vertices in any
right side. Since a triangulation of an n-vertex convex polygon has n − 2 triangles and
n convex hull edges, the augmented dual graph has 2n − 2 vertices. Thus, Theorem 2
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gives us the following.270

1
2

2
1

1
2

3

2
1

1
2

2
1

1
2

2
1

(a,b,c)

3
(b,d,e)

3

3

3

33

3

(a,d,b)

(a,b,c) (a,c,e)

(c,d,e)

(b,e,c)

(c,b,d)

Figure 5: A graph grammar for rotations in augmented dual graphs, which correspond to flips in edge-labelled
triangulations of a convex polygon.

Lemma 2. Given an edge-labelled triangulation G of an n-vertex convex polygon, the
number of distinct edge-labelled triangulations reachable from G in m flips is at most
52n−2+2m .

This bound can be further refined to 3n−1+2m , using the leader-follower and zero-
elimination techniques from Sleator, Tarjan, and Thurton’s paper [27]. However, the275

cruder bound already suffices to derive the correct asymptotic lower bound.

Theorem 3. There are pairs of edge-labelled triangulations of a convex polygon with n
vertices such that transforming one into the other requires Ω(n log n) flips.

Proof. We first estimate the number of edge-labelled triangulations. An n-vertex convex
polygon has n−3 diagonals, and in a fan triangulation, each sequence of labellings results280

in a new triangulation. Thus, there are at least (n − 3)! edge-labelled triangulations.
Let d be the diameter of the flip graph. Then, for every graph G, d flips suffice to

reach all edge-labelled triangulations. But from Lemma 2, we know that a sequence of
m flips can generate at most 52n−2+2m unique edge-labelled triangulations. This gives
us the following bound.

52n−2+2d ≥ (n − 3)!

log5 5
2n−2+2d ≥ log5(n − 3)!

2n − 2 + 2d ≥ log5(n!/n3)

2d ≥ log5 n! − log5 n3 − 2n + 2

2d ≥ Ω(n log n) −O(n)

d ≥ Ω(n log n) �

In Section 4, we discuss the implications of this theorem on sorting permutations in
length-weighted models.
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3.2. Simultaneous flips

We now turn our attention to simultaneous flips. Recall that a set of edges may285

be simultaneously flipped if each edge is flippable and no two edges are incident to
the same triangle. For edge-labelled triangulations of a convex polygon, we show that
O(log2 n) simultaneous flips suffice. Our approach essentially hinges on showing how
to perform a balanced partition step of quicksort with O(log n) simultaneous flips.

Theorem 4. Given two edge-labelled triangulations of a convex polygon with n vertices,290

O(log2 n) simultaneous flips are sufficient to transform one to the other.

Proof. We first ignore the labels and, by the result of Galtier et al. [14], use O(log n)
simultaneous flips to transform both edge-labelled triangulations to the canonical
triangulations (T∗, l ′1) and (T∗, l ′2), respectively. Next, we show how to transform a
general canonical triangulation (T∗, ρ) to (T∗, ρ∗), where ρ∗ is the sorted permutation.295

We do this by imitating quicksort. In particular, we show that the partition step of
quicksort can be carried out in O(log n) simultaneous flips. Then, by recursing on both
halves simultaneously, we get that the total number of simultaneous flips satisfies the
recursion T (n) = T (n/2) +O(log n), which solves to T (n) = O(log2 n).

We now address the partition step of quicksort. Let E be the set of all non-boundary300

edges, and let El = {ρi | i < n/2 and ρi ≥ n/2} be the set of edges that are in the left
half in ρ but in the right half in ρ∗. Similarly, let Er be the set of edges that are in the
right half in ρ but in the left half in ρ∗. We first flip all the edges of E \ (El ∪ Er ). Since
one simultaneous flip can flip every other edge of the set, O(log n) simultaneous flips
suffice to flip the whole set. The edges of (El ∪ Er ) now form a canonical triangulation305

of a smaller convex polygon. For the remainder of the proof we work only with this
smaller convex polygon. In other words, we only consider canonical triangulations
(T∗, ρ) where every edge on the left half wants to go to the right half and vice versa.

Let T be a canonical triangulation where every edge on the left half is coloured red
and every edge on the right half is coloured blue. Let T ′ be the triangulation with the310

colours interchanged. We show how to transform T to T ′ with O(log n) simultaneous
flips. We do this by converting both T and T ′ into a common coloured triangulation in
which the diagonals form a path that alternates between red and blue edges, as shown in
Figure 6a. We call this triangulation an alternating zig-zag. Note that p1 is the high
degree vertex of the canonical triangulation.315

Imagine a line L passing through p1 that separates the red edges from the blue
edges in the canonical triangulation and crosses all the edges in the alternating zig-zag.
We show how to transform the alternating zig-zag to T ′. We claim that with O(1)
simultaneous flips, we can ensure that half the blue edges are to the left of this line
and half the red edges are to the right. Moreover, the edges that still cross L form an320

alternating zig-zag of a subpolygon at most half the size of T ′.
To do this, note that each four consecutive triangles of the zig-zag form a hexagon,

as shown in Figure 6b. Each hexagon has three diagonals, two red and one blue, and the
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p1 p14

p7 p8L
(a)

p1 p14

p7 p8L

p1 p14

p7 p8L
(b)

Figure 6: (a) An 11-edge zig-zag alternating between red (dotted) and blue (solid) edges. (b) An alternating
zig-zag can be thought of as a collection of hexagons. InO(1) simultaneous flips, we can move half of the
edges to the correct side of L, with the rest forming a smaller alternating zig-zag.

hexagons are separated by the remaining blue edges. As any transformation of a hexagon
takes a constant number of flips, we can reconfigure all hexagons with a constant number325

of simultaneous flips. In particular, we transform each hexagon to have one blue edge to
the left of L and one red edge to the right of L, as shown in Figure 6b. The triangles
that still intersect L now form an alternating zig-zag of half the size, consisting of the
remaining red diagonal inside each hexagon and the blue edges separating the hexagons.
Thus, by repeating the process O(log n) times, we ensure that every blue edge is to the330

left of L and every red edge is to the right.
Now the subpolygon to the left of L has only blue diagonals, all of which we can

make incident to p1 with O(log n) simultaneous flips. By doing the same with the red
edges, we can transform the alternating zig-zag into T ′ using O(log n) simultaneous
flips. Similarly, we can transform the alternating zig-zag into T by moving the blue335

diagonal of each hexagon to the right and one of the red diagonals to the left. Thus
we can perform the partition step in O(log n) simultaneous flips, which completes the
proof. �

The Ω(log n) lower bound on the worst-case number of simultaneous flips in the
unlabelled case trivially provides an Ω(log n) lower bound in the edge-labelled setting340

as well. We prove a stronger lower bound. In particular, the following theorem shows
that even the “partition” step of quick sort requires at least Ω(log n) simultaneous flips.

Theorem 5. Let T be a canonical triangulation on n vertices with all diagonals in the
left half coloured red, and all edges in the right half coloured blue. Let T ′ be the same
canonical triangulation, with the colours interchanged. Transforming T to T ′ requires345

at least Ω(log n) simultaneous flips.

Proof. Consider the line L that passes through p1 and separates the red edges from the
blue ones in T . For each edge, the side of L it inhabits in T is different from the side it
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inhabits in T ′. A single flip cannot replace an edge that lies completely to the left of L
with an edge that lies completely to the right. Thus, in any simultaneous flip-sequence350

that transforms T to T ′, for any edge e, there must be a triangulation where e intersects
L.

Consider any simultaneous flip-sequence F that transforms T to T ′, i.e., F is the
sequence (T = T1,T2, . . . ,Tk−1,Tk = T ′). For any j ∈ [1..k], let cj be the number of
edges e for which there exists a Tr with r ≤ j such that e intersects L in Tr . From the355

argument above, it is clear that c1 = 0 and ck = n. We claim that for all j ∈ [1..k − 1],
cj+1 ≤ 2cj + 1. This shows that k ≥ Ω(log n).

To see why the claim is true, consider the j th simultaneous flip in the sequence.
It makes ∆ j = cj+1 − cj new edges cross L. Each individual flip happens in its own
quadrilateral that has exactly two boundary-edges that intersect L. Since two adjacent360

quadrilaterals can share an edge and since the quadrilateral at the top and bottom share
their boundaries with the polygon, the total number of quadrilateral edges that cross L
in Tj is at least ∆ j − 1. But this number is also at most cj . Therefore ∆ j − 1 ≤ cj , which
means cj+1 ≤ 2cj + 1. �

4. Connections between flips and sorting models365

Our upper bounds in the previous section depend on bounds for sorting permutations.
In this section, we study the connection in the other direction, showing that our lower
bound on the diameter of the flip graph implies an Ω(n log n) lower bound on the cost
of sorting in various length-weighted sorting models.

Sorting permutations of [1..n] using a restricted set of operations has been widely370

studied. A main operation is the reversal of a subsequence. One of the earliest results of
this kind was on “pancake” sorting [15], where a prefix of the sequence can be reversed.
Bubble sort also fits into this model, as it operates by swapping two adjacent elements
at a time, which is a reversal of size two. The number of size-two reversals it makes
is equal to the number of inversions of the permutation and is Θ(n2) in the worst case.375

More generally, any permutation can be sorted with Θ(n) reversals [20] if arbitrarily
large reversals are allowed. Most of the results until now have been about the number of
operations required. Recently, Pinter and Skiena [24] formulated a model that allows
reversals of any size, but assigns them a cost proportional to the length of the reversed
subsequence. This model has applications in comparative genomics, where it models a380

sequence of mutations in the evolution of a chromosome. Bender et al. [2] showed that
any input sequence can be sorted in this model with worst-case cost O(n log2 n), and
gave an Ω(n log n) lower bound.

We present a more general length-weighted sorting model, based on swaps. Given a
permutation ρ, pick an interval [i.. j] with 1 ≤ i < j ≤ n and j − i = k and perform a set385

of swaps in it. The cost of this operation is O(k). Adding constraints on the kinds of
swaps allowed inside the interval leads to more specific models (see Figure 7):
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i j i j i j

Figure 7: An illustration of the swaps permitted in the contiguous reversals model (left), the non-contiguous
reversals model (middle), and the non-crossing swaps model (right).

Contiguous reversals Reverse the entire interval [i.. j].

Non-contiguous reversals Pick a subsequence i1, . . . , im of [i.. j] and reverse its ele-
ments, without changing the position of any element outside the subsequence.390

Non-crossing swaps Swap a set {(i1, j1), . . . , (im, jm )} of pairs inside [i.. j] such that
there do not exist x, y ∈ [1..m] with x < y for which ix ≤ iy ≤ jx ≤ jy , i.e, either
the two intervals [ix, jx ] and [iy, jy ] nest or they are disjoint.

To the best of our knowledge, the latter two models are novel. Of the three models
presented, the non-crossing swaps model is the most general, as it can simulate both other395

models. In fact, the non-crossing swaps model is more general than (length-weighted
versions of) a large number of sorting models [13, Chapter 3]. We use our results on flips
to give an Ω(n log n) lower bound on the worst-case cost of sorting in the non-crossing
swaps model and therefore in all of the sorting models that can be simulated by it. Note
that our proof of Theorem 1 can be interpreted as an O(n log n) upper bound on the cost400

of sorting in the non-contiguous reversals model, and thereby also in the non-crossing
swaps model. We first show how to simulate a non-crossing swap with flips. The proof
is very similar to the proof of Lemma 1.

Lemma 3. Let ρ and ρ′ be two permutations of [1..n] such that ρ′ can be obtained from
ρ using one set of non-crossing swaps in an interval of length k. Then the canonical405

triangulation (T∗, ρ) can be flipped to (T∗, ρ′) with O(k) flips.

Proof. Let S = [i.. j] be the sequence of edges in which we perform the swaps. We
proceed by induction on |S |. In the base case, |S | = 0 and we are done, so let |S | = k
and assume that the lemma holds for all |S | < k. If there is an edge e in S that is not
involved in any swap, we flip it. This results in a smaller convex polygon and reduces410

|S | by one, so we can perform the swaps there by induction and flip e back afterwards.
If every edge is involved in a swap, consider a swap x = (ix, jx ) such that no other

swap is nested inside x. The edges ix and jx must be consecutive, since all edges are
involved in some swap, and swaps do not cross. Thus, they form a convex pentagon and
can be swapped with five flips, as shown in Figure 2. But instead of completing this415

swap sequence, we halt it after the first three flips. This leaves the edges ix and jx out of
the way of the remaining edges, so we can perform the rest of the swaps by induction.
Afterwards, we perform the final two flips to return ix and jx . Thus, we can perform
each swap with 5 flips, giving a total cost of O(k). �
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Combining this lemma with Theorem 3 gives the desired lower bound.420

Theorem 6. The worst-case cost of sorting a permutation of [1..n] in the non-crossing
swaps model is Ω(n log n).

5. Spiral polygons

In this section, we prove the Orbit Conjecture for spiral polygons, even when there
are multiple orbits. We provide a complete characterization of the orbits, and prove a425

tight quadratic bound on the diameter of each connected component of the flip graph.
Finally, we show how to test for the condition of the Orbit Conjecture in linear time.

A vertex of a polygon is a convex vertex if the interior angle at the vertex is less
than π, otherwise it is reflex. A spiral polygon is a polygon in which all reflex vertices
are consecutive along the boundary. For a spiral polygon P with m convex and k430

reflex vertices, let C = c1c2 . . . cm denote the convex chain in clockwise order and
R = r1r2 . . . rk denote the reflex chain in counterclockwise order such that c1 and r1 are
adjacent, and cm and rk are adjacent. For any vertex c on the convex chain (resp. reflex
chain), let V (c) be the set of vertices on the reflex chain (resp. convex chain) that are
visible from c.435

1 2

2 1

(a)

cj′ cj

cj′−1
cj+1

ri ri+1

(b)

Figure 8: (a) Two edge-labelled triangulations of the same spiral polygon that cannot be transformed into each
other by flips. (b) If V (ri ) ∩V (ri+1) = {c j , c j′ } then the convex quadrilateral c j−1, c j , c j′, c j′+1 is not
empty.

Consider a triangulated 5-vertex polygon with a single reflex vertex (see Figure 8a).
The two diagonals cannot be swapped with flips, thereby implying that the flip graph
is disconnected. The same thing happens with any spiral polygon with only 3 convex
vertices—there is a unique triangulation and the flip graph is either a singleton (if
there is at most one reflex vertex), or disconnected. We now characterize when the flip440

graph is connected. We only consider spiral polygons with at least 4 convex vertices.
A spiral polygon is locally convex if it has at least four convex vertices and for every
four consecutive vertices a, b, c, and d on the convex chain, the quadrilateral abcd is
empty. Note that it is possible for four consecutive convex vertices to form a non-convex
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quadrilateral, but then the quadrilateral cannot be empty. Local convexity is the key to445

the characterization of the orbits and connectivity of the flip graph.

Theorem 7. For an n-vertex spiral polygon P with at least 4 convex vertices the flip
graph, FGP , is connected if and only if P is locally convex. Furthermore, the diameter
of each connected component of FGP is O(n2).

We start by showing that if P is locally convex, then its flip graph is connected.450

Observe the following:

Lemma 4. If P is locally convex, then for any two consecutive vertices ri, ri+1 ∈ R on
the reflex chain, |V (ri ) ∩ V (ri+1) | ≥ 3.

Proof. Extend the segment ri, ri+1 in both directions until it hits the convex chain and
exits the polygon. Let cj, . . . , cj′ be the vertices of the convex chain between these two455

exit points, noting that j > 1 and j ′ < m. Observe that V (ri ) ∩ V (ri+1) = {cj, . . . , cj′ }.
Suppose that |V (ri ) ∩ V (ri+1) | ≤ 2. We will show that P is not locally convex.

Consider the vertices cj−1, cj, . . . , cj′, cj′+1. They form a quadrilateral or triangle that
contains ri and ri+1. If they form a quadrilateral, this violates local convexity, and if
they form a triangle then we can extend it to a quadrilateral that violates local convexity.460

�

To prove connectivity of the flip graph, we define the following canonical triangulation
T ′, together with a partition of its diagonals into fans. The canonical triangulation will
be defined by specifying the triangle incident to each edge of the polygon. Let riri+1 be
an edge of the reflex chain with V (ri ) ∩V (ri+1) = {cj, . . . , cj′ }. The apex of the triangle465

on edge riri+1 is defined to be cb( j+ j′)/2c . The diagonals of all such triangles incident to
a given convex vertex c constitute the convex fan at c. See Figure 9a. After this, each
edge cjcj+1 has a unique reflex vertex that can be its apex. We add these triangles to T ′.
The new diagonals incident to reflex vertex r constitute the reflex fan at r . See Figure 9b.
Note that every diagonal of T ′ connects a convex and a reflex vertex, and thus there470

is a natural ordering of the diagonals of T ′ consistent with the ordering of the convex
and reflex chains. We label the diagonals of T ′ with labels {1, . . . , |E |} in this order
(|E | is the number of diagonals in T ′). The fans partition the diagonals of T ′ and there
is a natural ordering of the fans D1, . . . , Dt such that the diagonals of Di occur before
the diagonals of D j if i < j. We now provide a flip sequence to move from a given475

edge-labelled triangulation T to the canonical triangulation T ′ using O(n2) flips. As
flips are reversible, this implies that we can transform any edge-labelled triangulation
into any other.

We start by ignoring labels and transforming T into the unlabelled canonical
triangulation with O(n) flips [16]. What remains is to sort the edge labels. Our flip480

sequence achieves this with O(n2) flips via insertion sort. If d1, . . . , d |E | is the ordered
list of diagonals, the insertion of d j at di for i < j replaces the subsequence di, . . . , d j

by d j, di, di+1, . . . , d j−1. It suffices to show how to perform a single insertion using
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cj+1cj−1

(a)

r

cj
cj′

cj′′
cj′′+1

cj′′+2
cj′′−1

(b)

Figure 9: (a) A convex fan (c j−1 and c j+1 are not part of the fan). (b) A reflex fan.

O(n) flips. Based on the structure of the canonical triangulation, it is sufficient to show
how to perform an insertion within one fan and between two consecutive fans with a485

number of flips proportional to the sizes of the fans.

Lemma 5. For each fan Di , insertion between two edges of Di can be performed using
O(|Di |) flips. In addition, swapping the last edge of Di with the first edge of Di+1 can
be performed using O(|Di | + |Di+1 |) flips.
Proof. We first show how to perform an insertion in a convex fan Di (see Figure 9a). Let490

cj be the common convex vertex and ri, . . . , ri′ be the sequence of reflex vertices. This
means that cj was chosen to be the apex vertex for each edge of the reflex chain between
ri and ri′ during the construction of the canonical triangulation. Using Lemma 4,
together with the fact that the apex is always chosen to be in the “middle” of the set of
visible vertices, we get that cj−1 and cj+1 must exist and be visible to all reflex vertices495

of Di . Also note that the canonical triangulation contains diagonals ricj−1 and ri′cj+1.
We show how to insert diagonal cjrk to cjr` for any i ≤ ` < k ≤ i′. First,

flip all diagonals intersecting segment rkcj+1 and all diagonals intersecting rk−1cj−1.
This results in the convex pentagon rk−1rkcj+1cjcj−1. Swap the two diagonals of this
pentagon with five flips as shown in Figure 2 in Section 3. Notice that this has moved500

cjrk to cjrk−1. To move it to cjrk−2, we flip a constant number of edges to get the
convex pentagon rk−2rk−1cj+1cjcj−1. We continue in this way until cjrk has reached
cjr` . At that point, we flip all diagonals adjacent to cj−1 and cj+1 back to their original
positions. Notice that the order of these diagonals is preserved and this results in the
insertion of cjrk to cjr` , using a total of O( |Di |) flips.505

If Di is a reflex fan (Figure 9b), let r be its common reflex vertex and let cj, . . . , cj′
be its convex vertices. Consider two consecutive diagonals rcj′′ and rcj′′+1 of Di . These
form a triangle t with apex r . Consider the triangle before t. If it had apex cj′′ then the
diagonal rcj′′ would have been placed in the convex fan Di−1. Therefore it has apex r
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and includes the diagonal (or boundary edge) rcj′′−1. Similarly, the triangle after t must510

have apex r as well and includes the diagonal (or boundary edge) rcj′′+2. Now consider
the pentagon formed by r and the chain cj′′−1 . . . cj′′+2. Since P is locally convex, this
pentagon must be empty and convex. Thus we can swap rcj′′ and rcj′′+1 with five flips
as before. This shows that any two consecutive diagonals of a reflex fan can be swapped
using five flips. Using a sequence of such swaps, we can perform any insertion with515

O(|Di |) flips.
Finally, we show how to swap the last edge d of fan Di with the first edge d ′ of

fan Di+1. We consider four cases. The case when Di and Di+1 are both convex fans
is shown in Figure 10a and the case when Di is convex and Di+1 is reflex is shown in
Figure 10b. In both cases, let d and d ′ share vertex r . Our strategy is to perform a linear520

number of flips in the convex fans to get an empty pentagon where d and d ′ can be
swapped. The pentagon consists of r together with 4 consecutive vertices e f gh on the
convex chain that are visible from r . Local convexity implies that the pentagon is empty
and convex.

The case when Di+1 is convex and Di is reflex is symmetric. Finally, it is not525

possible to have both Di and Di+1 reflex because a reflex fan was defined to contain all
the diagonals between two convex fans. �
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Figure 10: Swapping edges between adjacent fans Di and Di+1 using the pentagon e f ghr . (a) Di and
Di+1 are both convex fans. (b) Di is a convex fan but Di+1 is a reflex fan.
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Using Lemma 5, we can reorder the labels of the edges in a locally convex spiral
polygon with O(n2) flips by simulating insertion sort. What remains to be shown is that
if the flip graph is connected then P is locally convex. We show this in the contrapositive.530

cj

cj+1
cj+2

cj+3

ri
P1 P2

(a)

cj

cj+1
cj+2

cj+3

ri

(b)

Figure 11: (a) Decomposition of a spiral polygon that is not locally convex into two sub-polygons. (b) To find
ri , we move a segment from c j+1c j+2 to c jc j+3, stopping when we hit the reflex chain.

Lemma 6. If there exist four consecutive vertices cj , cj+1, cj+2, cj+3 on C that form a
non-empty quadrilateral, then there exist two spiral polygons P1 and P2, such that: (a)
each boundary edge of P1 and P2 is either a boundary edge or a diagonal of P, (b)
each diagonal of P is a diagonal of either P1 or P2, and (c) no diagonal of P1 can flip
to a diagonal of P2.535

Proof. We claim that there is a vertex ri on R that sees both cj+1 and cj+2, and such
that cj does not see ri+1 and cj+3 does not see ri−1. (Justification below.) Given such a
vertex ri , let P1 and P2 be the spiral polygons defined by the chains c1, . . . , cj+2 and
r1, . . . , ri , and cj+1, . . . , cm and ri, . . . , rk , respectively. Then P1 and P2 overlap on
triangle ricj+1cj+2. See Figure 11a.540

It is easy to see that P1 and P2 satisfy condition (a), as cj+1ri and cj+2ri are
diagonals of P. For condition (b) and (c), we note the following. By construction, there
is no diagonal between a vertex of P1 − P2 and a vertex of P2 − P1. This implies that
the diagonals of P are partitioned between P1 and P2. For condition (c), suppose a
diagonal of P1 flipped to one in P2. Then they must intersect, so they must be incident545

to cj+2 and cj+1 respectively. But then they cannot form an empty convex quadrilateral.
To find ri , imagine the continuous motion of a segment whose initial position is

cj+1cj+2 and whose final position is cjcj+3 (see Figure 11b). One endpoint of the
segment moves at uniform speed in a straight line from cj+1 to cj , and the other endpoint
moves at uniform speed in a straight line from cj+2 to cj+3. The initial segment does550

not intersect the reflex chain; the final segment does. Therefore, by continuity, some
intermediate segment, say pq, lies inside the polygon but contains a reflex vertex (or
possibly two). We choose one such vertex to be ri . The area swept by the segment
until reaching pq forms an empty convex quadrilateral with cj+1, cj+2, and ri on the
boundary. Thus, ri sees both cj+1 and cj+2. Furthermore, segment pq is a chord of555
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P that goes through a reflex vertex, namely ri . It is well known2 that such a chord
partitions P into three subpolygons PA, PB , and PC such that no two vertices in the
non-adjacent subpolygons PA and PC can see each other. As cj ∈ PA and ri+1 ∈ PC ,
this implies that cj cannot see ri+1. Analogously, cj+3 cannot see ri−1, showing that ri
has all the properties we were looking for. �560

This concludes the proof of Theorem 7. It also gives us a way to decide, in polynomial
time, whether a given spiral polygon has a connected flip graph: for each quadrilateral
formed by four consecutive vertices of the convex chain, check if it is empty. A naive
implementation of this procedure will take O(n2) time. However, we can reduce the
running time to O(n) by walking simultaneously along the convex and reflex chains of565

the polygon and using the fact that visibility is monotonic. Thus we get the following
theorem.

Theorem 8. Given a spiral polygon P with n vertices, we can decide in linear time
whether the flip graph of the edge-labelled triangulations of P is connected.

Theorem 7 gives a complete characterization of the orbits in a spiral polygon: The570

orbit of a diagonal d in P is precisely the set of diagonals in the maximal locally convex
subpolygon of P that contains d. With this characterization, we now prove the Orbit
Conjecture for spiral polygons.

Theorem 9. Given a spiral polygon P with n vertices and two of its edge-labelled
triangulations T1 and T2, there exists a flip sequence that transforms T1 to T2 if and only575

if for each label λ, the diagonal of T1 with label λ is in the same orbit as the diagonal of
T2 with label λ. Moreover, we can decide in O(n) time if such a flip sequence exists,
and if it does, it is of length at most O(n2).

Proof. The ‘only if’ direction is easy. For the ‘if’ direction, we provide a flip sequence.
First ignore labels and transform bothT1 andT2 into the unlabelled canonical triangulation580

T . Then rearrange the labels in T . If the diagonal with label λ in T1 was in the same
orbit as the diagonal with label λ in T2, they must be diagonals of the same locally
convex subpolygon Pi . By applying Theorem 7, we can rearrange the labels inside each
Pi with at most O( |Pi |2) flips. We can find the decomposition into maximal locally
convex subpolygons in linear time by walking simultaneously along the convex and585

reflex chains of the polygon, and exploiting the fact that visibility is monotonic. Once
we have the decomposition, we can verify in constant time whether two edges with the
same label are in the same orbit. �

Finally, note that our quadratic bound on the flip distance is tight. Consider, for
example, a locally convex spiral polygon for which every reflex vertex r has |V (r) | ≤ 4590

(see Figure 12). Let d1, . . . , d |E | be the diagonals of the canonical triangulation of this

2See, for instance, Bose et al. [6], Lemma 1.
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Figure 12: A spiral polygon whose flip graph has diameter Θ(n2).

polygon listed left-to-right. It is clear that the distance in the quadrilateral graph between
any di and d j is Ω(| j − i |). Thus, we can find Ω(n) pairs of diagonals at distance Ω(n)
in the quadrilateral graph. Since any flip sequence that moves a label from di to d j must
contain at least Ω(| j − i |) flips of that label, this gives a lower bound of Ω(n2).595

Theorem 10. There exists a spiral polygon with n vertices that has a connected flip
graph whose diameter is Ω(n2).

6. Lower bound on flips in edge-labelled polygons

In this section, we provide an example of a polygon with two reflex chains where
the diameter of the flip graph is Θ(n3). The example also demonstrates a difficulty in600

generalizing our results on spiral polygons to more general polygons. Our example is
based on a channel [19] that consists of two reflex chains visible to each other and joined
by two edges. We define an augmented channel to consist of two chains A = a1 . . . am

and B = b1 . . . bm+2, as shown in Figure 13, such that: (a) every vertex on A is visible
from every vertex on B, (b) the vertices on A form a reflex chain, and (c) all vertices on605

B, except for b1, b2, bm+1, and bm+2 are reflex.

b1 b2
b3 bm

bm+1 bm+2

a1 am

(a)

b1 b2
b3 bm

bm+1 bm+2

a1 am

(b)

Figure 13: (a) The left-inclined triangulation of an augmented channel. (b) The right-inclined triangulation of
an augmented channel.
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Theorem 11. The diameter of the flip graph of an augmented channel is Θ(n3).

Proof. We first show the upper bound. Any triangulation of the augmented channel
induces an ordering on its diagonals as follows. If all diagonals connect a vertex on A
with a vertex on B, then the ordering induced is the same as the order in which a ray610

passing through the polygon from left to right will hit each diagonal. If, however, one or
both of the diagonals b1b3 and bmbm+2 are present, then we take the ordering we would
get by flipping those diagonals. The ordering on the diagonals defines an ordering on
the labels.

Hurtado et al. [19, Theorem 3.8] showed that in the unlabelled setting, any trian-615

gulation of a channel can be transformed into any other triangulation of the channel
using O(n2) flips. We observe that their transformation preserves the ordering of the
labels. Thus for the O(n3) bound on the diameter of the flip graph, the challenge is in
rearranging the labels. For any triangulation, let D1 denote the set consisting of the
first m labels and D2 denote the set consisting of the last m labels. Since there are620

2m − 1 labels in total, D1 and D2 will have one label in common, namely, the mth label.
We will use two particular triangulations of the augmented channel: the left-inclined
and right-inclined triangulations shown in Figure 13. Note that in the left-inclined
triangulation, D2 is exactly the set of diagonals incident on bm+1 and thus forms a
convex fan. Similarly, in the right-inclined triangulation, D1 forms a convex fan. This625

means both D1 and D2 can be sorted in O(n2) flips and any insertion in D1 or D2 can
be performed in O(n) flips using Lemma 5.

Thus our strategy is as follows. Given T1 and T2, first ignore labels and transform
both into the right-inclined triangulation. Then, if D1 contains a label bigger than
m, insert it (using the spiral polygon formed by b1, b2, b3, and chain A) at b2am and630

transform the triangulation into a left-inclined triangulation while preserving the order
of labels. Next, if D2 contains a label smaller than m, insert the label at a1bm+1 and
transform back into the right-inclined triangulation and repeat until D1 only contains
labels 1, . . . ,m and D2 only contains labels m, . . . , 2m − 1. Finally, sort D1 and then
sort D2. Since transforming between the left-inclined and right-inclined triangulations635

takes O(n2) flips and insertion inside D1 or D2 takes O(n) flips, we get a bound of
O(n3) flips.

To show the lower bound, we use the observation that to move a label from D2 \ D1

to D1 \ D2, we must first move that label from D2 \ D1 to the m
th diagonal and then to

D1 \ D2. The first step can be performed only if the diagonal a1bm+1 is present and640

the second step can be carried out only if the diagonal b2am is present. Going from
a triangulation that has the diagonal a1bm+1 to a triangulation that has the diagonal
b2am requires Ω(n2) flips using the argument from Hurtado et al. [19]. Thus if we
want to transform a triangulation with D1 = {m, . . . , 2m − 1} and D2 = {1, . . . ,m} to
a triangulation with D1 = {1, . . . ,m} and D2 = {m, . . . , 2m − 1}, we will need at least645

Ω(n3) flips. �

The theorem above demonstrates that deciding whether, say, a1bm and a1bm−1 are
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connected depends on the exact position of b2 and bm+1. In the example above they are
connected, but if b2 and bm+1 were reflex vertices, they would not be.

7. Combinatorial triangulations650

In this section, we prove the Orbit Conjecture for edge-labelled combinatorial
triangulations and show that the diameter of the flip graph is Θ(n log n). Note that we
consider two edge-labelled triangulations to be equivalent if they have an isomorphism
that preserves the edge labels (in other words, the vertices are unlabelled).
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18

vout vin

Figure 14: The labelled canonical triangulation on 8 vertices. The spine is indicated in bold.

Theorem 12. Any edge-labelled combinatorial triangulation with n vertices can be655

transformed into any other by O(n log n) flips.

Proof. We show that we can transform any edge-labelled combinatorial triangulation
into a canonical one using O(n log n) flips. As flips are reversible, we can also go from
the canonical triangulation to any other, which proves the theorem.

We use a canonical triangulation much like the one used by Sleator et al. [27] for the660

vertex-labelled variant. It is a double wheel: a cycle of length n − 2 (called the spine),
plus a vertex vin inside the cycle and a vertex vout outside the cycle, each connected to
every vertex on the cycle (see Figure 14). For our canonical labelling, we separate the
labels into three groups. Group S contains labels 1 through n − 2, which we place on
the spine edges, starting with the edge on the outer face and continuing in clockwise665

order around vin. The next n − 2 labels make up group Cin and are placed on the edges
incident to vin in clockwise order, starting with the edge incident to the vertex shared
by the edges with labels 1 and 2. Finally, group Cout consists of the last n − 2 labels,
which we place on the edges incident to vout in clockwise order, starting with the edge
that shares a vertex with the edge labelled 2n − 4.670
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2 flips 2 flips

Figure 15: A sequence of seven flips that swaps two edges a and b that are consecutive around a vertex on the
spine. Although edge e ends up at the same place as at the start of the sequence, it essentially acts as a catalyst
here. If we did not flip it, we would not be able to flip edge a after edge b, as that would create a duplicate
edge.
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Our algorithm first ignores the labels and transforms the given triangulation into
the unlabelled canonical triangulation. This requires O(n) flips [27] and results in the
correct graph, although the labels may be in arbitrary positions. To fix the labels, we first
get the groups right, so all labels in group S are on the spine, etc., and then rearrange
labels within each group.675

We use two main tools for this. The first is a swap that interchanges one spine
edge with an incident non-spine edge in seven flips, using the flip sequence depicted in
Figure 15. Our second tool is a scramble algorithm that reorders all labels incident to
vin or vout using O(n log n) flips. To do this we first flip the spine edge that is part of the
exterior face (labelled 1 in Figure 14) and then apply the algorithm from Theorem 1680

to the outerplanar graph induced by the spine plus vin (or vout), observing that no flip
will create a duplicate edge since the omitted edges are all incident to vout (resp. vin).
Note that this method cannot alter the labels on the two non-spine edges that lie on the
exterior face of the outerplanar graph (labelled 7 and 12 in Figure 14), but since there
are only two of these, we can move them to their correct places by swapping them along685

the spine, using O(n) flips total.
To get the labels of group S on the spine, we partner every edge incident to vin that

has a label in S with an edge on the spine that has a label in Cin or Cout. A scramble at
vin makes each such edge incident to its partner, and then swaps partners. By doing the
same at vout, all labels of S are placed on the spine. Next we partner every edge incident690

to vin that has a label in Cout with an edge incident to vout that has a label in Cin. A
scramble at vin makes partners incident, and three swaps per pair then exchange partners.

This ensures that each edge’s label is in the correct group, but the order of the
labels within each group may still be wrong. Rearranging the labels in Cin and Cout
is straightforward, as we can simply scramble at vin and vout, leaving only the labels695

on the spine out of order. We then use swaps to exchange the labels on the spine with
those incident to vin in O(n) flips and scramble at vin to order them correctly. Since this
scramble does not affect the order of labels on the spine, we can simply exchange the
edges once more to obtain the canonical triangulation. �

7.1. Lower bound700

The proof for the lower bound for combinatorial triangulations is very similar to
the lower bound for triangulations of a convex polygon, described in Section 3.1. We
again construct a graph grammar, which describes transformations on the dual graph
that correspond to flips.

As our primary graph is a combinatorial triangulation, each vertex of the dual graph705

corresponds to a triangle and has degree three. As such, there is no distinction between
internal nodes and leaves, and no root. This means that we need to adapt our definitions
slightly. Without a root, the placement of the edge-end labels is less constrained. We
only require that they occur in counter-clockwise order around each vertex. The order of
labels in each tag can now follow the placement of the edge-end labels: the first label710
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belongs to the primary edge corresponding to the dual edge with edge-end label 1, and
so on.

Finally, we need a few more production rules to deal with all possible rotations of the
edge-end labels around the two triangle-vertices involved in the flip. The full collection
of rules is shown in Figure 16.715
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Figure 16: A graph grammar that corresponds to flips in edge-labelled combinatorial triangulations. The
right-hand side of all productions is the same.

As the dual graph of an n-vertex combinatorial triangulation has 2n − 4 vertices,
Theorem 2 gives us the following bound.

Lemma 7. Given an n-vertex edge-labelled combinatorial triangulation G, the number
of distinct edge-labelled triangulations reachable from G in m flips is at most 132n−4+2m .

Again, Sleator, Tarjan, and Thurston [27] show that this bound can be significantly720

reduced (to 32n−48m), but the simple bound suffices for our purposes.

Theorem 13. There are pairs of edge-labelled combinatorial triangulations with n ≥ 5

vertices such that transforming one into the other requires Ω(n log n) flips.

Proof. If we fix the labelling of the spine edges in the canonical triangulation from the
proof of Theorem 12, any relabelling of the remaining edges is unique. Thus, there are
at least (2n − 6)! distinct edge-labelled combinatorial triangulations. Combined with
Lemma 7, this implies that 132n−4+2d ≥ (2n − 6)!, where d is the diameter of the flip
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graph. We derive the following.

132n−4+2d ≥ (2n − 6)!

132n−4+2d ≥ n! (for n ≥ 5)
log13 13

2n−4+2d ≥ log13 n!

2n − 4 + 2d ≥ log13 n!

2d ≥ log13 n! − 2n + 4

2d ≥ Ω(n log n) −O(n)

d ≥ Ω(n log n) �

7.2. Simultaneous flips
Recall that, in a triangulation of a convex polygon, a simultaneous flip is a set of725

flips that are executed in parallel, such that no two flipped edges share a triangle. In a
combinatorial triangulation, we have the additional requirement that the resulting graph
may not contain duplicate edges.

Simultaneous flips in combinatorial triangulations were first studied by Bose et
al. [4]. They showed a tight Θ(log n) bound on the diameter of the flip graph. As part of730

their proof, they showed that every combinatorial triangulation can be made 4-connected
with a single simultaneous flip. Recently, Cardinal et al. [10] proved that it is possible
to find such a simultaneous flip that consists of fewer than 2n/3 individual flips. They
used this result to obtain arc drawings of planar graphs in which only 2n/3 edges are
represented by multiple arcs.735

In this section, we show that, just as in the non-simultaneous setting, we obtain
the same bounds for edge-labelled convex polygons and edge-labelled combinatorial
triangulations. That is, we can transform any edge-labelled combinatorial triangulation
into any other with O(log2 n) simultaneous flips, and Ω(log n) simultaneous flips are
sometimes necessary. The lower bound holds already in the unlabelled setting, if one740

vertex has linear degree in the first triangulation, while every vertex has constant degree
in the second. We now prove the upper bound.

Theorem 14. Any edge-labelled combinatorial triangulation with n vertices can be
transformed into any other by O(log2 n) simultaneous flips.

Proof. We closely follow the strategy of the proof of Theorem 12. We first transform745

the given triangulations into the canonical one with O(log n) simultaneous flips, using
the result of Bose et al. [4]. This reduces the problem to sorting the edge labels on the
canonical triangulation. In the non-simultaneous setting, we did this by reordering the
labels on the edges incident to vin or vout (called scrambling), and swapping a subset of
spine edges with incident non-spine edges. Thus, the theorem follows if we can show750

how to perform these operations with O(log2 n) simultaneous flips.
Since the sequence of flips from Figure 15, which swaps a single spine edge with

an incident non-spine edge, only involves a constant number of triangles, it is tempting
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Figure 17: A sequence of three flips that creates a pentagon (shaded) in which the two highlighted edges can be
swapped. All new edges and all diagonals of the pentagon are incident to one of the four spine vertices shown.

to think we can simply perform many of these swaps simultaneously. Unfortunately,
this is not the case, since the sequence creates the edge (vout, vin). This means that755

trying to perform this sequence simultaneously in different locations would create a
duplicate edge. Therefore we use a slightly longer sequence that creates a pentagon
containing the edges to be swapped (illustrated in Figure 17), performs the swap inside
this pentagon, and restores the canonical triangulation, using a total of eleven flips. The
crucial property of this sequence is that it only creates edges incident to four spine760

vertices near the edge to be swapped. Thus, we can perform any number of swaps
simultaneously without creating duplicate edges, as long as each swap is at distance four
or more from the others. This means that, given a set of spine edges to swap, we can
divide them into four rounds such that the edges to be swapped in each round are at
distance four or more, and perform the swaps in each round simultaneously. Thus, we765

can swap any subset of spine edges with O(1) simultaneous flips.
To scramble the edges incident on vout, we first flip to create (vout, vin) and then apply

the algorithm from Theorem 4 to the outerplanar graph induced by the edges incident to
vout. This uses O(log2 n) simultaneous flips to rearrange all labels, except for those on
the two outermost edges that are part of the boundary. In the non-simultaneous setting,770

we fixed this by swapping these labels along the spine, but this would take too many
flips here. Instead, if the labels that need to be on the outermost edges are in the interior,
we use Theorem 4 to place these labels on the interior edges closest to the outermost
edges. Then, we can exchange them with the labels on the outermost edges with only
three swaps. This ensures that the outermost edges have the correct labels, so a second775

application of Theorem 4 can place the remaining labels in the right order. If the label
for one of the outermost edges is not in the interior and not already in place, it must be
on the other outermost edge. In this case, we can first exchange it with the label on a
nearby interior edge with a constant number of swaps. The entire sequence requires
O(log2 n) simultaneous flips.780

Since these operations use O(1) and O(log2 n) simultaneous flips, and we can sort
the labels with a constant number of applications, the theorem follows. �
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8. Conclusions

We have initiated the exploration of flips in edge-labelled triangulations and formu-
lated the Orbit Conjecture: that for any two edge-labelled triangulations of a polygon,785

point set, or vertex set (in the combinatorial setting), there is a sequence of flips that
transforms one into the other if and only if for every label, the initial and final edge with
that label lie in the same orbit. Furthermore, we conjecture that the diameter of any
connected component of the flip graph is bounded by a polynomial in the number of
vertices.790

Wehave established the conjecture for combinatorial triangulations and triangulations
of convex polygons—all edges are in one orbit so the flip graph is connected, and its
diameter is Θ(n log n). This means that the worst case number of flips is a log n factor
more than for the unlabelled case. With simultaneous flips, edge labels raise the worst
case bound by at most a log n factor, but we could not prove that this is tight. We also795

established the conjecture for spiral polygons, characterizing the orbits and showing that
each connected component of the flip graph has diameter Θ(n2). For general polygons
there are examples of a connected flip graph of diameter Θ(n3).
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