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A B S T R A C T

In this thesis, we study two different graph problems.
The first problem revolves around geometric spanners. Here, we have

a set of points in the plane and we want to connect them with straight
line segments, such that there is a path between each pair of points
and these paths do not require large detours. If we achieve this, the
resulting graph is called a spanner. We focus our attention on two
graphs (the Θ-graph and Yao-graph) that are constructed by connect-
ing each point with its nearest neighbour in a number of cones. Al-
though this construction is very straight-forward, it has proven chal-
lenging to fully determine the properties of the resulting graphs. We
show that if the construction uses 5 cones, the resulting graphs are
still spanners. This was the only number of cones for which this ques-
tion remained unanswered. We also present a routing strategy (a way
to decide where to go next, based only on our current location, its
direct neighbourhood, and our destination) on the half-Θ6-graph, a
variant of the graph with 6 cones. We show that our routing strat-
egy avoids large detours: it finds a path whose length is at most a
constant factor from the straight-line distance between the endpoints.
Moreover, we show that this routing strategy is optimal.

In the second part, we turn our attention to flips in triangulations.
A flip is a simple operation that transforms one triangulation into an-
other. It turns out that with enough flips, we can transform any trian-
gulation into any other. But how many flips is enough? We present an
improved upper bound of 5.2n− 33.6 on the maximum flip distance
between any pair of triangulations with n vertices. Along the way, we
prove matching lower bounds on each step in the current algorithm,
including a tight bound of b(3n− 9)/5c flips needed to make a trian-
gulation 4-connected. In addition, we prove tight Θ(n logn) bounds
on the number of flips required in several settings where the edges
have unique labels.
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1
S U M M A RY O F T H E T H E S I S

This thesis is comprised of two main parts. The first part, found in
Chapters 2 through 4, deals with geometric spanners. Chapters 5

through 7 contain the second part, which focuses on flips in triangula-
tions. A brief introduction and summary of each part is given below.
The first chapter of each part provides a more detailed introduction.

The common theme in the two parts is that both deal with graphs.
A graph consists of a set of vertices, some of which are connected by
edges. In this thesis, all graphs will be simple, which means that there
is at most one edge connecting each pair of vertices, and edges cannot
connect a vertex to itself.

1.1 geometric spanners

Spanners can be informally described as graphs in which one never
needs to make a large detour. That is, the shortest path between two
vertices is proportional to their actual distance. Road networks are a
good example; nearby cities are typically connected by a direct road,
so that the total distance travelled is not much more than the distance
‘as the crow flies’. Spanners have been studied in many different con-
texts, but we will focus on geometric spanners, where the vertices are
points in the plane, and the length of an edge is the Euclidean dis-
tance between its endpoints. The spanning ratio is the maximum ratio
between the shortest path in the graph and the straight-line distance
between any pair of vertices.

Chapter 2 gives an in-depth introduction to geometric spanners in
general, and simple cone-based spanners in particular. The Θ-graph
is one such cone-based spanner. To construct it, we partition the plane
around each vertex into a number of equiangular cones and add an
edge to the ‘closest’ vertex in each cone, where the closest vertex is
defined as the vertex whose projection on the bisector of the cone is
closest. It has been shown that for any desired spanning ratio t, there
is a number of cones k such that the Θ-graph with k cones (typically
written as Θk) is guaranteed to have spanning ratio t.

However, it was not known exactly for which values of k the span-
ning ratio of Θk is bounded by a constant. It was known that Θ3
and below are not constant spanners, while Θ6 and up are. Recently,
Θ4 was shown to be a constant spanner as well, leaving the question
unanswered only for Θ5. In Chapter 3, we prove that Θ5 is, indeed,
a constant spanner. With the earlier results, this implies that Θk is a
spanner for all k > 4. This result was first published in the proceed-
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2 summary of the thesis

ings of the 39th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2013) [8] and later appeared in Computa-
tional Geometry: Theory and Applications [9].

Of course, knowing that there exists a short path to where you
want to go is not the end of the story: you also have to know how
to find it. This is called routing, or competitive routing if the spanning
ratio of the resulting path is bounded by a constant. If you know
the entire graph, routing is nothing more than computing a path,
but most settings consider the more restricted scenario where you
know your destination, but you can only see your current location
and its neighbours. This is referred to as local routing. In Chapter 4,
we present a local, competitive routing strategy for the half-Θ6-graph,
which is closely related to Θ6. Our strategy achieves a routing ratio
of 5/

√
3 = 2.886 . . . , which seems slightly disappointing compared

to the spanning ratio of 2. This makes it all the more surprising that
we managed to show that our algorithm is, in fact, optimal: no other
routing strategy can achieve a better routing ratio, under the same
restrictions. This is the first such separation between the spanning
and routing ratios on a graph. These results were first published in
the proceedings of the 23rd ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 2012) [4], and the proceedings of the 24th Canadian
Conference on Computational Geometry (CCCG 2012) [5], and have
recently been accepted for publication in the SIAM Journal on Com-
puting [3].

1.2 flips in triangulations

A triangulation is a planar graph where each face is a triangle (a cycle
of three edges). A flip is a simple, local operation that transforms one
triangulation into another. Specifically, we can flip an edge e by re-
moving it, leaving an empty quadrilateral, and inserting the other di-
agonal of this quadrilateral. Flips were introduced by Wagner in 1936

in an attempt to make progress on the famous four-colour-theorem,
and have been actively studied ever since. Applications of flips range
from enumeration [1] and optimization of triangulations [2] to cor-
recting errors in 3-dimensional terrains generated from height mea-
surements [13]. Similar local operations that transform one graph into
another in the same class have been used to build robust peer-to-peer
network toplogies [12] and to find heuristic solutions to the Traveling
Salesman Problem [14].

Wagner showed that, using flips, it is possible to transform any tri-
angulation into any other. One question that has received a great deal
of attention since then is: how many flips does this take, in the worst
case? Chapter 5 presents a detailed history of various attempts to
answer this question. This survey was published as an invited chap-
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ter in the proceedings of the XIV Spanish Meeting on Computational
Geometry (EGC 2011) [10].

Chapter 6 details our own contribution to answering this question.
In particular, we prove a tight bound of b(3n− 9)/5c on the number
of flips required to make an n-vertex triangulation 4-connected. And
since the best known algorithm to transform any triangulation into
any other first makes the triangulations in question 4-connected, this
improves the upper bound on the total number of flips required from
6n− 30 to 5.2n− 33.6. These results were first published in the pro-
ceedings of the 23rd Canadian Conference on Computational Geome-
try (CCCG 2011) [6], and subsequently appeared in a special issue of
Computational Geometry: Theory and Applications [7].

All of the research on flips thus far has assumed that edges are in-
distinguishable. But what happens when we give each edge a unique
label, that is carried over to the new edge when an edge is flipped?
This is the question studied in Chapter 7. We prove the first upper and
lower bounds on the number of flips required in this setting. In par-
ticular, we show that Θ(n logn) flips are required for edge-labelled
triangulations of a convex polygon, edge-labelled combinatorial tri-
angulations, and edge-labelled pseudo-triangulations. The results on
pseudo-triangulations have been accepted to the 27th Canadian Con-
ference on Computational Geometry (CCCG 2015) [11].
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2
A N I N T R O D U C T I O N T O YA O - A N D Θ - G R A P H S

In the past thirty years, geometric spanners have become an impor-
tant field of study in computational geometry. This chapter serves
as an introduction to the field, with a focus on two closely related
families of geometric spanners: Yao-graphs and Θ-graphs.

Most of the material in this chapter was already known, but the
improvement for Yao-graphs with an odd number of cones (Theo-
rem 2.4) is new, although it was discovered independently by Keng
and Xia [16]. The proof of the spanning ratio of Θ-graphs (Theo-
rem 2.5) is also new.

2.1 geometric spanners

Many practical geometric problems can be modelled as connecting a
set of points in the plane. Examples include building roads to connect
cities, or creating a communications network among wireless sensors.
For these problems, we typically want to achieve good connectivity
between the points, while using only a small number of connections.
In the case of road networks in particular, we would like to avoid
large detours: if cities A and B are fairly close, people should not
have to drive to a distant city C to travel from A to B . This is what
geometric spanners try to achieve: the shortest path between any two
points in the network should be proportional to the distance between
the points.

More formally, given a set P of points in the plane, a geometric
t-spanner of P is a graph G with vertex set P , such that for each pair
of points, the length of the shortest path between the corresponding
vertices in G is at most t times the Euclidean distance between them.
The spanning ratio of G is the smallest t for which it is a t-spanner
(in other texts, the spanning ratio is also called the dilation or stretch
factor).

This definition is often applied to families of graphs. A family
of graphs is called a t-spanner if every graph in the family is a t-
spanner, and the spanning ratio of the family is the smallest t such
that every graph in the family is a t-spanner. A family of graphs is
called a spanner if there exists some finite t for which it is a t-spanner.

As a first example, consider the complete graph on P . As it contains
an edge between every pair of points in P , this family of graphs is a
1-spanner. And if P does not contain three co-linear points, it is also
the only 1-spanner, since the removal of any edge would increase
the distance between its endpoints. Of course, the large drawback of

7



8 an introduction to yao- and Θ-graphs

the complete graph is that the number of edges is quadratic in the
number of vertices. We would like to find sparser graphs (typically
with a linear number of edges) that still have a small spanning ratio.

Figure 2.1: The minimum spanning tree of the vertices of a regular n-gon
has spanning ratio n− 1.

The minimum spanning tree is at the other end of the spectrum.
In order to be a spanner, a graph clearly needs to be connected (oth-
erwise the spanning ratio is infinite). The minimum spanning tree
is the connected graph on P with lowest total edge length. Unfortu-
nately, this family of graphs is not a spanner. To see this, imagine
n points spread equally on a circle. The minimum spanning tree of
these points will include every edge between two consecutive points,
except for one (see Figure 2.1). The endpoints of this non-edge are
at distance x, but the only path between them in the graph follows
the entire path around the circle, which has length (n− 1) · x. Thus
for every constant t, we can construct a point set with dte+ 2 vertices
whose minimum spanning tree has spanning ratio dte+ 1 > t, mean-
ing that there does not exist a constant t such that every minimum
spanning tree is a t-spanner. In fact, for this particular point set, every
tree has spanning ratio Ω(n).

theorem 2 .1 (Eppstein [11], Lemma 15). Any spanning tree T on n >
6 points spread evenly on a circle has spanning ratio at least n

2π .

Proof. Every tree has a vertex separator: a vertex v such that removing
v splits T into connected components with at most n/2 vertices each.
Consider the n/2+ 1 vertices that lie opposite v on the circle. Since
each connected component has size at most n/2, there must be a pair
of vertices x and y from different components that are adjacent on the
circle. Since they are in different connected components, the shortest
path in T from x to y passes through v. Thus, the spanning ratio of T
is at least:

|xv|+ |yv|

|xy|
>

2 · 2 sin
((
n
4 − 1

)
π
n

)
2 sin

(
π
n

)
>

2 · 12
2πn

(for n > 6)

=
n

2π



2.2 preliminaries 9

Note that spanners have also been studied for general weighted
graphs (where the shortest path in the spanner is compared to the
shortest path in the original graph), or for point sets in higher di-
mensions. In this thesis, we deal almost exclusively with spanners of
two-dimensional point sets; any exceptions will be mentioned explic-
itly. For a broader overview of geometric spanners, we recommend
the book by Narasimhan and Smid [18].

2.2 preliminaries

The proofs in this part of the thesis make extensive use of trigonome-
try. This section contains a short review of the basic properties used
throughout the next chapters. Here, and in the rest of this thesis, we
use |ab| to denote the Euclidean distance between two points (or ver-
tices) a and b.

a b

c

α

(a)
a b

c

α

γ

β

(b)

Figure 2.2: (a) A right triangle. (b) A general triangle.

trigonometric functions . The basic trigonometric functions
are the sine, cosine, and tangent. They are defined as the ratio of the
sides in a right triangle. Consider a triangle abc such that ∠abc is a
right angle (see Figure 2.2a). If we let α = ∠cab, then

sinα =
|bc|

|ac|
, cosα =

|ab|

|ac|
, and tanα =

|bc|

|ab|
.

trigonometric identities . There are several more complex
equalities that can be derived from these basic functions. The two we
use most often are called the law of sines and the law of cosines. They
have the advantage that they apply to all triangles, not only right tri-
angles. In a triangle abc with α = ∠cab, β = ∠abc, and γ = ∠bca
(see Figure 2.2b), these identities are expressed as follows.

|ab|

sinγ
=

|ac|

sinβ
=

|bc|

sinα
(law of sines)
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|ab|2 = |ac|2 + |bc|2 − 2|ac||bc| cosγ

|ac|2 = |ab|2 + |bc|2 − 2|ab||bc| cosβ (law of cosines)

|bc|2 = |ab|2 + |ac|2 − 2|ab||ac| cosα

triangle inequality. The last equation we cover here is not
an equality, but rather an inequality known as the triangle inequality.
It states that one side of a triangle is never longer than the other
two sides combined. Using the notation of the triangle depicted in
Figure 2.2b, it can be expressed as follows.

|ab| 6 |ac|+ |bc|

|ac| 6 |ab|+ |bc| (triangle inequality)

|bc| 6 |ab|+ |ac|

2.3 yao-graphs

Figure 2.3: An example Y5-graph. Each vertex adds an edge to the closest
vertex in each of five equiangular cones.

One simple way to build a geometric spanner is to take each vertex,
partition the plane around it into a fixed number of cones with equal
angles, and add an edge between the vertex and the closest vertex
in each cone (see Figure 2.3). The resulting graph is called a Yao-
graph, and is typically denoted by Yk, where k is the number of cones
around each vertex. This construction guarantees that a Yao-graph
with k cones has at most kn edges, where n is the number of vertices.
Furthermore, if the cones are narrow enough, we can find a path
between any two vertices by starting at one and walking to the closest
vertex in the cone that contains the other, repeating this until we end
up at our destination. Intuitively, this results in a short path because
we are always walking approximately in the right direction, and, since
our neighbour is the closest vertex in that direction, never too far.

A Yao-graph whose cones are narrower will typically give a better
approximation of the shortest path. If we want to prove this formally,
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C0

C1

C2C3

C4

Figure 2.4: The cones used to construct the Y5-graph. The orientation is the
same for all vertices.

we need to iron out a few details in the definition of a Yao-graph.
First, we assume that points are in general position; in particular, we
assume that for every vertex a, there are no two points at the exact
same distance from a. This means that each vertex has a unique clos-
est vertex in each cone. (This is not strictly necessary, but it makes our
proofs simpler. If we don’t assume general position, the same prop-
erties hold by breaking ties arbitrarily.) Second, we label the cones
C0 through Ck−1 in clockwise order, and we orient them such that
the bisector of C0 aligns with the positive y-axis (see Figure 2.4). This
orientation is the same for each vertex. If the apex is not clear from
the context, we use Cai to denote cone Ci with apex a. The bound-
ary between two cones belongs to the counter-clockwise one (so the
boundary between C0 and C1 is part of C0). The crux of the proof
lies in the following small geometric lemma that captures our earlier
intuition that taking a small step in approximately the right direction
makes meaningful progress towards our destination.

a b

c

c ′
6 α

Figure 2.5: We are at a vertex a and want to go to b, but c is the closest
vertex in the cone that contains b.

lemma 2 .2. Given three points a, b, and c, such that |ac| 6 |ab| and
∠bac 6 α < π/3, then

|bc| 6 |ab|− (1− 2 sin(α/2)) · |ac|.

Proof. Let c ′ be the point on ab such that |ac| = |ac ′| (see Figure 2.5).
Since acc ′ forms an isosceles triangle, we can express |cc ′| in terms
of |ac|:

|cc ′| = 2 sin(∠bac/2) · |ac| 6 2 sin(α/2) · |ac|.
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The inequality holds since sin x is increasing in this range. Now we
just need the triangle inequality:

|bc| 6 |bc ′|+ |c ′c|

6 |ab|− |ac ′|+ 2 sin(α/2) · |ac|
= |ab|− (1− 2 sin(α/2)) · |ac|.

Imagine that we are at a vertex a and we want to go to b, but
c is the closest vertex in the cone of a that contains b. Then this
lemma essentially tells us that if the angle between our destination
and the edge we follow (α) is small, the amount of progress we make
(|ab|− |bc|) is directly proportional to the distance we travel (|ac|):

|ab|− |bc| > |ab|− (|ab|− (1− 2 sin(α/2)) · |ac|)
> (1− 2 sin(α/2)) · |ac|.

Now that we have this lemma, we can use an inductive argument to
show that Yao-graphs are spanners.

theorem 2 .3. For any integer k > 7, the graph Yk has spanning ratio at
most 1/(1− 2 sin(θ/2)), where θ = 2π/k.

Proof. Let a and b be two arbitrary vertices in our point set. We show
that the obvious way to get from a to b – keep following the edge
in the cone that contains b – not only works, it even gives us a short
path. To start off, consider all pairs of vertices (u, v) and sort them by
their distance |uv|. Our proof proceeds by induction on the index of
(a,b) in this sorted order.

In the base case, (a,b) is the closest pair. This means that b must be
the closest vertex in the cone of a that contains b, so the edge (a,b)
is in the graph. Thus, the shortest path between a and b has length
exactly |ab|, giving a spanning ratio of 1. Since 1/(1− 2 sin(θ/2)) > 1
for 0 < θ < 2π, this proves the base case.

For the inductive step, assume that for any pair of vertices (u, v)
such that |uv| < |ab|, there exists a path from u to v with length at
most 1/(1− 2 sin(θ/2)) · |uv|. Now consider the cone of a that contains
b. If b is the closest vertex, the edge (a,b) is in the graph and we can
use the same argument as in the base case. Otherwise, let c be the
closest vertex to a. Note that, because ∠bac 6 θ 6 2π/7 < π/3,
we know that ∠bac is not the largest angle in triangle abc. Since the
largest angle lies opposite the longest edge, bc is not the longest edge,
so |bc| < |ab|. Using our inductive hypothesis, this means that there
is a path between b and c with length at most 1/(1− 2 sin(θ/2)) · |bc|.
So to go from a to b, we can first take the direct edge to c and then
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follow the path to b. Since a, b, and c satisfy all the conditions for
Lemma 2.2, we can use it to bound the length of the resulting path:

|ac|+
1

1− 2 sin(θ/2)
· |bc|

6 |ac|+
1

1− 2 sin(θ/2)
· (|ab|− (1− 2 sin(θ/2)) · |ac|)

= |ac|+
1

1− 2 sin(θ/2)
· |ab|− |ac|

=
1

1− 2 sin(θ/2)
· |ab|.

Which is exactly what we needed to show.

a

b

α

β

Figure 2.6: If the number of cones is odd, opposite cones are not symmetric
and either α or β is small.

Interestingly, we can do a little better when the number of cones
is odd. This is caused by the asymmetry in the cones. To see why,
consider the situation where we have two vertices, a and b, and the
number of cones is odd. Let Ca be the cone of a that contains b and let
Cb be the analogous cone for b. Let α and β be the angles between ab
and the bisectors of Ca and Cb, respectively (see Figure 2.6). Since the
bisector of Ca is parallel to one of the sides of Cb, the transversal ab
creates equal angles at a and b, showing that α+β = θ/2. Therefore,
the smaller of α and β can be at most θ/4. If we assume that α is
the smaller of the two, and let c be the closest vertex in Ca, then
∠bac 6 α+ θ/2 6 3θ/4. Plugging this into the proof of Theorem 2.3
gives the following result.

theorem 2 .4. For any odd integer k > 5, the graph Yk has spanning
ratio at most 1/(1− 2 sin(3/8 · θ)), where θ = 2π/k.

Note that this theorem extends to Y5, as 3θ/4 = 3/4 · 2π/5 =

3π/10 < π/3, whereas Theorem 2.3 does not.
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Figure 2.7: An example Θ5-graph.

2.4 Θ-graphs

If we modify the definition of Yao-graphs slightly we obtain another
type of geometric spanner, called a Θ-graph. The only difference lies
in the way the closest vertex is determined: for each vertex u, the clos-
est vertex in a cone C is the vertex v whose orthogonal projection on
the bisector of C is closest to u (see Figure 2.7). We again assume gen-
eral position to simplify our proofs; in particular, we assume that no
two vertices lie on a line parallel or perpendicular to a cone boundary,
guaranteeing that each vertex connects to at most one vertex in each
cone, and thus that the graph has at most kn edges. Another way to
look at the construction is that we sweep C with a line perpendicu-
lar to the bisector, and add an edge to the first vertex we hit. Note
that this creates an empty triangle (the shaded regions in Figure 2.7).
Given two vertices a and b, we can define their canonical triangle 4ab
as the triangle formed by the boundaries of the cone C of a that con-
tains b and the line through b perpendicular to the bisector of C.
Note that the canonical triangle 4ba also exists: it is the same size as
4ab, but is has apex b and is oriented towards a instead. This gives
a third way to describe the construction of the Θ-graph, by adding an
edge between two vertices if one of their canonical triangles is empty.
These canonical triangles play an important role in Chapters 3 and 4.
As one might expect from the similarity in construction, Θ-graphs
share many of the properties that make Yao-graphs interesting. Their
key advantage, however, is that they can be constructed by an easy
sweep-line algorithm, whereas all known algorithms for constructing
Yao-graphs are more complex. Here we prove that Θ-graphs are span-
ners as well.

theorem 2 .5. For any integer k > 7, the graph Θk has spanning ratio at
most t = 1/(1− 2 sin(θ/2)), where θ = 2π/k.

Proof. This proof is similar to the proof of Theorem 2.3; we have two
vertices a and b and we show that there is a path between them of
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a
b

c

c ′

s

Figure 2.8: The canonical triangle 4ab , with the closest vertex to a rotated
over an angle θ.

length at most t|ab|. The proof is again by induction on the relative
position of (a,b) among all pairs of points when ordered by distance.
For convenience, we translate and rotate the point set such that a is in
the origin, and the bisector of the cone of a that contains b coincides
with the positive x-axis. We start by considering the inductive step,
and prove the base case at the end.

We assume that there is a path from u to v of length at most t|uv|
for all pairs (u, v) with |uv| < |ab|. If the edge (a,b) is in the graph,
we have a path from a to b of length |ab| 6 t|ab| and are done,
since t > 1, so assume that this is not the case. Then there is another
vertex c, whose projection on the bisector is closest to a in the cone
containing b. Without loss of generality, we assume that c lies above
ab (if it does not, we can mirror everything in the x-axis).

Now imagine rotating c clockwise around a by an angle of θ, and
let c ′ be the resulting position (see Figure 2.8). Note that c ′ lies below
ab, as the angle between ac and ab is at most θ. Furthermore, rotating
c by the angle between ac and the positive x-axis would move it to
a point with the same x-coordinate, but since we rotated it further,
c ′ lies to the left of c and therefore to the left of b. Since two line
segments intersect if and only if for both segments, the endpoints lie
on opposite sides of the other segment, ab and cc ′ intersect, and we
call their intersection point s. Now we can use the triangle inequality
to obtain the following inequalities:

|ac| = |ac ′| 6 |as|+ |sc ′|, and

|bc| 6 |bs|+ |sc|.
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Thus, we get that

|ac|+ |bc| 6 |as|+ |sc ′|+ |bs|+ |sc|

= |ab|+ |cc ′|

= |ab|+ 2 sin
θ

2
|ac|

|bc| 6 |ab|+ 2 sin
θ

2
|ac|− |ac|

= |ab|−
1

t
|ac|

For k > 7, this implies that |bc| < |ab|, which means that we can
apply our inductive hypothesis to bc. By first following ac, this gives
us a path from a to b of length at most:

|ac|+ t|bc| 6 |ac|+ t

(
|ab|−

1

t
|ac|

)
= |ac|+ t|ab|− |ac|

= t|ab|

This settles the inductive step. For the base case, if the edge (a,b) is in
the graph we are again done. The only way this edge could be absent
is if another vertex c had a projection on the bisector closer to a. But
we just derived that in that case |bc| < |ab|, which contradicts the fact
that |ab| is minimal. Therefore this cannot happen, and b must be the
closest vertex to a, proving the theorem.

2.5 history

Research on geometric spanners was sparked by a paper by Paul
Chew in 1986 [7], titled “There is a planar graph almost as good as
the complete graph”. In that paper and the subsequent journal ver-
sion [8], he showed that certain Delaunay triangulations are geomet-
ric spanners with few edges. In particular, he showed this for Delau-
nay triangulations whose empty regions are the square and the equi-
lateral triangle. The traditional Delaunay triangulation, which uses a
circle, was quickly shown to be a spanner as well [10]. Although its
true spanning ratio remains a mystery, the upper bound has been im-
proved multiple times; from the initial bound of 5.08 in 1987, to 2.42

in 1989 [14, 15], and recently to just below 2 [21].
Yao-graphs were introduced independently by Flinchbaugh and

Jones [12] and Yao [22] around 1981, before the concept of spanners
was even introduced by Chew. Yao showed that Y8 is a supergraph
of the minimum spanning tree and that this still holds in higher di-
mensions. This gave an efficient algorithm to compute the minimum
spanning tree in higher dimensions.

To the best of our knowledge, the first proof that Yao-graphs are
geometric spanners was published in 1993, by Althöfer et al. [1]. In
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particular, they showed that for every spanning ratio t > 1, there ex-
ists a number of cones k such that Yk is a t-spanner. It appears that
some form of this result was known earlier, as Clarkson [9] already
remarked in 1987 that Y12 is a 1 +

√
3-spanner, albeit without pro-

viding a proof or reference. In 2004, Bose et al. [6] provided a more
specific bound on the spanning ratio, by showing that for k > 8, Yk
is a geometric spanner with spanning ratio at most 1/(cos θ− sin θ),
where θ = 2π/k. This bound was later improved to 1/(1− 2 sin(θ/2)),
for k > 6 [3]. We presented a simplified version of this proof for Theo-
rem 2.3. The improvement for odd k given in Theorem 2.4 is a recent
development by Barba et al. [2].

The Θ-graph was introduced independently by Clarkson [9] and
Keil [13, 15], as an alternative to Yao-graphs that was easier to com-
pute. Both papers prove a spanning ratio of 1/(cos θ− sin θ), which
was later improved to 1/(1− 2 sin(θ/2)) by Ruppert and Seidel [19].
The proof of Theorem 2.5 is significantly simpler than their proof, and
is based on another proof by Lukovski [17, p. 11].

This bound of 1/(1− 2 sin(θ/2)) was the best known upper bound
on the spanning ratio for over twenty years. Only very recently have
researchers been able to prove that the true bound is lower. In 2012,
Bose et al. [4] showed that Θ-graphs with 4m+ 2 cones (m > 1) have
a spanning ratio of 1+ 2 sin(θ/2). Surprisingly, they were also able to
give a matching lower bound, making this the first family of Θ-graphs
for which a tight bound on the spanning ratio is known. Later, they
used similar techniques to improve the upper bound on the spanning
ratio of all other Θ-graphs [5], although these do not yet match the
best known lower bounds. A good overview of these results, and
more, can be found in the thesis of André van Renssen [20].
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3
T H E Θ 5 - G R A P H I S A S PA N N E R

Given any set of points in the plane, we show that the Θ-graph
with 5 cones is a geometric spanner with spanning ratio at most√
5 0 + 2 2

√
5 ≈ 9 . 9 6 0 . This is the first constant upper bound on

the spanning ratio of this graph. The upper bound uses a constructive
argument that gives a (possibly self-intersecting) path between any
two vertices, of length at most

√
5 0 + 2 2

√
5 times the Euclidean

distance between the vertices. We also prove that 12 ( 1 1
√
5 − 1 7 ) ≈

3 . 7 9 9 is a lower bound on the spanning ratio.
The results in this chapter were first published in the proceedings

of the 39th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2013) [5], and have subsequently been pub-
lished in Computational Geometry: Theory and Applications [6]. This
chapter contains joint work with Prosenjit Bose, Pat Morin, and An-
dré van Renssen.

3.1 introduction

As described in Section 2.5, most early research focused on Yao- and
Θ-graphs with a large number of cones. However, using the smallest
possible number of cones is important for many practical applica-
tions, where the cost of a network is mostly determined by the num-
ber of edges. One such example is point-to-point wireless networks.
These networks use narrow directional wireless transceivers that can
transmit over long distances (up to 50km [14, 12]). The cost of an edge
in such a network is therefore equal to the cost of the two transceivers
that are used at each endpoint of that edge. In such networks, the cost
of building Θ 6 is approximately 29% higher than the cost of building
Θ 5 if the transceivers are randomly distributed [11]. Assuming that
we still want our network to be a spanner, this leads to the natural
question: for which values of k are Yk and Θk spanners? Kanj [10]
presented this question as one of the main open problems in the area
of geometric spanners.

Surprisingly, this question was not studied until quite recently. In
2009, El Molla [9] showed that both Y 2 and Y 3 are not spanners,
and these proofs translate to Θ 2 and Θ 3 as well. Since the general
proofs (presented in Theorems 2.3 and 2.5) work for k > 7 , this left
the question open for graphs with 4, 5 and 6 cones. A surprising
connection between Θ-graphs and Delaunay triangulations led to the
first positive result on this question, when Bonichon et al. [3] showed
that Θ 6 is the union of two rotated copies of the empty equilateral

21
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triangle Delaunay triangulation. This graph had been shown to be
a 2-spanner by Chew [7] over 20 years earlier. This result was then
used by Damian and Raudonis [8] to show that Y 6 is a spanner as
well. The next graphs to fall were Y 4 [4] and Θ 4 [2], both of which
were shown to be spanners, albeit with very loose upper bounds on
the spanning ratio of 663 (Y 4 ) and 237 (Θ 4 ). The improvement on the
spanning ratio of Yao-graphs with an odd number of cones presented
in Theorem 2.4, discovered by Barba et al. [1], settled the matter for
Y 5 , leaving only Θ 5 .

Note that this problem was already claimed to be solved in 1991,
by Ruppert and Seidel [13]. Specifically, they wrote:

In the planar case, some improvement can be made on the
constants. In particular, when k is odd, there is an asym-
metry between the cones [. . . ] that we can take advantage
of by growing paths from both ends. Interestingly, this
asymmetry allows us to prove a bound near 10 on the
path lengths even for the case k = 5. [. . . ] The details are
omitted here due to lack of space.

However, to the best of our knowledge they never published a
proof of this claim.

In this chapter we present the final piece of this puzzle, by giving
the first constant upper bound on the spanning ratio of Θ5, thereby
proving that it is a geometric spanner. We show that the spanning ra-
tio is at most

√
50+ 22

√
5 ≈ 9.960. Note that this bound is slightly bet-

ter than the bound for Y5 given by Theorem 2.4, although Barba et al. [1]
improved the bound for Y5 to 2+

√
3 ≈ 3.74 using a different tech-

nique. Since the proof for Θ5 is constructive, it gives us a path be-
tween any two vertices, u andw, of length at most 9.960 · |uw|. Surpris-
ingly, this path can cross itself, a property we observed for the short-
est path as well (see Figure 3.1). We also prove that 12(11

√
5− 17) ≈

3.799 is a lower bound on the spanning ratio.

b

a

Figure 3.1: An example where the shortest path between two vertices (in
bold) in Θ5 crosses itself.
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3.2 connectivity

Recall that the canonical triangle 4uv of two vertices u and v is the
triangle bounded by the cone of u that contains v and the line through
v perpendicular to the bisector of that cone. We define the size |4uv|
of a canonical triangle as the length of one of the sides incident to
the apex u. This gives us the useful property that any line segment
between u and a point inside the triangle has length at most |4uv|.

To introduce the structure of the proof that the spanning ratio of
Θ5 is bounded, we first show that the Θ5-graph is connected.

theorem 3 .1. The Θ5-graph is connected.

Proof. We prove that there is a path between any (ordered) pair of
vertices in Θ5, using induction on the size of their canonical triangle.
Formally, given two vertices u and w, we perform induction on the
rank (relative position) of 4uw among the canonical triangles of all
pairs of vertices, when ordered by size. For ease of description, we
assume that w lies in the right half of Cu0 . The other cases are analo-
gous.

If 4uw has rank 1, it is the smallest canonical triangle. Therefore
there can be no point closer to u in Cu0 , so the edge (u,w) must be in
the graph. This proves the base case.

If 4uw has a larger rank, our inductive hypothesis is that there
exists a path between any pair of vertices with a smaller canonical
triangle. Let a and b be the left and right corners of 4uw. Let m be
the midpoint of ab and let x be the intersection of ab and the bisector
of ∠mub (see Figure 3.2a).

u

m xa bw

(a)

u

m xw

m ′

α

(b)

Figure 3.2: (a) The canonical triangle 4uw. (b) If w lies between m and x,
then 4wu is smaller than 4uw.

If w lies to the left of x, consider the canonical triangle4wu. Letm ′

be the midpoint of the side of 4wu opposite w and let α = ∠muw
(see Figure 3.2b). Note that ∠uwm ′ = π

5 −α, since um and the vertical
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border of 4wu are parallel and both are intersected by uw. Using
basic trigonometry, we can express the size of 4wu as follows.

|4wu| =
|wm ′|
cos π5

=
cos∠uwm ′ · |uw|

cos π5

=
cos
(
π
5 −α

)
· |um|

cosα
cos π5

=
cos
(
π
5 −α

)
cosα

· |4uw|

Since w lies to the left of x, the angle α is less than π/10, which means
that cos(π5 −α)/ cosα is less than 1. Hence 4wu is smaller than 4uw
and by induction, there is a path between w and u. Since the graph is
undirected, we are done in this case. The rest of the proof deals with
the case where w lies on or to the right of x.

If 4wu is empty, there is an edge between u and w and we are
done, so assume that this is not the case. Then there is a vertex vw
that is closest to w in Cw3 (the cone of w that contains u). This gives
rise to four cases, depending on the location of vw (see Figure 3.3a).
In each case, we will show that 4uvw is smaller than 4uw and hence
we can apply induction to obtain a path between u and vw. Since vw
is the closest vertex to w in C3, there is an edge between vw and w,
completing the path between u and w.

u

xa bw

1

2

3
4

C0

C1

C2C3

C4

(a)

w

vw

u

y

(b)

Figure 3.3: (a) The four cases for vw. (b) Case 1: The situation that maximizes
|4uvw | when vw lies in Cu2 .

case 1 . vw lies in Cu2 . In this case, the size of 4uvw is maximized
when vw lies in the bottom right corner of 4wu and w lies on b. Let
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y be the rightmost corner of 4uvw (see Figure 3.3b). Using the law of
sines, we can express the size of 4uvw as follows.

|4uvw | = |uy|

=
sin∠uvwy
sin∠uyvw

· |uvw|

=
sin 3π5
sin 3π10

· tan
π

5
· |4uw|

< |4uw|

case 2 . vw lies in Cu1 . In this case, the size of 4uvw is maximized
when w lies on b and vw lies almost on w. By symmetry, this gives
|4uvw | = |4uw|. However, vw cannot lie precisely on w and must
therefore lie a little closer to u, giving us that |4uvw | < |4uw|.

case 3 . vw lies in Cu0 . As in the previous case, the size of 4uvw is
maximized when vw lies almost on w, but since vw must lie closer to
u, we have that |4uvw | < |4uw|.

w

u

vw

y

Figure 3.4: Case 4: The situation that maximizes |4uvw | when vw lies in Cu4 .

case 4 . vw lies in Cu4 . In this case, the size of 4uvw is maximized
when vw lies in the left corner of 4wu and w lies on x. Let y be the
bottom corner of 4uvw (see Figure 3.4). Since x is the point where
|4uw| = |4wu|, and vwyuw forms a parallelogram, |4uvw | = |4uw|.
However, by general position, vw cannot lie on the boundary of4wu,
so it must lie a little closer to u, giving us that |4uvw | < |4uw|.

Since any vertex in Cu3 would be further from w than u itself, these
four cases are exhaustive.

3.3 spanning ratio

In this section, we prove an upper bound on the spanning ratio of Θ5.
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lemma 3 .2. Between any pair of vertices u and w of Θ5, there is a path of
length at most c · |4uw|, where c = 2

(
2+
√
5
)
≈ 8.473.

Proof. We begin in a way similar to the proof of Theorem 3.1. Given
an ordered pair of vertices u and w, we perform induction on the
size of their canonical triangle. If |4uw| is minimal, there must be
a direct edge between them. Since c > 1 and any edge inside 4uw
with endpoint u has length at most |4uw|, this proves the base case.
The rest of the proof deals with the inductive step, where we assume
that there exists a path of length at most c · |4| between every pair of
vertices whose canonical triangle 4 is smaller than 4uw. As in the
proof of Theorem 3.1, we assume that w lies in the right half of Cu0 .
If w lies to the left of x, we have seen that 4wu is smaller than 4uw.
Therefore we can apply induction to obtain a path of length at most
c · |4wu| < c · |4uw| between u and w. Hence we need to concern
ourselves only with the case where w lies on or to the right of x.

If u is the vertex closest to w in Cw3 or w is the closest vertex to u in
Cu0 , there is a direct edge between them and we are done by the same
reasoning as in the base case. Therefore assume that this is not the
case and let vw be the vertex closest to w in Cw3 . We distinguish the
same four cases for the location of vw (see Figure 3.3a). We already
showed that we can apply induction on 4uvw in each case. This is a
crucial part of the proof for the first three cases.

The basic strategy for the rest of the proof is as follows. If we can
find a path of length g · |4uw| that leaves us with a strictly smaller
canonical triangle of size h · |4uw|, where h < 1, we can then apply
induction to obtain a path of length g · |4uw|+ c · h · |4uw|. Since we
aim to show that there is a path of length at most c · |4uw|, we can
derive:

g · |4uw|+ c · h · |4uw| 6 c · |4uw|
g+ c · h 6 c

g 6 (1− h) · c
g

1− h
6 c.

Therefore we are done if g/(1− h) 6 2
(
2+
√
5
)
≈ 8.473.

case 1 . vw lies in Cu2 . By induction, there exists a path between u
and vw of length at most c · |4uvw |. Since vw is the closest vertex to
w in Cw3 , there is a direct edge between them, giving a path between
u and w of length at most |wvw|+ c · |4uvw |.

Given any initial position of vw in Cu2 , we can increase |wvw| by
moving w to the right. Since this does not change |4uvw |, the worst
case occurs when w lies on b. Then we can increase both |wvw| and
|4uvw | by moving vw into the bottom corner of 4wu. This gives rise
to the same worst-case configuration as in the proof of Theorem 3.1,
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depicted in Figure 3.3b. Building on the analysis there, we can bound
the worst-case length of the path as follows.

|wvw|+ c · |4uvw | =
|4uw|
cos π5

+ c · sin 3π5
sin 3π10

· tan
π

5
· |4uw|

This is at most c · |4uw| for c > 2(2 +
√
5). Since we picked c =

2(2+
√
5), the theorem holds in this case. Note that this is one of the

cases that determines the value of c.

u

w

vw

a ′

(a)

u

w

vw

(b)

Figure 3.5: (a) Case 2: Vertex vw lies on the boundary of Cw3 after moving it
down along the side of 4uvw . (b) Case 3: Vertex vw lies on the
boundary of Cu0 after moving it left along the side of 4uvw .

case 2 . vw lies in Cu1 . By the same reasoning as in the previous
case, we have a path of length at most |wvw|+ c · |4uvw | between u
and w and we need to bound this length by c · |4uw|.

Given any initial position of vw in Cu1 , we can increase |wvw| by
moving w to the right. Since this does not change |4uvw |, the worst
case occurs when w lies on b. We can further increase |wvw| by mov-
ing vw down along the side of4uvw opposite u until it hits the bound-
ary of Cu1 or Cw3 , whichever comes first (see Figure 3.5a).

Now consider what happens when we move vw along these bound-
aries. If vw lies on the boundary of Cu1 and we move it away from u by
ε, |4uvw | increases by ε. At the same time, |wvw| might decrease, but
not by more than ε. Since c > 1, the total path length is maximized
by moving vw as far from u as possible, until it hits the boundary of
Cw3 . Once vw lies on the boundary of Cw3 , we can express the size of
4uvw as follows, where a ′ is the top corner of 4uvw .

|4uvw | = |4uw|− |wa ′|

= |4uw|− |wvw| ·
sin∠wvwa ′
sin∠wa ′vw

= |4uw|− |wvw| ·
sin π

10

sin 7π10
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Now we can express the length of the complete path as follows.

|wvw|+ c · |4uvw | = |wvw|+ c ·
(
|4uw|− |wvw| ·

sin π
10

sin 7π10

)

= c · |4uw|−
(
c · sin π

10

sin 7π10
− 1

)
· |wvw|

Since c > sin 7π10 / sin π
10 ≈ 2.618, we have that c · (sin π

10/ sin 7π10 )− 1 >
0. Therefore |wvw|+ c · |4uvw | < c · |4uw|.

case 3 . vw lies in Cu0 . Again, we have a path of length at most
|wvw|+ c · |4uvw | between u and w and we need to bound this length
by c · |4uw|.

Given any initial position of vw in Cu0 , moving vw to the left in-
creases |wvw| while leaving |4uvw | unchanged. Therefore the path
length is maximized when vw lies on the boundary of either Cu0 or
Cw3 , whichever it hits first (see Figure 3.5b).

Again, consider what happens when we move vw along these
boundaries. Similar to the previous case, if vw lies on the boundary
of Cu0 and we move it away from u by ε, |4uvw | increases by ε, while
|wvw| might decrease by at most ε. Since c > 1, the total path length
is maximized by moving vw as far from u as possible, until it hits the
boundary of Cw3 . Once there, the situation is symmetric to the pre-
vious case, with |4uvw | = |4uw|− |wvw| · (sin π

10/ sin 7π10 ). Therefore
the theorem holds in this case as well.

case 4 . vw lies in Cu4 . This is the hardest case. Similar to the pre-
vious two cases, the size of 4uvw can be arbitrarily close to that of
4uw, but in this case |wvw| does not approach 0. This means that
simply invoking the inductive hypothesis on4uvw does not work, so
another strategy is required. We first look at a sub-case where we can
apply induction directly, before considering the position of vu, the
closest vertex to u in C0.

u

w b

vw

Figure 3.6: Case 4a: Vertex vw lies in Cu4 ∩Cb3 .
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case 4a. vw lies in Cu4 ∩ Cb3 . This situation is illustrated in Fig-
ure 3.6. Given any initial position of vw, moving w to the right onto b
increases the total path length by increasing |wvw| while not affecting
|4uvw |. Here we use the fact that vw already lies in Cb3 , otherwise we
would not be able to move w onto b while keeping vw in Cw3 . Now
the total path length is maximized by placing vw on the left corner of
4wu. Since this situation is symmetrical to the worst-case situation
in Case 1, the theorem holds by the same analysis.

u

w
4b

4c

4d

4e

Figure 3.7: The four different cases for the position of vu .

Next, we distinguish four cases for the position of vu (the closest
vertex to u in C0), illustrated in Figure 3.7. The cases are: (4b) w lies
in Cvu4 , (4c)w lies in Cvu0 , (4d)w lies in Cvu1 and vu lies in Cw3 , and (4e)
w lies in Cvu1 and vu lies in Cw4 . These are exhaustive, since the cones
C4, C0 and C1 are the only ones that can contain a vertex above the
current vertex, and w must lie above vu, as vu is closer to u. Further,
if w lies in Cvu1 , vu must lie in one of the two opposite cones of w. We
can solve the first two cases by applying our inductive hypothesis to
4vuw.

u

w vu

(a)
u

w

vu

(b)

Figure 3.8: (a) The worst-case configuration with w in Cvu4 . (b) A configura-
tion with w in Cvu0 , after moving vu onto the right side of Cu0 .

case 4b. w lies in Cvu4 . To apply our inductive hypothesis, we
need to show that |4vuw| < |4uw|. If that is the case, we obtain a
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path between vu and w of length at most c · |4vuw|. Since vu is the
closest vertex to u, there is a direct edge from u to vu, resulting in a
path between u and w of length at most |uvu|+ c · |4vuw|.

Given any initial positions for vu and w, moving w to the left in-
creases |4vuw| while leaving |uvu| unchanged. Moving vu closer to b
increases both. Therefore the path length is maximal when w lies on
x and vu lies on b (see Figure 3.8a). Using the law of sines, we can
express |4vuw| as follows.

|4vuw| =
sin 3π5
sin 3π10

· |wvu| =
sin 3π5
sin 3π10

· sin π
10

sin 3π5
· |4uw|

=
sin π

10

sin 3π10
· |4uw| =

1

2

(
3−
√
5
)
· |4uw|

Since 12
(
3−
√
5
)
< 1, we have that |4vuw| < |4uw| and we can apply

our inductive hypothesis to 4vuw. Since |uvu| = |4uw|, the complete
path has length at most c · |4uw| for

c > 1

1− 1
2

(
3−
√
5
) =

1

2

(
1+
√
5
)
≈ 1.618.

case 4c. w lies in Cvu0 . Since vu lies in Cu0 , it is clear that |4vuw| <
|4uw|, which allows us to apply our inductive hypothesis. This gives
us a path between u and w of length at most |uvu|+ c · |4vuw|. For
any initial location of vu, we can increase the total path length by
moving vu to the right until it hits the side of Cu0 (see Figure 3.8b),
since |4vuw| stays the same and |uvu| increases. Once there, we have
that |uvu|+ |4vuw| = |4uw|. Since c > 1, this immediately implies
that |uvu|+ c · |4vuw| 6 c · |4uw|.

To solve the last two cases, we need to consider the positions of
both vu and vw. Recall that for vw, there is only a small region left
where we have not yet proved the existence of a short path between
u and w. In particular, this is the case when vw lies in cone Cu4 , but
not in Cb3 .

case 4d. w lies in Cvu1 and vu lies in Cw3 . We would like to apply
our inductive hypothesis to 4vuvw , resulting in a path between vu
and vw of length at most c · |4vuvw |. The edges (w, vw) and (u, vu)
complete this to a path between u and w, giving a total length of at
most |uvu|+ c · |4vuvw |+ |vww|.

First, note that vu cannot lie in 4wvw , as this region is empty by
definition. Since vw lies in Cu4 , this means that vw must lie in Cvu4 .
We first show that 4vuvw is always smaller than 4uw, which means
that we are allowed to use induction. Given any initial position for
vu, consider the line ` through vu, perpendicular to the bisector of C3
(see Figure 3.9a). Since vw cannot be further from w than vu, the size
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u

w

vu

vw

`

(a)

u

w

vu

vw

`

(b)

Figure 3.9: (a) The regions where vu (light) and vw (dark) can lie. (b) The
worst case when vu lies on a given line `.

of 4vuvw is maximized when vw lies on the intersection of ` and the
top boundary of 4wu. We can increase |4vuvw | further by moving vu
along ` until it reaches the bisector of Cw3 (see Figure 3.9b). Since the
top boundary of 4wu and the bisector of Cw3 approach each other
as they get closer to w, the size of 4vuvw is maximized when vu lies
on the bottom boundary of 4wu (ignoring for now that this would
move vu out of 4uw). Now it is clear that |4vuvw | < |4uvw |. Since
we already established that4uvw is smaller than4uw in the proof of
Theorem 3.1, this holds for 4vuvw as well and we can use induction.

u

w

vu

vw

Figure 3.10: The worst case for a fixed position of w.

All that is left is to bound the total length of the path. Given any
initial position of vu, the path length is maximized when we place
vw at the intersection of ` and the top boundary of 4wu, as this
maximizes both |4vuvw | and |wvw|. When we move vu away from vw
along ` by ε, |uvu| decreases by at most ε, while |4vuvw | increases by
sin 3π5 / sin 3π10 · ε > ε. Since c > 1, this increases the total path length.
Therefore the worst case again occurs when vu lies on the bisector of
Cw3 , as depicted in Figure 3.9b. Moving vu down along the bisector
of 4wu by ε decreases |uvu| by at most ε, while increasing |wvw| by
1/ sin 3π10 · ε > ε and increasing |4vuvw |. Therefore this increases the



32 the Θ5 -graph is a spanner

total path length and the worst case occurs when vu lies on the left
boundary of 4uw (see Figure 3.10).

Finally, consider what happens when we move vu ε towards u,
while moving w and vw such that the construction stays intact. This
causes w to move to the right. Since vu, w and the left corner of 4uw
form an isosceles triangle with apex vu, this also moves vu ε further
from w. We saw before that moving vu away from w increases the
size of4vuvw . Finally, it also increases |wvw| by 1/ sin 3π10 · ε > ε. Thus,
the increase in |wvw| cancels the decrease in |uvu| and the total path
length increases. Therefore the worst case occurs when vu lies almost
on u and vw lies in the corner of 4wu, which is symmetric to the
worst case of Case 1. Thus the theorem holds by the same analysis.

case 4e. w lies in Cvu1 and vu lies in Cw4 . We split this case into
three final sub-cases, based on the position of vu. These cases are
illustrated in Figure 3.11. Note that vu cannot lie in C2 or C3 of vw,
as it lies above vw. It also cannot lie in Cvw4 , as Cvw4 is completely
contained in Cu4 , whereas vu lies in Cu0 . Thus the cases presented
below are exhaustive.

u

w

vw

2

3

b

1

Figure 3.11: The three sub-cases for the position of vu.

case 4e-1 . |4wvu | 6 c−1
c · |4uw|. If4wvu is small enough, we can

apply our inductive hypothesis to obtain a path between vu and w of
length at most c · |4wvu |. Since there is a direct edge between u and
vu, we obtain a path between u and w of length at most |uvu|+ c ·
|4wvu |. Any edge from u to a point inside 4uw has length at most
|4uw|, so we can bound the length of the path as follows.

|uvu|+ c · |4wvu | 6 |4uw|+ c ·
c− 1

c
· |4uw|

= |4uw|+ (c− 1) · |4uw|
= c · |4uw|

In the other two cases, we use induction on 4vwvu to obtain a path
between vw and vu of length at most c · |4vwvu |. The edges (u, vu)
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and (w, vw) complete this to a (self-intersecting) path between u and
w. We can bound the length of these edges by the size of the canonical
triangles that contain them, as follows.

|uvu|+ |wvw| 6 |4uw|+ |4wu|

6 |4uw|+
1

cos π5
· |4uw|

=
√
5 · |4uw|

All that is left now is to bound the size of 4vwvu and express it in
terms of 4uw.

u

vw

bvu w

(a)

u

w

y

vw

vu

(b)

Figure 3.12: (a) The situation that maximizes 4vwvu when vu lies in Cvw0 .
(b) The worst case when vu lies in Cvw1 .

case 4e-2 . vu lies in Cvw0 . In this case, the size of 4vwvu is max-
imal when vu lies on the top boundary of 4uw and vw lies at the
lowest point in its possible region: the left corner of 4bu (see Fig-
ure 3.12a). Now we can express |4vwvu | as follows.

|4vwvu | =
sin π

10

sin 7π10
· |bvw|

=
sin π

10

sin 7π10
· 1

cos π5
· |4uw|

= 2
(√
5− 2

)
· |4uw|

Since 2
(√
5− 2

)
< 1, we can use induction. The total path length is

bounded by c · |4uw| for

c >
√
5

1− 2
(√
5− 2

) = 2+
√
5 ≈ 4.236.
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case 4e-3 . vu lies in Cvw1 . Since |4wvu | > c−1
c · |4uw|, 4vwvu is

maximal when vw lies on the left corner of4wu and vu lies on the top
boundary of 4uw, such that |4wvu | = c−1

c · |4uw| (see Figure 3.12b).
Let y be the intersection of 4vwvu and 4wu. Note that since vw lies
on the corner of 4wu, y is also the midpoint of the side of 4vwvu
opposite vw. We can express the size of 4vwvu as follows.

|4vwvu | =
|vwy|

cos π5

=
|wvw|− |wy|

cos π5

=

|4uw|
cos π5

− cos π10 · |wvu|

cos π5

=

|4uw|
cos π5

− cos π10 ·
sin 3π10
sin 3π5

· |4wvu |

cos π5

=

|4uw|
cos π5

− cos π10 ·
sin 3π10
sin 3π5

· c− 1
c
· |4uw|

cos π5

=

(
1

c
+ 5− 2

√
5

)
· |4uw|

Thus we can use induction for c > 1/
(
2
√
5− 4

)
≈ 2.118 and the total

path length can be bounded by c · |4uw| for

c >
√
5+ 1

2
√
5− 4

=
1

2

(
7+ 3

√
5
)
≈ 6.854.

Using this result, we can compute the exact spanning ratio.

theorem 3 .3. The Θ5-graph has spanning ratio at most
√
50+ 22

√
5 ≈

9.960.

Proof. Given two vertices u and w, we know from Lemma 3.2 that
there is a path between them of length at most c ·min (|4uw|, |4wu|),
where c = 2

(
2+
√
5
)
≈ 8.473. This gives an upper bound on the

spanning ratio of c ·min (|4uw|, |4wu|) /|uw|. We assume without
loss of generality that w lies in the right half of Cu0 . Let α be the
angle between the bisector of Cu0 and the line uw (see Figure 3.2b). In
the proof of Theorem 3.1, we saw that we can express |4wu| and |uw|

in terms of α and |4uw|, as |4wu| = (cos(π5 − α)/ cosα) · |4uw| and
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|uw| = (cos π5 / cosα) · |4uw|, respectively. Using these expressions,
we can write the spanning ratio in terms of α.

c ·min (|4uw|, |4wu|)
|uw|

=

c ·min
(
|4uw|,

cos(π5−α)
cosα · |4uw|

)
cos π5
cosα · |4uw|

=
c

cos π5
·min

(
cosα, cos

(
π
5 −α

))
To get an upper bound on the spanning ratio, we need to maximize
the minimum of cosα and cos

(
π
5 −α

)
. Since for α ∈ [0,π/5], one

is increasing and the other is decreasing, this maximum occurs at
α = π/10, where they are equal. Thus, our upper bound becomes

c

cos π5
· cos π10 =

√
50+ 22

√
5.

3.4 lower bound

In this section, we derive a lower bound on the spanning ratio of the
Θ5-graph.

u

w

v1

v2

v3

v4

Figure 3.13: A path with a large spanning ratio.

theorem 3 .4. The Θ5-graph has spanning ratio at least 12(11
√
5− 17) ≈

3.799.

Proof. For the lower bound, we present and analyze a path between
two vertices that has a large spanning ratio. The path has the follow-
ing structure (illustrated in Figure 3.13).

The path can be thought of as being directed from w to u. First,
we place w in the right corner of 4uw. Then we add a vertex v1 in
the bottom corner of 4wu. We repeat this two more times, each time
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adding a new vertex in the corner of 4viu furthest from u. The final
vertex v4 is placed on the top boundary of Cv31 , such that u lies in Cv41 .
Since we know all the angles involved, we can compute the length of
each edge, taking |uw| = 1 as baseline.

|wv1| =
1

cos π5
|v1v2| = |v2v3| = 2 sin π5 tan π5

|v3v4| =
sin π

10

sin 3π5
tan π5 |v4u| =

sin 3π10
sin 3π5

tan π5

Since we set |uw| = 1, the spanning ratio is simply |wv1|+ |v1v2|+

|v2v3|+ |v3v4|+ |v4u| =
1
2(11
√
5− 17) ≈ 3.798. Note that the Θ5-graph

with just these 5 vertices would have a far smaller spanning ratio,
as there would be a lot of shortcut edges. However, a graph where
this path is the shortest path between two vertices can be found in
Figure 3.14, and its construction is described in Table 3.1.

v1

v2v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13
v14

v15
v16

v17

v18

v19

v20

v21

v22v23

v24

v25

v26
v27

v28

v29

v30
v31

Figure 3.14: A Θ5-graph with a spanning ratio that matches the lower
bound. The shortest path between v1 and v2 is indicated in
bold.
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Table 3.1: Stepwise construction of a Θ5-graph with a spanning ratio that
matches the lower bound (see Figure 3.14).

# action shortest path

1 Start with a vertex v1. -

2 Add v2 in Cu0 , such that v2 is arbitrarily
close to the top right corner of 4v1v2 .

v1v2

3 Remove edge (v1, v2) by adding two ver-
tices, v3 and v4, arbitrarily close to the
counter-clockwise corners of 4v1v2 and
4v2v1 .

v1v4v2

4 Remove edge (v1, v4) by adding two
vertices, v5 and v6, arbitrarily close to
the clockwise corner of 4v1v4 and the
counter-clockwise corner of 4v4v1 .

v1v3v2

5 Remove edge (v2, v3) by adding two
vertices, v7 and v8, arbitrarily close to
the clockwise corner of 4v2v3 and the
counter-clockwise corner of 4v3v2 .

v1v6v4v2

6 Remove edge (v1, v6) by adding two ver-
tices, v9 and v10, arbitrarily close to
the clockwise corner of 4v1v6 and the
counter-clockwise corner of 4v6v1 .

v1v5v4v2

7 Remove edge (v4, v5) by adding two ver-
tices, v11 and v12, arbitrarily close to the
counter-clockwise corner of 4v4v5 and
the clockwise corner of 4v5v4 .

v1v5v6v4v2

8 Remove edge (v5, v6) by adding two ver-
tices, v13 and v14, arbitrarily close to the
counter-clockwise corner of 4v5v6 and
the clockwise corner of 4v6v5 .

v1v5v14v6v4v2

9 Remove edge (v5, v14) by adding two ver-
tices, v15 and v16, arbitrarily close to the
counter-clockwise corner of 4v5v14 and
the clockwise corner of 4v14v5 .

v1v5v13v6v4v2

10 Remove edge (v6, v13) by adding two ver-
tices, v17 and v18, arbitrarily close to
the clockwise corner of 4v6v13 and the
counter-clockwise corner of 4v13v6 .

v1v3v8v2

11 Remove edge (v2, v8) by adding a ver-
tex v19 in the union of, and arbitrarily
close to the intersection point of 4v2v8
and 4v8v2 .

v1v3v7v2
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# action shortest path

12 Remove edge (v3, v7) by adding two ver-
tices, v20 and v21, arbitrarily close to the
counter-clockwise corner of 4v3v7 and
the clockwise corner of 4v7v3 .

v1v5v12v2

13 Remove edge (v2, v12) by adding a ver-
tex v22 arbitrarily close to the counter-
clockwise corner of 4v2v12 .

v1v10v6v4v2

14 Remove edge (v1, v10) by adding a ver-
tex v23 in the union of4v1v10 and4v10v1 ,
arbitrarily close to the top boundary of
Cv101 , and such that v1 lies in Cv231 , arbi-
trarily close to the bottom boundary.

v1v5v12v4v2

15 Remove edge (v4, v12) by adding two ver-
tices, v24 and v25, arbitrarily close to the
counter-clockwise corner of 4v4v12 and
the clockwise corner of 4v12v4 .

v1v5v13v14v6v4v2

16 Remove edge (v13, v14) by adding two
vertices, v26 and v27, arbitrarily close to
the clockwise corner of 4v13v14 and the
counter-clockwise corner of 4v14v13 .

v1v9v18v6v4v2

17 Remove edge (v9, v18) by adding two ver-
tices, v28 and v29, arbitrarily close to
the clockwise corner of 4v9v18 and the
counter-clockwise corner of 4v18v9 .

v1v5v16v11v4v2

18 Remove edge (v11, v16) by adding two
vertices, v30 and v31, arbitrarily close to
the counter-clockwise corner of 4v11v16
and the clockwise corner of 4v16v11 .

v1v23v10v6v4v2

3.5 conclusions

We showed that there is a path between every pair of vertices in
Θ5, and this path has length at most

√
50+ 22

√
5 ≈ 9.960 times the

straight-line distance between the vertices. This is the first constant
upper bound on the spanning ratio of the Θ5-graph, proving that it
is a geometric spanner. We also presented a Θ5-graph with spanning
ratio arbitrarily close to 1

2(11
√
5− 17) ≈ 3.799, thereby giving a lower

bound on the spanning ratio. There is still a significant gap between
these bounds, which is caused by the upper bound proof mostly ig-
noring the main obstacle to improving the lower bound: that every
edge requires at least one of its canonical triangles to be empty. Hence
we believe that the true spanning ratio is closer to the lower bound.
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While our proof for the upper bound on the spanning ratio returns
a spanning path between the two vertices, it requires knowledge of
the neighbours of both the current vertex and the destination vertex.
This means that the proof does not lead to a local routing strategy
that can be applied in, say, a wireless setting. This raises the ques-
tion whether it is possible to route competitively on this graph, i.e. to
discover a spanning path from one vertex to another by using only
information local to the current vertices visited so far.
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4
C O M P E T I T I V E R O U T I N G I N T H E H A L F -Θ 6 - G R A P H

In this chapter, we present a deterministic local routing algorithm
that is guaranteed to find a path between any pair of vertices in a
half-Θ 6 -graph (the half-Θ 6 -graph is equivalent to the Delaunay tri-
angulation where the empty region is an equilateral triangle). The
length of the path is at most 5 /

√
3 ≈ 2 . 8 8 7 times the Euclidean

distance between the pair of vertices. Moreover, we show that no local
routing algorithm can achieve a better routing ratio, thereby proving
that our routing algorithm is optimal. This is somewhat surprising be-
cause the spanning ratio of the half-Θ 6 -graph is 2, meaning that even
though there always exists a path whose lengths is at most twice the
Euclidean distance, we cannot always find such a path when routing
locally.

Since every triangulation can be embedded in the plane as a half-
Θ 6 -graph using O ( l o g n ) bits per vertex coordinate via Schnyder’s
embedding scheme [24], our result provides a competitive local rout-
ing algorithm for every such embedded triangulation. Finally, we
show how our routing algorithm can be adapted to provide a routing
ratio of 1 5 /

√
3 ≈ 8 . 6 6 1 on two bounded degree subgraphs of the

half-Θ 6 -graph.
The results in this chapter were first published in the proceedings

of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA
2012) [9], and the proceedings of the 24th Canadian Conference on
Computational Geometry (CCCG 2012) [10]. A paper based on this
chapter has been accepted for publication in the SIAM Journal on
Computing [8]. This chapter is the result of joint work with Prosenjit
Bose, Rolf Fagerberg, and André van Renssen.

4.1 introduction

A fundamental problem in networking is the routing of a message
from one vertex to another in a graph. What makes routing more
challenging is that often in a network the routing strategy must be
local. Informally, a routing strategy is local when the routing algo-
rithm must choose the next vertex to forward a message to based
solely on knowledge of the current and destination vertex, and all
vertices directly connected to the current vertex. Routing algorithms
are considered geometric when the underlying graph is embedded in
the plane, with edges being straight line segments connecting pairs
of points and weighted by the Euclidean distance between their end-
points. Geometric routing algorithms are important in wireless sensor

41
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networks (see [21] and [23] for surveys of the area), since they offer
routing strategies that use the coordinates of the vertices to help guide
the search as opposed to using the more traditional routing tables.

Papadimitriou and Ratajczak [22] posed a tantalizing question in
this area that led to a flurry of activity: Does every 3-connected pla-
nar graph have a straight-line embedding in the plane that admits
a local routing strategy? They were particularly interested in embed-
dings that admit a greedy strategy, where a message is always for-
warded to the vertex whose distance to the destination is the smallest
among all vertices in the neighbourhood of the current vertex, includ-
ing the current vertex. They provided a partial answer by showing
that 3-connected planar graphs can always be embedded in R3 such
that they admit a greedy routing strategy. They also showed that the
class of complete bipartite graphs, Kk,6k+1 for all k > 1 cannot be em-
bedded such that greedy routing always succeeds since every embed-
ding has at least one vertex that is not connected to its nearest neigh-
bour. Bose and Morin [11] showed that greedy routing always suc-
ceeds on Delaunay triangulations. In fact, a slightly restricted greedy
routing strategy known as greedy-compass is the first local routing
strategy shown to succeed on all triangulations [6]. Dhandapani [14]
proved the existence of an embedding that admits greedy routing
for every triangulation and Angelini et al. [1] provided a construc-
tive proof. Leighton and Moitra [20] settled Papadimitriou and Rata-
jczak’s question by showing that every 3-connected planar graph can
be embedded in the plane such that greedy routing succeeds. One
drawback of these embedding algorithms is that the coordinates re-
quire Ω(n logn) bits per vertex. To address this, He and Zhang [17]
and Goodrich and Strash [16] gave succinct embeddings using only
O(logn) bits per vertex. Recently, He and Zhang [18] showed that
every 3-connected plane graph admits a succinct embedding with
convex faces on which a slightly modified greedy routing strategy
always succeeds.

In light of these recent successes, it is surprising to note that the
above routing strategies have solely concentrated on finding an em-
bedding that guarantees that a local routing strategy will succeed,
but pay little attention to the quality of the resulting path. For ex-
ample, none of the above routing strategies have been shown to be
competitive. A geometric routing strategy is said to be competitive if
the length of the path found by the routing strategy is not more than
a constant times the Euclidean distance between its endpoints. This
constant is called the routing ratio. Bose and Morin [11] show that
many local routing strategies are not competitive, but show how to
route competitively on the Delaunay triangulation. However, Dillen-
court [15] showed that not all triangulations can be embedded in the
plane as Delaunay triangulations. This raises the following question:
can every triangulation be embedded in the plane such that it admits
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a competitive local routing strategy? We answer this question in the
affirmative.

The half-Θ6-graph was introduced by Bonichon et al. [4], who
showed that it is identical to the Delaunay triangulation where the
empty region is an equilateral triangle. Although both graphs are
identical, the local definition of the half-Θ6-graph makes it more use-
ful in the context of routing. We formally define the half-Θ6-graph in
the next section. Our main result is a deterministic local routing algo-
rithm that is guaranteed to find a path between any pair of vertices
in a half-Θ6-graph whose length is at most 5/

√
3 ≈ 2.887 times the

Euclidean distance between the pair of vertices. On the way to prov-
ing our main result, we uncover some local properties of spanning
paths in the half-Θ6-graph. Since Schnyder [24] showed that every
triangulation can be embedded in the plane as a half-Θ6-graph using
O(logn) bits per vertex coordinate, our main result implies that every
triangulation has an embedding that admits a competitive local rout-
ing algorithm. Moreover, we show that no local routing algorithm can
achieve a better routing ratio on a half-Θ6-graph, implying that our
routing algorithm is optimal. This is somewhat surprising because
Chew [13] showed that the spanning ratio of the half-Θ6-graph is 2.
Thus, our lower bound provides a separation between the spanning
ratio of the half-Θ6-graph and the best achievable routing ratio on
the half-Θ6-graph. We believe that this is the first separation between
the spanning ratio and routing ratio of any graph. It also makes the
half-Θ6-graph one of the few graphs for which tight spanning and
routing ratios are known. Finally, we show how our routing algo-
rithm can be adapted to provide a routing ratio of 15/

√
3 ≈ 8.661

on two bounded degree subgraphs of the half-Θ6-graph introduced
by Bonichon et al. [5]. To the best of our knowledge, this is the first
competitive routing algorithm on a bounded-degree plane graph.

4.2 preliminaries

In this section we describe the construction of the half-Θ6-graph and
introduce a few related concepts. Readers who are not familiar with
general Θ-graphs may want to read Chapter 2 first. Note that some
of the notation in this chapter differs from the notation introduced in
Chapter 2. All such differences will be explained in this section.

As the name implies, the half-Θ6-graph is closely related to the Θ6-
graph. The difference is that every other cone is ignored. To reflect
this, the cones are relabelled from C0, . . . ,C5 to C0,C1,C2,C0,C1,C2
(see Figure 4.1a). The cones C0, C1 and C2 are called positive, while
the others are called negative. Note that corresponding positive and
negative cones are opposite each other. Combined with their symme-
try, this implies that if u lies in Cv0 (shorthand for cone C0 with apex
v), then v must lie in Cu0 .
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C0

C1C2

C1

C0

C2

u

(a)
u

v

(b)

Figure 4.1: (a) The positive (highlighted) and negative cones around a vertex
u. (b) In each positive cone, u connects to the vertex with the
closest projection on the bisector of that cone.

To build the half-Θ6-graph, we consider each positive cone of every
vertex, and add an edge to the closest vertex in that cone (according
to the projection onto the bisector, see Figure 4.1b). That is, edges
are added to the closest vertex in C0, C1, and C2, but not in the other
cones. See Figure 4.2 for an example half-Θ6-graph. For simplicity, we
assume that no two points lie on a line parallel to a cone boundary,
guaranteeing that each vertex connects to exactly one vertex in each
positive cone. Hence the graph has at most 3n edges in total.

Figure 4.2: An example half-Θ6-graph.

We slightly modify the concept of canonical triangle to take the dis-
tinction between positive and negative cones into account. Given two
vertices u and v, we now define their canonical triangle as 4uv if v
lies in a positive cone of u, and 4vu if u lies in a positive cone of
v. Note that either v lies in a positive cone of u, or u lies in a posi-
tive cone of v, so there is exactly one canonical triangle (either4uv or
4vu) for the pair. With this definition, the construction of the half-Θ6-
graph can alternatively be described as adding an edge between two
vertices if and only if their canonical triangle is empty. This property
will play an important role in our proofs.
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4.3 spanning ratio of the half-Θ6 -graph

Bonichon et al. [4] showed that the half-Θ6-graph is a geometric span-
ner with spanning ratio 2 by showing it is equivalent to the Delaunay
triangulation based on empty equilateral triangles, which is known
to have spanning ratio 2 [13]. This correspondence also shows that
the half-Θ6-graph is internally triangulated: every face except for the
outer face is a triangle (this follows from the duality with the Voronoi
diagram, along with the fact that all vertices in the Voronoi diagram
have degree 3, provided that no 4 points lie on the same equilateral
triangle). In this section, we provide an alternative proof of the span-
ning ratio of the half-Θ6-graph. Our proof shows that between any
pair of points, there always exists a path with spanning ratio 2 that
lies in the canonical triangle. This property plays an important role in
our routing algorithm, which we describe in Section 4.5.

For a pair of vertices u and w, our bound is expressed in terms of
the angle α between the line from u to w and the bisector of their
canonical triangle (see Figure 4.3).

m

α

u

w

Figure 4.3: Two vertices u and w with their canonical triangle 4uw. The an-
gle α is the unsigned angle between the line uw and the bisector
of the cone containing w.

theorem 4 .1. Let u and w be vertices with w in a positive cone of u. Let
m be the midpoint of the side of 4uw opposing u, and let α 6 π/6 be the
smaller of the two unsigned angles between the segments uw and um. Then
the half-Θ6-graph contains a path between u and w of length at most

(
√
3 · cosα+ sinα) · |uw|,

where all vertices on this path lie in 4uw.

The expression
√
3 · cosα+ sinα is increasing for α ∈ [0,π/6]. By

inserting the extreme value π/6 for α, we arrive at the following.

corollary 4 .2. The spanning ratio of the half-Θ6-graph is 2.

We note that the bounds of Theorem 4.1 and Corollary 4.2 are tight:
for all values of α ∈ [0,π/6] there exists a point set for which the
shortest path in the half-Θ6-graph for some pair of vertices u and
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w has length arbitrarily close to (
√
3 · cosα+ sinα) · |uw|. A simple

example appears later in the proof of Theorem 4.3.

Proof of Theorem 4.1. Given two vertices u andw, we assume without
loss of generality that w lies in Cu0 . We prove the theorem by induc-
tion on the rank, when ordered by area, of the triangles 4xy for all
pairs of points x and y where y lies in a positive cone of x. Let a and
b be the upper left and right corner of 4uw, and let A = 4uw ∩Cw1
and B = 4uw ∩Cw2 , as illustrated in Figure 4.4.

u

a bw

A
B

Figure 4.4: The corners a and b, and the regions A and B.

Our inductive hypothesis is the following, where δ(u,w) denotes
the length of the shortest path from u to w in the part of the half-Θ6-
graph induced by the vertices in 4uw.

1. If A is empty, then δ(u,w) 6 |ub|+ |bw|.

2. If B is empty, then δ(u,w) 6 |ua|+ |aw|.

3. If neither A nor B is empty, then δ(u,w) 6 max{|ua|+ |aw|,
|ub|+ |bw|}.

We first note that this induction hypothesis implies Theorem 4.1:
using the side of 4uw as the unit of length, we have from Figure 4.3
that |wm| = |uw| · sinα and

√
3/2 = |um| = |uw| · cosα. Hence the

induction hypothesis gives us that δ(u,w) is at most 1+ 1/2+ |wm| =√
3 · (
√
3/2) + |wm| = (

√
3 · cosα+ sinα) · |uw|, as required.

base case . 4uw has rank 1. Since there are no smaller canonical
triangles,wmust be the closest vertex to u. Hence the edge (u,w) is in
the half-Θ6-graph, and δ(u,w) = |uw|. Using the triangle inequality,
we have |uw| 6 min{|ua|+ |aw|, |ub|+ |bw|}, so the induction hypoth-
esis holds.

induction step. We assume that the induction hypothesis holds
for all pairs of points with canonical triangles of rank up to i. Let
4uw be a canonical triangle of rank i+ 1.

If (u,w) is an edge in the half-Θ6-graph, the induction hypothe-
sis follows by the same argument as in the base case. If there is no
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edge between u and w, let v be the vertex closest to u in the positive
cone Cu0 , and let a ′ and b ′ be the upper left and right corner of 4uv.
By definition, δ(u,w) 6 |uv|+ δ(v,w), and by the triangle inequality,
|uv| 6 min{|ua ′|+ |a ′v|, |ub ′|+ |b ′v|}.

We perform a case distinction on the location of v: (a) v lies neither
in A nor in B, (b) v lies inside A, and (c) v lies inside B. The case
where v lies inside B is analogous to the case where v lies inside A, so
we only discuss the first two cases, which are illustrated in Figure 4.5.

u

a bw

v

c d

a ′ b ′

C D

(a)
u

a bw

v

a ′′

a ′
E

b ′

(b)

Figure 4.5: The two cases: (a) v lies in neither A nor B, (b) v lies in A.

case (a). Let c and d be the upper left and right corner of 4vw,
and let C = 4vw ∩ Cw1 and D = 4vw ∩ Cw2 (see Figure 4.5a). Since
4vw has smaller area than 4uw, we apply the inductive hypothesis
on 4vw. Our task is to prove all three statements of the inductive
hypothesis for 4uw.

1. If A is empty, then C is also empty, so by induction δ(v,w) 6
|vd|+ |dw|. Since v, d, b, and b ′ form a parallelogram, we have:

δ(u,w) 6 |uv|+ δ(v,w)

6 |ub ′|+ |b ′v|+ |vd|+ |dw|

= |ub|+ |bw|,

which proves the first statement of the induction hypothesis.
This argument is illustrated in Figure 4.6a.

2. If B is empty, an analogous argument proves the second state-
ment of the induction hypothesis.

3. If neither A nor B is empty, by induction we have δ(v,w) 6
max{|vc|+ |cw|, |vd|+ |dw|}. Assume, without loss of generality,
that the maximum of the right hand side is attained by its sec-
ond argument |vd|+ |dw| (the other case is analogous).
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u

bw d

b ′v

C

(a)
u

bw d

v b ′

(b)

Figure 4.6: Visualization of the path inequalities in two cases: (a) v lies in
neither A nor B and one of A or B is empty (cases a.1 and a.2
in our proof), (b) v lies in neither A nor B and neither is empty
(case a.3). The paths occurring in the equations are drawn with
thick red lines, and light blue areas indicate empty regions.

Since vertices v, d, b, and b ′ form a parallelogram, we have that:

δ(u,w) 6 |uv|+ δ(v,w)

6 |ub ′|+ |b ′v|+ |vd|+ |dw|

6 |ub|+ |bw|

6 max{|ua|+ |aw|, |ub|+ |bw|},

which proves the third statement of the induction hypothesis.
This argument is illustrated in Figure 4.6b.

case (b). Let E = 4uv ∩ 4wv, and let a ′′ be the upper left corner
of4wv (see Figure 4.5b). Since v is the closest vertex to u in one of its
positive cones, 4uv is empty and hence E is also empty. Since 4wv is
smaller than 4uw, we can apply induction on it. As E is empty, the
first statement of the induction hypothesis for4wv applies, giving us
that δ(v,w) 6 |va ′′|+ |a ′′w|. Since |uv| 6 |ua ′|+ |a ′v| and v, a ′′, a, and
a ′ form a parallelogram, we have that δ(u,w) 6 |ua|+ |aw|, proving
the second and third statement in the induction hypothesis for 4uw.
This argument is illustrated in Figure 4.7. Since v lies in A, the first
statement in the induction hypothesis for 4uw is vacuously true. �

4.4 remarks on the spanning ratio

The Θ6-graph, introduced by Keil and Gutwin [19], is similar to the
half-Θ6-graph except that all 6 cones are positive cones. Thus, Θ6
is the union of two copies of the half-Θ6-graph, where one half-Θ6-
graph is rotated by π/3 radians. The half-Θ6-graph and Θ6 both have
a spanning ratio of 2, with lower bound examples showing that it is
tight for both graphs. This is surprising since Θ6 can have twice the
number of edges of the half-Θ6-graph.
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u

a wa ′′

a ′
v

E

Figure 4.7: Visualization of the path inequalities when v lies in A or B (case
b).

Note that since Θ6 consists of two rotated copies of the half-Θ6-
graph, one question that comes to mind is what is the best spanning
ratio if one is to construct a graph consisting of two rotated copies
of the half-Θ6-graph? Can one do better than a spanning ratio of
2? Consider the following construction. Build two half-Θ6-graphs as
described in Section 4.2, but rotate each cone of the second graph by
π/6 radians. For each pair of vertices, there is a path of length at most√
3 cosα+ sinα times the Euclidean distance between them, where α

is the angle between the line connecting the vertices in question, and
the closest bisector. Since this function is increasing, the spanning
ratio is defined by the maximum possible angle to the closest bisector,
which is π/12 radians, giving a spanning ratio of roughly 1.932.

By using k copies, we improve the spanning ratio even further:
if each is rotated by π/(3k) radians, we get a spanning ratio of√
3 cos π

6k + sin π
6k . This is better than the known upper bounds for

Θ3k [12] and Y3k [3] for k 6 4.

4.5 routing in the half-Θ6 -graph

In this section, we give matching upper and lower bounds for the
routing ratio on the half-Θ6-graph. We begin by defining our model.
Formally, a routing algorithm A is a deterministic k-local, m-memory
routing algorithm, if the vertex to which a message is forwarded from
the current vertex s is a function of s, t, Nk(s), and M, where t is
the destination vertex, Nk(s) is the k-neighbourhood of s and M is a
memory of size m, stored with the message. The k-neighbourhood of
a vertex s is the set of vertices in the graph that can be reached from
s by following at most k edges. For our purposes, we consider a unit
of memory to consist of a log2 n bit integer or a point in R2 . Our
model also assumes that the only information stored at each vertex
of the graph is Nk(s). Since our graphs are geometric, we identify
each vertex by its coordinates in the plane. Note that while many
local routing models allow the algorithm to use the location of the
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source vertex (where the routing algorithm started) in addition to the
current vertex and destination vertex, our model does not.

A routing algorithm is d-competitive provided that the total distance
travelled by the message is never more than d times the Euclidean
distance between source and destination. Analogous to the spanning
ratio, the routing ratio of an algorithm is the smallest d for which it is
d-competitive.

We present a deterministic 1-local 0-memory routing algorithm that
achieves the upper bounds, but our lower bounds hold for any deter-
ministic k-local 0-memory algorithm, provided k is a constant. Our
bounds are expressed in terms of the angle α between the line from
the source to the destination and the bisector of their canonical trian-
gle (see Figure 4.3).

theorem 4 .3. Let u and w be two vertices, with w in a positive cone
of u. Let m be the midpoint of the side of 4uw opposing u, and let α be
the unsigned angle between the lines uw and um. There is a deterministic
1-local 0-memory routing algorithm on the half-Θ6-graph for which every
path followed has length at most

i) (
√
3 · cosα+ sinα) · |uw| when routing from u to w,

ii) (5/
√
3 · cosα− sinα) · |uw| when routing from w to u,

and this is best possible for deterministic k-local, 0-memory routing algo-
rithms, where k is constant.

The first expression is increasing for α ∈ [0,π/6], while the second
expression is decreasing. Inserting the extreme values π/6 and 0 for
α, we get the following worst case version of Theorem 4.3.

corollary 4 .4. Let u and w be two vertices, with w in a positive cone
of u. There is a deterministic 1-local 0-memory routing algorithm on the
half-Θ6-graph with routing ratio

i) 2 when routing from u to w,

ii) 5/
√
3 ≈ 2.887 when routing from w to u,

and this is best possible for deterministic k-local, 0-memory routing algo-
rithms, where k is constant.

Since the spanning ratio of the half-Θ6-graph is 2, the second lower
bound shows a separation between the spanning ratio and the best
possible routing ratio in the half-Θ6-graph.

Since every triangulation can be embedded in the plane as a half-
Θ6-graph using O(logn) bits per vertex via Schnyder’s embedding
scheme [24], an important implication of Theorem 4.3 is the follow-
ing.

corollary 4 .5. Every n-vertex triangulation can be embedded in the
plane using O(logn) bits per coordinate such that the embedded triangula-
tion admits a deterministic 1-local routing algorithm with routing ratio at
most 5/

√
3 ≈ 2.887.
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4.5.1 Positive routing

In the remainder of this section we prove Theorem 4.3. We first con-
sider the case where the destination lies in a positive cone of the
source. We start with a proof of the lower bound, followed by a de-
scription of the routing algorithm and a proof of the upper bound.

lemma 4 .6 (Lower bound for positive routing). Let u and w be two
vertices, with w in a positive cone of u. Let m be the midpoint of the side
of 4uw opposing u, and let α be the unsigned angle between the lines uw
and um. For any deterministic k-local, 0-memory routing algorithm, there
are instances for which the path followed has length at least (

√
3 · cosα+

sinα) · |uw| when routing from u to w.

Proof. Let the side of 4uw be the unit of length. From Figure 4.3,
we have |wm| = |uw| · sinα and

√
3/2 = |um| = |uw| · cosα. From

Figure 4.8, the spanning ratio of the half-Θ6-graph is at least 1+ 1/2+
|wm| =

√
3 · (
√
3/2)+ |wm| = (

√
3 · cosα+ sinα) · |uw|, since the point

in the upper left corner of 4uw can be moved arbitrarily close to the
corner. As there is no shorter path between u and w, this is a lower
bound for any routing algorithm.

u

w

α

m

Figure 4.8: The lower bound example when routing to a vertex in a positive
cone.

routing algorithm . While routing, let s denote the current ver-
tex and let t denote the fixed destination (i.e. t corresponds to w in
Theorem 4.3). To be deterministic, 1-local, and 0-memory, the routing
algorithm needs to determine which edge (s, v) to follow next based
only on s, t, and the neighbours of s. We say we are routing positively
when t is in a positive cone of s, and routing negatively when t is
in a negative cone. (Note the distinction between “positive routing”
and “routing positively”: the first describes the conditions at the start
of the routing process, while the second does so during the routing
process. In other words, positive routing describes a routing process
that starts by routing positively. It is very common for positive rout-
ing to include situations where we are routing negatively, see e.g. the
bottom part of Figure 4.11.)
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For ease of description, we assume without loss of generality that
t is in cone Cs0 when routing positively, and in cone Cs0 when routing
negatively. When routing positively, 4st intersects only Cs0 among
the cones of s. When routing negatively, 4ts intersects Cs0, as well as
the two positive cones Cs1 and Cs2. Let X0 = C

s
0 ∩4ts, X1 = Cs1 ∩4ts,

and X2 = Cs2 ∩4ts. Let a be the corner of 4ts contained in X1 and b
the corner of 4ts contained in X2. These definitions are illustrated in
Figure 4.9.

s

tC0

(a)

a b

X1

X2

t

s

C1 X0

C0

C2

(b)

Figure 4.9: Routing terminology when (a) routing positively and (b) routing
negatively.

The routing algorithm will only follow edges (s, v) where v lies in
the canonical triangle of s and t. Routing positively is straightforward
since there is exactly one edge (s, v) with v ∈ 4st, by the construction
of the half-Θ6-graph. The challenge is to route negatively. When rout-
ing negatively, at least one edge (s, v) with v ∈ 4ts exists, since by
Theorem 4.1, s and t are connected by a path in 4ts. The core of our
routing algorithm is how to choose which edge to follow when there
is more than one. Intuitively, when routing negatively, our algorithm
tries to select an edge that makes measurable progress towards the
destination. When no such edge exists, we are forced to take an edge
that does not make measurable progress, however we are able to then
deduce that certain regions within the canonical triangle are empty.
This allows us to bound the total distance travelled while not making
measurable progress. We provide a formal description of our routing
algorithm below.

Our routing algorithm can be in one of four cases. We call the situ-
ation when routing positively case A, and divide the situation when
routing negatively into three further cases: both X1 and X2 are empty
(case B), either X1 or X2 is empty (case C), or neither is empty (case D).
Since X1 and X2 correspond to positive cones of s, each contains the
endpoint of at most one edge (s, v). These edges contain a lot of in-
formation about the regions X1 and X2. In particular, if there is no
edge in the corresponding cone, then the entire cone must be empty.
And if there is an edge, but its endpoint lies outside of the region, the
region is guaranteed to be empty. This allows our algorithm to locally
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determine if X1 and X2 are empty, and therefore which case we are
in.

Since we are routing to a destination in a positive cone of the source,
our routing algorithm starts in case A. Routing in this case is straight-
forward, as there is only one edge (s, v) with v in 4ts that we can
follow. We now turn our attention to routing in cases B and C (it
turns out case D never occurs when routing to a destination in a pos-
itive cone of the source; we come back to it when describing negative
routing in Section 4.5.2).

In case B, both X1 and X2 are empty, so there must be edges (s, v)
with v ∈ X0, as s and t are connected by a path in4ts by Theorem 4.1.
If |as| > |sb|, the routing algorithm follows the last edge in clockwise
order around s; if |as| < |sb|, it follows the first edge. In short, when
both sides of 4ts are empty, the routing algorithm favours staying
close to the largest empty side of 4ts. Note that |as| and |sb| can be
computed locally from the coordinates of s and t.

In case C, exactly one of X1 or X2 is empty. If there exist edges (s, v)
with v ∈ X0, the routing algorithm will follow one of these, choosing
among them in the following way: If X1 is empty, it chooses the last
edge in clockwise order around s. Else X2 is empty, and it chooses the
first edge in clockwise order around s. In short, the routing algorithm
favours staying close to the empty side of 4ts. If no edges (s, v) with
v ∈ X0 exist, the routing algorithm follows the single edge (s, v) with
v in X1 or X2.

upper bound. The proof of the upper bound uses a potential
function φ, defined as follows for each of the cases A, B, and C. For
the potential in case C, x ∈ {a,b} is the corner contained in the non-
empty one of the two areas X1 and X2.

Case A: φ = |sa|+ max(|at|, |tb|)

Case B: φ = |ta|+ min(|as|, |sb|)

Case C: φ = |ta|+ |sx|

This definition is illustrated in Figure 4.10. We will refer to the first
term of φ (i.e., |sa| in case A, |ta| in cases B, and C) as the vertical part
of φ and to the rest as the horizontal part. Note that since all sides of
the canonical triangle have equal length, a and b are interchangeable
in the vertical part. The proof makes extensive use of the following
observation about equilateral triangles:

observation 4 .7. In an equilateral triangle, the diameter (the longest
distance defined by any two points in the triangle) is equal to the side length.

Our aim is to prove the following claim: for any routing step, the
reduction in φ is at least as large as the length of the edge followed.
This allows us to ‘pay’ for each edge with the difference in potential,
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s

bta
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t

a s b
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Case C

Figure 4.10: The potential φ in each case. The thick lines designate potential
and shaded areas are empty.

thereby bounding the total length of the path by the initial potential.
We do this by case analysis of the possible routing steps.

case A. For a routing step starting in case A, v can be in a negative
or a positive cone of t. The first situation leads to case A again. The
second leads to case B or C, since the area of 4st between s and v
must be empty by construction of the half-Θ6-graph. These situations
are illustrated in Figure 4.11.

s

t tt

v

s

t t

v v

vv

Figure 4.11: Routing in case A. (Top) v lies in a negative cone of t, (Bottom)
v lies in a positive cone of t. Dashed red lines indicate which
parts of the potential are used to pay for the edge.

If we remain in case A after following edge (s, v), the reduction of
the vertical part of φ (dashed in Figure 4.11a) is at least as large as
|sv| by Observation 4.7. Therefore we can use it to pay for this step.
Since 4vt is contained in 4st, both |at| and |bt| decrease. Thus the
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horizontal part of φ decreases too, as it is the maximum of the two.
Hence the claim holds for this situation.

For the situation ending in case C (the second illustration after the
arrow in Figure 4.11b), we again use the reduction of the vertical
part of φ to pay for the step. The rest of the vertical part precisely
covers the new horizontal part. Since 4tv is contained in 4st, the
new vertical part is a portion of either ta or tb. This can be covered
by the current horizontal part, as it is the maximum of |ta| and |tb|.
Thus the claim holds for this situation as well. Finally, for the situation
ending in case B, the final value of φ is at most that of the situation
ending in case C, so again the claim holds.

v

t

s

tt

vv

Figure 4.12: Routing in case B.

case B. A routing step starting in case B (illustrated in Figure 4.12)
cannot lead to case A, as the step stays within4ts. We first show that
it always results in Case B or C, meaning that at least one of X1 or X2
is empty again. The algorithm follows an edge (s, v) with v ∈ X0. If s
is to the left of t, it follows the first edge in clockwise order around
s, otherwise it follows the last one. We consider only the case where
s is to the left of t, the other case is symmetric. By the construction
of the half-Θ6-graph, the existence of the edge (s, v) implies that 4vs
is empty. It follows that the hatched area in Figure 4.12 is also empty:
if not, the topmost point in it would have an edge to s, while coming
before v in the clockwise order around s, contradicting the choice of v
by the routing algorithm. Therefore X2 will again be empty, resulting
in case B or C.

By Observation 4.7, the reduction in the vertical part of φ is at least
as large as |sv|. In addition, the horizontal part of φ can only decrease.
If it remains on the same side of the triangle, this follows from the fact
that v lies in X0 and4tv is contained in4ts. And the only case where
the potential switches sides, is when we end up in case B again but
the other side is shorter than the current one, reducing the potential
even further. Hence the claim holds.

case C. As in the previous case, a routing step starting in case C
cannot lead to case A and we show that it cannot lead to case D,
either. There are two situations, depending on whether edges (s, v)
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with v ∈ X0 exist. For the situation where such edges do exist (illus-
trated in the top part of Figure 4.13), the analysis is exactly the same
as for a routing step starting in case B.
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tt

v
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vv

Figure 4.13: Routing in case C.

For the situation where edges (s, v) with v ∈ X0 do not exist, the
start of the step is illustrated on the left of the arrow in the bottom
part of Figure 4.13. Again, 4sv must be empty by the construction
of the half-Θ6-graph, which implies that the hatched area must also
be empty: if not, the topmost point in it would have an edge to s,
contradicting that edges (s, v) with v ∈ X0 do not exist. Thus, the
routing step can only lead to case B or C. Looking at the potential, the
vertical part can only decrease, and by Observation 4.7, the reduction
of the horizontal part of φ is at least as large as |sv|. Thus we can pay
for this step as well and the claim holds in both situations.

lemma 4 .8 (Upper bound for positive routing). Let u and w be two
vertices, with w in a positive cone of u. Let m be the midpoint of the side
of 4uw opposing u, and let α be the unsigned angle between the lines uw
and um. There is a deterministic 1-local 0-memory routing algorithm on
the half-Θ6-graph for which every path followed has length at most (

√
3 ·

cosα+ sinα) · |uw| when routing from u to w.

Proof. That the algorithm is deterministic, 1-local, and 0-memory fol-
lows from the description of the algorithm, so we only need to prove
the bound on the distance. We showed that for any routing step,
the reduction in φ is at least as large as the length of the edge fol-
lowed. Since φ is always non-negative, this implies that no path fol-
lowed can be longer than the initial value of φ. As all edges have
strictly positive length, the routing algorithm must terminate. Since
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we are routing to a vertex in a positive cone, we start in case A,
with an initial potential of |ua|+ max(|aw|, |wb|). Taking the side of
4uw as the unit of length reduces this to 1+ 1/2+ |wm|, and using
the same analysis as in Lemma 4.6, we obtain the desired bound of
(
√
3 · cosα+ sinα) · |uw|.

4.5.2 Negative routing

Next we turn our attention to the case when we are routing to a
destination in a negative cone of the source. We start by deriving
a lower bound, then present the required extensions to our routing
algorithm and finish with the matching upper bound.

u

wm

(a)
u

wm

(b)

Figure 4.14: The lower bound instances for routing to a vertex in a negative
cone.

lemma 4 .9 (Lower bound for negative routing). Let u and w be two
vertices, with w in a positive cone of u. Let m be the midpoint of the side
of 4uw opposing u, and let α be the unsigned angle between the lines uw
and um, and let k be a constant. For any deterministic k-local 0-memory
routing algorithm, there are instances for which the path followed has length
at least (5/

√
3 · cosα− sinα) · |uw| when routing from w to u.

Proof. Consider the two instances in Figure 4.14. Any deterministic 1-
local 0-memory routing algorithm has information about direct neigh-
bours only. Hence, it cannot distinguish between the two instances
when routing out of w. This means that it routes to the same neigh-
bour of w in both instances, and either choice of neighbour leads to
a non-optimal route in one of the two instances. The smallest loss oc-
curs when the choice is towards the closest corner of 4uw, for which
Figure 4.14a is the bad instance. If we let the side of 4uw be the
unit of length, this gives a lower bound of (1/2 − |wm|) + 1 + 1 =

5/2− |wm|, since the points in the corners of 4uw can be moved ar-
bitrarily close to the corners while keeping their relative positions.
Using that |wm| = |uw| · sinα and

√
3/2 = |um| = |uw| · cosα, the

lower bound reduces to (5/
√
3 · cosα− sinα) · |uw|. By appropriately

adding Ω(k) points close to the corners such that u is not in the k-
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neighbourhood of w, the lower bound holds for any deterministic
k-local 0-memory routing algorithm.

routing algorithm . The only difference with the routing algo-
rithm we used for positive routing lies in the initial case. Since our
destination is in a negative cone, we start in one of the negative cases.
This time, besides cases B and C, where both or one of X1 and X2 are
empty, we also need case D, where neither is empty. Recall that in the
previous section, we showed that a routing step starting in case A, B,
or C can never result in case D. Thus, if the routing process starts in
case D, it never returns there once it enters case A, B, or C.

In case D, the routing algorithm first tries to follow an edge (s, v)
with v ∈ X0. If several such edges exist, an arbitrary one of these is
followed. If no such edge exists, the routing algorithm follows the
single edge (s, v) with v in the smaller of X1 and X2. In short, the
routing algorithm favours moving towards the closest corner of 4ts
when it is not able to move towards t. Note that, in the instances of
Figure 4.14, this choice ensures that the first routing step incurs the
smallest loss in the worst case, making it possible to meet the lower
bound of Lemma 4.9. We now show that our algorithm achieves this
lower bound in all cases.

upper bound. The potential in case D is given below. It mirrors
the lower bound path, in that it allows walking towards the closest
corner, crossing the triangle, then walking down to t. This is the high-
est potential among the four cases.

Case D: φ = |ta|+ |ab|+ min(|as|, |sb|)

t

bsa

Case D

Figure 4.15: The potential φ in case D.

As before, we want to show that for any routing step, the reduction
in φ is at least as large as the length of the edge followed. Since we
already did this for cases A, B, and C, and none of them can lead to
case D, all that is left is to prove it for case D.
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case D. A routing step starting in case D cannot lead to case A, as
the step stays within4ts, but it may lead to case B, C, or D. There are
two situations, depending on whether edges (s, v) with v ∈ X0 exist
or not. These are illustrated in Figure 4.16.
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Figure 4.16: Routing in case D. The endpoint v of the edge followed lies in
X0 (Top), or the smaller of X1 and X2 (Bottom).

In the first situation, where we follow an edge (s, v) with v ∈ X0,
the reduction of the vertical part of φ is at least as large as |sv| by
Observation 4.7. The horizontal part of φ can only decrease, as4tv is
fully contained in4ts and v lies in X0. In the second situation, where
the endpoint of our edge lies in the smaller of X1 and X2, these roles
switch, with the reduction of the horizontal part of φ being at least
as large as |sv| and the vertical part of φ only decreasing. In both
situations, the statement is proven.

lemma 4 .10 (Upper bound for negative routing). Let u and w be two
vertices, with w in a positive cone of u. Let m be the midpoint of the side
of 4uw opposing u, and let α be the unsigned angle between the lines uw
and um. There is a deterministic 1-local 0-memory routing algorithm on
the half-Θ6-graph for which every path followed has length at most (5/

√
3 ·

cosα− sinα) · |uw| when routing from w to u.

Proof. Since the choices that the routing algorithm makes are com-
pletely determined by the neighbours of s and the location of s and
t, the algorithm is indeed deterministic, 1-local, and 0-memory. To
bound the length of the resulting path, we again showed that for any
routing step, the reduction in φ is at least as large as the length of
the edge followed. As in the proof of Lemma 4.8, this implies that
the routing algorithm terminates and that the total length of the
path followed is bounded by the initial value of φ. Since our des-
tination lies in a negative cone, we start in one of the cases B, C,
or D. Of these three cases, case D has the largest initial potential
of |ta|+ |ab|+ min(|as|, |sb|). Taking the side of 4uw as the unit of
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length reduces this to 1 + 1 + 1/2 − |wm| = 5/2 − |wm|, and using
the same analysis as in Lemma 4.9, we obtain the desired bound of
(5/
√
3 · cosα− sinα) · |uw|.

As Theorem 4.3 follows from Lemmas 4.6, 4.8, 4.9, and 4.10, this
concludes our proof.

4.6 a stateful algorithm

Next we present a slightly different routing algorithm from the one in
the previous section. The main difference between the two algorithms
is that this one maintains one piece of information as state, making
it O(1)-memory instead of 0-memory. The information that is stored
is a preferred side, and it is either nil, X1, or X2. Intuitively, the new
algorithm follows the original algorithm until it is routing negatively
and determines that either X1 or X2 is empty. At that point, the algo-
rithm sets the empty side as the preferred side and picks the rest of
the edges in such a way that the preferred side remains empty. Thus,
the algorithm maintains as invariant that if the preferred side is set
(not nil), that region is empty. Furthermore, once the preferred side
is set, it stays fixed until the algorithm reaches the destination. This
algorithm simplifies the cases a little, but more importantly, it allows
the algorithm to check far fewer edges while routing. This is crucial,
as the new algorithm forms the basis for routing algorithms on ver-
sions of the half-Θ6-graph with some edges removed to bound the
maximum degree, described in the next section.

We now present the details of this stateful version of the routing
algorithm. Recall that we are trying to find a path from a current
vertex s to a destination vertex t. For ease of description, we again
assume without loss of generality that t lies in C0 or C0 of s. If t lies
in C0, the cones around s split 4ts into three regions X0, X1, and X2,
as in Figure 4.9. For brevity, we use “an edge in X0” to denote an edge
incident to s with the other endpoint in X0. The cases are as follows:

• If t lies in a positive cone of s, we are in case A.

• If t lies in a negative cone of s and no preferred side has been
set yet, we are in case B.

• If t lies in a negative cone of s and a preferred side has been set,
we are in case C.

These cases are closely related to the cases in the stateless algorithm.
Cases A and B correspond to cases A and D, respectively, while case C

merges cases B and C from the original algorithm into a single case,
where only one side’s emptiness is tracked. This is reflected in the
routing strategy for each case:
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• In case A, follow the unique edge (s, v) in the positive cone
containing t. If t lies in a negative cone of v, set the preferred
side to the region (X1 or X2 of v) that is contained in 4sv, as
this is now known to be empty (see Figure 4.11b).

• In case B, if there are edges in X0, follow an arbitrary one. Oth-
erwise, if there is an edge in the smaller of X1 and X2, follow
that edge. Otherwise, follow the edge in the larger of X1 and X2
and set the other as the preferred side. By Theorem 4.1, at least
one of these edges must exist.

• In case C, if there are edges in X0, follow the one closest to
the preferred side in cyclic order around s. Otherwise, follow
the edge in the positive cone that is not on the preferred side.
Again, at least one of these edges must exist.

The proof in Section 4.5 can be adapted to show that this routing
algorithm achieves the same upper bounds. In short, the proof is sim-
plified to only use a potential as defined for cases A, C, and D, and
only a subset of the illustrations in Figures 4.11, 4.13, and 4.16 are
relevant. We omit the repetitive details.

4.7 bounding the maximum degree

Each vertex in the half-Θ6-graph has at most one incident edge in
each positive cone, but it can have an unbounded number of incident
edges in its negative cones. In this section, we describe two transfor-
mations that allow us to bound the total degree of each vertex. The
transformations are adapted from Bonichon et al. [5].

The first transformation discards all edges in each negative cone,
except for three: the first and last edges in clockwise order around the
vertex and the edge to the “closest” vertex, meaning the vertex whose
projection on the bisector of the cone is closest (see Figure 4.17a). This
results in a subgraph with maximum degree 12, which we call G12.

u

(a)

u

(b)

Figure 4.17: The construction for G12 (a) and G9 (b). Solid edges are kept,
while dotted edges are discarded if no other vertex wants to
keep them.

To reduce the degree even further, we note that since the half-Θ6-
graph is internally triangulated, consecutive neighbours of u within
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a negative cone are connected by edges. We call the path formed by
these edges the canonical path. Instead of keeping three edges per neg-
ative cone, we now keep only the edge to the closest vertex, but force
the edges of the canonical path to be kept as well (see Figure 4.17b).
We call the resulting graph G9. Bonichon et al. [5] showed that all
edges on the canonical path are either first or last in a negative cone,
making G9 a subgraph of G12. Note that since the half-Θ6-graph is
planar, both subgraphs are planar as well. They also proved that G9 is
a 3-spanner of the half-Θ6-graph with maximum degree 9. Since the
half-Θ6-graph is a 2-spanner and G9 is a subgraph of G12, this shows
that both G9 and G12 are 6-spanners of the complete Euclidean graph.
We give an adapted version of the proof of the spanning ratio of G9
below.

theorem 4 .11. G9 is a 3-spanner of the half-Θ6-graph.

Proof. Consider an edge (s, v) in the half-Θ6-graph and assume, with-
out loss of generality, that v lies in a negative cone of s (if not, we can
swap the roles of s and v). Now consider the path between them in
G9 consisting of the edge from s to the vertex closest to s, followed
by the edges on the canonical path between the closest vertex and v.
We will refer to this path as the approximation path, and we show that
it has length at most 3 · |sv|.

s

v

v0

v1

a

b

c

d

m1 m2

Figure 4.18: The approximation path.

Let v0 be the closest vertex and let v1, . . . , vk = v be the other ver-
tices on the approximation path. We assume without loss of general-
ity that s lies in C0 of v and that v lies to the right of v0. We shoot rays
parallel to the boundaries of C0 from each vertex on the approxima-
tion path. Let mi be the intersection of the right ray of vi−1 and the
left ray of vi (see Figure 4.18). These intersections must exist, as s is
the closest vertex in Cvi0 , for each vi. Let a and b be the intersections
of the left boundary of Cs0 with the left rays of v and v0, respectively,
and let c be the intersection of this left boundary with the horizontal
line through v. Finally, let d be the intersection of the right ray of v0
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and the left ray of v. We can bound the length of the approximation
path as follows:

|sv0|+

k∑
i=1

|vi−1vi|

6 |sb|+ |bv0|+

k∑
i=1

|vi−1mi|+

k∑
i=1

|mivi|

= |sb|+ |bv0|+ |ab|+ |dv| {by projection}

= |sb|+ |ab|+ |av|

6 |sc|+ 2 · |cv|.

The last inequality follows from the fact that v0 is the closest vertex
to s. Let α be ∠csv. Some basic trigonometry gives us that |sc| = 2√

3
·

sin
(
α+ π

3

)
· |sv| and |cv| = 2√

3
· sinα · |sv|. Thus the approximation

path is at most 2√
3
·
(
sin
(
α+ π

3

)
+ 2 · sinα

)
times as long as (s, v).

Since this function is increasing in [0, π3 ], the maximum is achieved
for α = π/3, where it is 3. Therefore every edge of the half-Θ6-graph
can be approximated by a path that is at most 3 times as long and the
theorem follows.

Note that the part of the approximation path that lies on the canon-
ical path has length at most 2 · |cv| = 4√

3
· sinα · |sv|. This function is

also increasing in [0, π3 ] and its maximal value is 2, so the total length
of this part is at most 2 · |sv|.

4.7.1 Routing in G12

The stateful algorithm in Section 4.6 constructs a path between two
vertices in the half-Θ6-graph. We cannot directly follow this path in
G12, as some of the edges may have been removed. Hence, we need
to find a new path in G12 that approximates the path in the half-Θ6-
graph, taking the missing edges into account. This often amounts to
following the approximation path for edges that are in the path in the
half-Θ6-graph, but were removed to create G12. In addition, some of
the information the algorithm uses to decide which edge to follow
relies on the presence or absence of edges in the half-Θ6-graph. Since
the absence of these edges in G12 does not tell us whether or not
they were present in the half-Θ6-graph, we need to find a new way
to make these decisions.

First, note that the only information we need to determine in which
of the three cases we are, are the coordinates of s and t and whether
the preferred side has been set or not. Therefore we can still make this
distinction in G12. The following five headlines refer to steps of the
stateful algorithm on the half-Θ6-graph, and the text after a headline
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describes how to simulate that step in G12. We discuss modifications
for G9 in Section 4.7.2.

follow an edge (s , v) in a positive cone C . If the edge of
the half-Θ6-graph is still present in G12 , we simply follow it. If it is
not, the edge was removed because s is on the canonical path of v
and it is not the closest, first or last vertex on the path. Since G12 is a
supergraph of G9 , we know that all of the edges of the canonical path
are kept and every vertex on the path originally had an edge to v in
C. Therefore it suffices to traverse the canonical path in one direction
until we reach a vertex with an edge in C, and follow this edge. Since
the edges connecting v to the first and last vertices on the path are
always kept, the edge we find in this way must lead to v. Note that
the edges of the canonical path are easy to identify, as they are the
closest edges to C in cyclic order around s (one on either side of C).

This method is guaranteed to reach v, but we want to find a compet-
itive path to v. Therefore we use exponential search along the canon-
ical path: we start by following the shorter of the two edges of the
canonical path incident to s. If the endpoint of this edge does not
have an edge in C, we return to s and travel twice the length of the
first edge in the other direction. We keep returning to s and doubling
the maximum travel distance until we find a vertex x that does have
an edge in C. If x is not the closest to v, by the triangle inequality,
following its edge to v is shorter than continuing our search until
we reach the closest and following its edge. So for the purpose of
bounding the distance travelled, we can assume that x is closest to
v. Let d be the distance between s and x along the canonical path.
By using exponential search to find x, we travel at most 9 times this
distance [2] and afterwards we follow (x , v). From the proof of Theo-
rem 4.11, we know that d 6 2 · |sv | and d + |xv | 6 3 · |sv |. Thus the
total length of our path is at most 9 · d + |xv | = 8 · d + (d + |xv |) 6
16 · |sv | + 3 · |sv | = 19 · |sv |.

determine if there are edges in X0 . In the regular half-Θ6-
graph we can look at all our neighbours and see if any of them lie
in X0 . However, in G12 , these edges may have been removed. Fortu-
nately, we can still determine if they existed in the original half-Θ6-
graph. To do this, we look at the vertices of the canonical path in this
cone that are first and last in clockwise order around s. If these ver-
tices do not exist, s did not have any incoming edges in this cone, so
there can be no edges in X0 . If the first and last are the same vertex,
this was the only incoming edge to s from this cone, so we simply
check if its endpoint lies in X0 . The interesting case is when the first
and last exist and are distinct. If either of them lies in X0 , we have our
answer, so assume that both lie outside of X0 . Since they were con-
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nected to s, they cannot have t in their positive cone, so they must lie
in one of two regions, which we call S1 and S2 (see Figure 4.19).

t

s

X1
X2

X0

S1
S2

Figure 4.19: Possible regions for the first and last vertex.

If both the first and last lie in S2, there can be no edge in X0, since
any vertex of the canonical path in X0 either lies in cone C0 of the last
vertex, or would come after the last vertex in clockwise order around
s. Both yield a contradiction. If both lie in S1, a similar argument
using the first vertex applies.

On the other hand, if the first lies in S2 and the last in S1, both
X1 and X2 have to be empty, since both vertices are connected to s.
Now we are in one of two cases: either X0 is also empty, or it is not.
If there are no vertices in X0 (different from t and s), t must have had
an edge to s. On the other hand, if there are other vertices in X0, the
topmost of these vertices must have had an edge to s. In either case,
there must have been an edge in X0. This shows that we can check
whether there was an edge in X0 in the half-Θ6-graph using only the
coordinates of the first and last vertex.

follow an arbitrary edge in X0 . If the half-Θ6-graph has
edges in X0 , we simulate following an arbitrary one of these by first
following the edge to the closest vertex in the negative cone. If this
vertex is in X0 , we are done. Otherwise, we follow the canonical path
in the direction of X0 and stop once we are inside. This traverses ex-
actly the approximation path of the edge, and hence travels a distance
of at most 3 times the length of the edge.

determine if there is an edge in X1 or X2 . Since these
regions are symmetric, we will consider only the case for X1 . Since
X1 is contained in a positive cone of s, it contains at most one edge
incident to s. If the edge is present in G12 , we can simply test whether
the other endpoint lies in X1 . However, if s does not have a neighbour
in this cone (see Figure 4.20), we need to find out whether it used to
have one in the original half-Θ6-graph and if so, whether it was in X1 .
Since this step is only needed in case B after we determine that there
are no edges in X0 , we can use this information to guide our search.
Specifically, we know that if we find an edge, we should follow it.
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t

s

v

a

Figure 4.20: A vertex v in X1.

Therefore we simply attempt to follow the edge in this cone, using
the exponential search method for following an edge in a positive
cone described earlier. Let x be the first vertex we encounter that
still has an edge (x,w) in C1. If in the half-Θ6-graph, s had an edge
(s, v) in X1, then we know (from the arguments presented earlier for
following an edge in a positive cone) that w is v. As such, w must
lie in X1. We also know (from the proof of Theorem 4.11) that the
distance along the canonical path from s to x is at most 2 · |sv|, which
is bounded by 2 · |as| since v lies in X1. In this case, we follow the edge
from x to v. Conversely, if we do not find any vertex with an edge in
C1 within a distance of 2 · |as| from s, or we do, but the endpoint w
of the edge does not lie in X1, then we can return to s and conclude
that it did not have an edge in X1 in the half-Θ6-graph and therefore
X1 must be empty.

If there was an edge in X1, we travelled the same distance as if we
were simply following the edge: at most 19 · |sv|. If we return to s
unsuccessfully, we travelled at most 20 · |as|: 9 times 2 · |as| during the
exponential search and 2 · |as| to return to s.

follow the edge in X0 closest to the preferred side in

clockwise order . To follow this edge, we first follow the edge
to the closest vertex. If this lands us in X0 , we then follow the canon-
ical path towards the preferred side and stop at the last vertex on
the canonical path that is in X0 . If the closest is not in X0 , we follow
the canonical path towards X0 and stop at the first or last vertex in
X0 , depending on which side of X0 we started on. This follows the
approximation path of the edge, so the distance travelled is at most 3

times the length of the edge.

routing ratio. This shows that we can simulate the stateful
routing algorithm on G12 . As state in the message, we need to store
not only the preferred side, but also information for the exponential
search, including distance travelled. The exact routing ratios are as
follows.
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theorem 4 .12. Let u and w be two vertices, with w in a positive cone of
u. There exists a deterministic 1-local O(1)-memory routing algorithm on
G12 with routing ratio

i) 19 · 2 = 38 when routing from u to w,

ii) 19 · 5/
√
3 ≈ 54.849 when routing from w to u.

Proof. As shown above, we can simulate every edge followed by the
algorithm by travelling at most 19 times the length of the edge. The
only additional cost is incurred in case B, when we try to follow an
edge in the smaller of X1 and X2, but this edge does not exist. In this
case, we travel an additional 20 · |as|, where a is the corner closest to
s. Fortunately, this can happen at most once during the execution of
the algorithm, as it prompts the transition to case C, after which the
algorithm never returns to case B. Looking at the proof for the upper
bound in Section 4.5 (specifically, the second case in Figure 4.16b),
we observe that in the transition from case D to C, there is 2 · |as| of
unused potential. Since we are trying to show a routing ratio of 19

times the original, we can charge the additional 20 · |as| to the 38 · |as|
of unused potential.

4.7.2 Routing in G9

In this subsection, we explain how to modify the previously described
simulation strategies so that they work for G9, where the first and last
edges are not guaranteed to be present. We discuss only those steps
that rely on the presence of these edges. To route successfully in this
setting, we need to change our model slightly. We now let every vertex
store a constant amount of information in addition to the information
about its neighbours.

follow an edge (s , v) in a positive cone . Because the first
and last edges are not always kept, we cannot guarantee that the first
vertex we reach with an edge in this positive cone is still part of the
same canonical path. This means that the edge could connect to some
arbitrary vertex, far away from v. Therefore our original exponential
search solution does not work. Instead, we store one bit of informa-
tion at s (per positive cone), namely in which direction we have to
follow the canonical path to reach the closest vertex to v. Knowing
this, we just follow the canonical path in the indicated direction until
we reach a vertex with an edge in this positive cone. This vertex must
be the closest, so it gives us precisely the approximation path and
therefore we travel at most 3 · |sv |.

determine if there are edges in X0 . In G12 , this test was
based on the coordinates of the endpoints of the first and last edge.
Since these might be missing in G9 , we store the coordinates of these
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vertices at s. This allows us to perform the check without increasing
the distance travelled.

determine if there is an edge in X1 or X2 . As in the posi-
tive routing simulation, we now know where to go to find the closest.
Therefore we simply follow the canonical path in this direction from
s and stop when we reach a vertex with an edge in the correct posi-
tive cone, or when we have travelled 2 · |as |. If there is an edge, we
follow exactly the approximation path, giving us 3 times the length
of the edge. If there is no edge, we travel 2 · |as | back and forth, for
a total of 4 · |as |.

routing ratio. Since the other simulation strategies do not rely
on the presence of the first or last edges, we can now analyze the
routing ratio obtained on G9 .

theorem 4 .13. Let u and w be two vertices, with w in a positive cone
of u. By storing O(1) additional information at each vertex, there exists
a deterministic 1-local O(1)-memory routing algorithm on G9 and G12
with routing ratio

i) 3 · 2 = 6 when routing from u to w,

ii) 3 · 5/
√
3 ≈ 8 .661 when routing from w to u.

Proof. The simulation strategy for G12 followed the approximation
path for each edge, except when following an edge in a positive cone.
Since our new strategy follows the approximation path there as well,
our new routing ratio is only 3 times the one for the half-Θ6-graph.
Note that this is still sufficient to charge the additional 4 · |sa | trav-
elled to the transition from case B to C, which has 3 · 2 · |as | of oth-
erwise unused potential. Since G9 is a subgraph of G12 , this strategy
works on G12 as well.

4.8 conclusions

We presented a competitive deterministic 1-local 0-memory routing
algorithm on the half-Θ6-graph. We also presented matching lower
bounds on the routing ratio for any deterministic k-local 0-memory
algorithm, showing that our algorithm is optimal. Since any triangu-
lation can be embedded as a half-Θ6-graph using Schnyder’s embed-
ding [24], this shows that any triangulation has an embedding that
admits a competitive routing algorithm. An interesting open problem
here is whether this approach can be extended to other theta-graphs.
In particular, we recently extended the proof for the spanning ratio
of the half-Θ6-graph to theta-graphs with 4k + 2 cones, for integer
k > 0 [7]. It would be interesting to see if it is possible to find optimal
routing algorithms for these graphs as well.
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We further extended our routing algorithm to work on versions
of the half-Θ6-graph with bounded maximum degree. As far as we
know, these are the first competitive routing algorithms on bounded-
degree plane graphs. There are several problems here that are still
open. For example, while we found a matching lower bound for neg-
ative routing in the regular half-Θ6-graph, we do not have one for
the version with bounded degree. Can we find this, or is it possible
to improve the routing algorithm further?

Bonichon et al. [5] also introduced a version of the half-Θ6-graph
with maximum degree 6. This graph differs fromG12 andG9 in that it
is not a subgraph of the half-Θ6-graph: to maintain the spanning ratio
while removing even more edges, they add certain shortcut edges that
were not part of the original half-Θ6-graph. It would be interesting to
see if our routing algorithms could be extended to work on this graph.
This would most likely require locally detecting shortcut edges, and
finding a way to route ‘around’ the newly removed edges.
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F L I P S I N T R I A N G U L AT I O N S





5
A H I S T O RY O F F L I P S I N C O M B I N AT O R I A L
T R I A N G U L AT I O N S

Given two combinatorial triangulations, how many edge flips are nec-
essary and sufficient to convert one into the other? This question has
occupied researchers for over 75 years. We provide a comprehensive
survey, including full proofs, of previous attempts to answer it, before
presenting our own contribution in Chapter 6.

This chapter was first published as an invited chapter in the pro-
ceedings of the XIV Spanish Meeting on Computational Geometry
(EGC 2011) [3], and contains joint work with Prosenjit Bose.

5.1 introduction

A triangulation is a simple planar graph that is maximal, which means
that adding any other edge would make the graph non-planar. This
implies that every face is a triangle (a cycle of length 3). In any tri-
angulation, an edge e = (a,b) is adjacent to two faces: abc and abd.
An edge flip consists of deleting the edge e from the triangulation
and adding the other diagonal of the resulting quadrilateral (in this
case (c,d)) to the graph, so that it remains a triangulation. Figure 5.1
shows an example of an edge flip. An edge e is not flippable if (c,d)
is already an edge of the triangulation. If the vertices have fixed co-
ordinates in the plane and edges are drawn as straight-line segments
between their endpoints, the restriction that the new edge may not
introduce any crossings is usually added. This is commonly referred
to as the geometric setting. However, we focus on the problem in the
combinatorial setting, where we are only given a combinatorial em-
bedding of the graph (the clockwise order of edges around each ver-
tex). Even in this setting, not all edges in a triangulation are flippable.
Gao et al. [5] showed that in every n-vertex triangulation at least
n− 2 edges are always flippable and that there exist some triangula-
tions where at most n− 2 edges are flippable. If the triangulation has

c

d

a

b
c

d

a

b

Figure 5.1: An example triangulation before and after flipping edge (a , b).

75
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minimum degree at least 4, they showed that there are at least 2n+ 3

flippable edges and the bound is tight in certain cases.
Note that by flipping an edge e, we transform one triangulation

into another. This gives rise to the following question: Can any n-
vertex triangulation be transformed into any other n-vertex triangu-
lation through a finite sequence of flips? This question was first ad-
dressed by Wagner [11] in 1936, who answered it in the affirmative.
Although it is well known that the number of n-vertex triangulations
is exponential in n, Wagner’s inductive proof gives rise to an algo-
rithm that can achieve this transformation using at most 2n2 edge
flips. The key element of Wagner’s proof is that he circumvents the
issue of graph isomorphism by showing how to convert any given
triangulation into a fixed canonical triangulation that can be easily
recognized. The downside of this approach is that one may use many
more flips than necessary to convert one triangulation into another.
In fact, it is possible that two triangulations are one edge flip away
from each other, but Wagner’s approach uses a quadratic number of
flips to convert one into the other.

The notion of two triangulations being “close" to each other in
terms of number of flips can be expressed through a flip graph. The
flip graph has a vertex for each distinct n-vertex triangulation and an
edge between two vertices if their corresponding triangulations dif-
fer by a single flip. Two triangulations are considered distinct if they
are not isomorphic. Questions about the flip operation can be viewed
as questions on the flip graph. Asking whether any n-vertex trian-
gulation can be converted into any other via flips is asking whether
the flip graph is connected. Asking for the smallest number of flips
required to convert one triangulation into another is asking for the
shortest path in the flip graph between the two vertices representing
the given triangulations. The maximum, minimum and average de-
gree in the flip graph almost correspond to the maximum, minimum
and average number of flippable edges, with the caveat that differ-
ent edges might result in isomorphic triangulations when flipped.
One can also ask what the chromatic number of the flip graph is,
whether it is Hamiltonian, etc. Many of these questions have been
addressed in the literature. The survey by Bose and Hurtado gives a
good overview of the field [2]. In this chapter, we focus mainly on
attempts to determine the diameter of the flip graph. In other words,
how many edge flips are sufficient and sometimes necessary to trans-
form a given triangulation into any other? Sections 5.2, 5.3, and 5.4
detail the techniques used to provide upper bounds for this question,
while Section 5.5 presents a lower bound. Our own contributions to
this question are presented in the next chapter.
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5.2 wagner’s bound

In 1936, Wagner [11] first addressed the problem of determining
whether one can convert a given triangulation into another via edge
flips. Although his paper is entitled “Remarks on the four-colour
problem”, it contains a proof that every planar graph has a straight-
line embedding, defines the edge flip operation (or diagonal transfor-
mation, as Wagner calls it) and shows that any two triangulations can
be transformed into each other by a finite series of edge flips before
finishing with a result on the number of valid colourings of a graph.

To prove that any pair of triangulations can be transformed into
each other via flips, Wagner first introduces the canonical triangulation,
which is the unique triangulation with two dominant vertices (see
Figure 5.2a). We will denote the canonical triangulation on n vertices
by 4n.

(a)
a b

v

u

w

(b)

Figure 5.2: (a) The canonical triangulation on 8 vertices. (b) A face uwv such
that u and w are neighbours of a, while v is not. Flipping the
edge (u,w) brings us closer to the canonical triangulation.

lemma 5 .1 (Wagner [11], Theorem 4). Any triangulation on n vertices
can be transformed into 4n by a sequence of at most n2 − 7n+ 12 flips.

Proof. To transform a given triangulation into the canonical one, we
fix an outer face and pick two of its vertices, say a and b, to become
the dominant vertices in the canonical triangulation. If a is not ad-
jacent to all other vertices, there exists a face uwv such that u and
w are neighbours of a, while v is not. This situation is illustrated in
Figure 5.2b. We flip the edge (u,w).

In his original proof, Wagner argues that this gives a finite sequence
of flips that increases the degree of a by one. He simply states that
this sequence is finite and does not argue why (u,w) is flippable in
the first place. We provide these additional arguments below.
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We consider two cases:

• auw is a face. In this case, the flip will result in the edge (a, v),
increasing the degree of a by one. This flip is valid, as v was not
adjacent to a before the flip.

• auw is not a face. In this case the flip is also valid, since auw
forms a triangle that separates v from the vertices inside. The
flip does not increase the degree of a, but it does increase the
degree of v and since the number of vertices is finite, the degree
of v cannot increase indefinitely. Therefore, we must eventually
arrive to the first case, where we increase the degree of a by
one.

Since the same strategy can be used to increase the degree of b
as long as it is not dominant, this gives us a sequence of flips that
transforms any triangulation into the canonical one. Every vertex of a
triangulation has degree at least 3, so the degree of a and b needs to
increase by at most n− 4. Since we might need to increase the degree
of v from 2 until it is adjacent to all but one of the neighbours of a or
b, the total flip sequence has length at most

2

n−2∑
i=3

(i− 2) = n2 − 7n+ 12.

By using the canonical triangulation as an intermediate form, the
main result follows.

theorem 5 .2 (Wagner [11], Theorem 4). Any pair of triangulations T1
and T2 on n vertices can be transformed into each other by a sequence of at
most 2n2 − 14n+ 24 flips.

Proof. By Lemma 5.1, we have two sequences of flips, S1 and S2,
that transform T1 and T2 into the canonical triangulation, respectively.
Since a flip can be reversed, we can use S1, followed by the reverse of
S2 to transform T1 into T2. Since both S1 and S2 have length at most
n2− 7n+ 12, the total sequence uses at most 2n2− 14n+ 24 flips.

A simpler and more precise proof that also gives a quadratic upper
bound was given by Negami and Nakamoto [9].

lemma 5 .3 (Negami and Nakamoto [9], Theorem 1). Any triangu-
lation on n vertices can be transformed into 4n by a sequence of O(n2)
flips.

Proof. Let abc be the outer face. Suppose we wish to make both a and
b dominant. Instead of showing that a sequence of flips can always
increase the degree of a or b, we will show that it is always possible
to find one flip that decreases the degree of c. Once c has degree 3, the
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a b

c

v1
v2

v3

Figure 5.3: The exterior triangle abc with the first three neighbours of c
in counter-clockwise order. Depending on the presence of edge
(a, v2), either (c, v1) or (c, v2) is flipped.

same argument can be used to find a flip that decreases the degree of
c’s neighbour inside the triangle until it has degree 4, and so on.

To determine which edge to flip, let a, v1, v2, . . . ,b be the neigh-
bours of c in counter-clockwise order. This situation is illustrated in
Figure 5.3. If a and v2 are not adjacent, we can flip (c, v1) into (a, v2),
reducing the degree of c. If a and v2 are adjacent, av2c forms a cycle
that separates v1 and v3, so we can flip (c, v2) to reduce c’s degree. We
continue this until c has degree 3, at which point we apply the same
argument to reduce the degree of c’s remaining neighbour inside the
triangle until it has degree 4. Then we continue with the neighbour
of v1 inside the triangle av1b, and so on, until all vertices except for
a and b have degree 3 or 4, at which point we have obtained the
canonical triangulation.

5.3 komuro’s bound

Since Wagner’s result, it remained an open problem whether the
diameter of the flip graph was indeed quadratic in the number of
vertices. Komuro [7] showed that in fact the diameter was linear by
proving a linear upper and lower bound. We present the argument
for the upper bound in this section and discuss the lower bound in
Section 5.5.

Komuro used Wagner’s approach of converting a given triangula-
tion into the canonical triangulation. Given an arbitrary triangulation,
the key is to bound the number of flips needed to make two vertices,
say a and b, dominant. If there always exists one edge flip that in-
creases the degree of a or b by 1, then at most 2n− 8 flips are suffi-
cient since dominant vertices have degree n− 1 and all vertices in a
triangulation have degree at least 3. However, this is not always the
case. Figure 5.4 shows a triangulation where no single flip increases
the degree of a or b. Komuro used the following function to bound
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a b

u

u1

h1

h2

Figure 5.4: No single edge can be flipped to increase the degree of a or b.

the number of flips: dG(a,b) = 3deg(a) + deg(b). He showed that
there always exists either one edge flip where dG(a,b) goes up by at
least 1 or two edge flips where dG(a,b) goes up by at least 2. The clev-
erness of the function is that in some cases, two edge flips increase
the degree of a by 1 but decrease the degree of b by 1. However, since
the function increases by 2, it still increases by at least 1 per flip. Since
dG(a,b) 6 4n− 4, we have that 4n− 4− dG(a,b) is an upper bound
on the number of flips required to make a and b dominant.

lemma 5 .4 (Komuro [7], Lemma 2). Let G be a triangulation on n
vertices and let a,b be any pair of adjacent vertices of G. Then G can be
transformed into the canonical triangulation 4n with a and b as dominant
vertices with at most 4n− 4− (3deg(a) + deg(b)) edge flips.

Proof. In a triangulation, every vertex must have degree at least 3. Let
uab be a face adjacent to ab. We consider two cases: deg(u) = 3 and
deg(u) > 3. We begin with the latter. Since deg(u) > 4, let a,b,w1,w2
be four consecutive neighbours of u in counter-clockwise order. If b
is not adjacent to w2, then flipping edge (u,w1) increases deg(b)
by 1 and thus dG(a,b) by 1. If b is adjacent to w2, then ubw2 is a
separating triangle (a cycle of length 3 whose removal disconnects
the graph) that separates a from w1. Therefore, flipping edge (u,b)
decreases deg(b) by 1 and increases deg(a) by 1. Thus, with one flip
dG(a,b) increases by 2.

Now consider the case when deg(u) = 3. Let u1 be the unique
vertex adjacent to u, a, and b. We now have 3 cases to consider:
deg(u1) = 3, deg(u1) > 5, or deg(u1) = 4. If deg(u1) = 3, then
the graph is isomorphic to K4, which is44. If deg(u1) > 5, let a, u, b,
h1, and h2 be five consecutive neighbours of u1 in counter-clockwise
order. If b is not adjacent to h2, then flipping the edge (u1,h1) in-
creases deg(b) by 1 and thus dG(a,b) by 1. If b is adjacent to h2, then
u1bh2 is a separating triangle that separates u and a from h1 (see
Figure 5.4). Therefore, flipping edges (u1,b) and (u1,u) decreases
deg(b) by 1 and increases deg(a) by 1. Thus, with two flips dG(a,b)
increases by 2.
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Finally, if deg(u1) = 4, then there is unique vertex u2 adjacent
to a, u1, and b. If deg(u2) = 3, the graph is isomorphic to 45. If
deg(u2) > 5 we apply the same argument as when deg(u1) > 5. If
deg(u2) = 4, we obtain another unique vertex u3. This process ends
with un−3, at which point a and b are dominant.

Since dG(a,b) increases by at least 1 for one flip and at least 2

for two flips, we note that the total number of flips does not exceed
d4n(a,b) − dG(a,b) = 4n− 4− (3deg(a) + deg(b)) as required.

Using this lemma, Komuro proved the following theorem.

theorem 5 .5 (Komuro [7], Theorem 1). Any two triangulations with
n vertices can be transformed into each other by at most 8n− 54 edge flips
if n > 13 and at most 8n− 48 edge flips if n > 7.

Proof. Given a triangulation G on 7 6 n 6 12 vertices, one can prove
by contradiction that either G is one flip from 4n or there exists
an edge (a,b) where both vertices have degree at least 5, implying
that dG(a,b) > 20. This gives an upper bound of 4n− 24 to convert
G to 4n, which gives an upper bound of 8n − 48 to convert any
triangulation to any other via the canonical triangulation. Moreover,
for n > 13, either G is one flip from canonical or there exists an edge
(a,b) where a has degree at least 6 and b has degree at least 5. This
means that dG(a,b) > 23. The result follows.

5.4 mori et al . ’s bound

In 2001, Mori, Nakamoto and Ota [8] improved the bound by Komuro
to 6n− 30. They used a two-step approach by finding a short path to
a strongly connected kernel, which consists of all Hamiltonian trian-
gulations. An n-vertex triangulation is Hamiltonian if it contains a
Hamiltonian cycle, i.e. a cycle of length n. The general idea of the
proof is to find a fast way to make any triangulation Hamiltonian
and then use the Hamiltonian cycle to decompose the graph into two
outerplanar graphs. These have the following nice property.

lemma 5 .6 (Mori et al. [8], Lemma 8 and Proposition 9). Any vertex
v in a maximal outerplanar graph on n vertices can be made dominant by
n− 1− deg(v) flips.

Proof. If v is not dominant, there is a triangle vxy where (x,y) is not
an edge of the outer face. Then we can flip (x,y) into (v, z), where
z is the other vertex of the quadrilateral formed by the two triangles
that share (x,y). This flip must be legal, since if (v, z) was already an
edge, the graph would have K4 as a subgraph, which is impossible
for outerplanar graphs. Since each such flip increases the degree of v
by one, n− 1− deg(v) flips are both necessary and sufficient.
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With this property, Mori et al. showed that it is possible to quickly
transform any Hamiltonian triangulation into the canonical form by
decomposing it along the Hamiltonian cycle into two outerplanar
graphs. Interestingly, this exact approach was already used 10 years
earlier by Sleator, Tarjan and Thurston [10] to prove a Θ(n logn)
bound on the diameter of the flip graph when the vertices are la-
belled. Note that this was even before the linear bound by Komuro
that was discussed in the previous section. However, they did not
state their result in terms of unlabelled triangulations and it seems
that both Komuro and Mori et al. were unaware of this earlier work.

G G1 G2

a a

Figure 5.5: The decomposition of a Hamiltonian graph G into two outerpla-
nar graphs G1 and G2. The vertex a has degree 2 in G2.

theorem 5 .7 (Mori et al. [8], Proposition 9). Any Hamiltonian trian-
gulation on n vertices can be transformed into4n by at most 2n− 10 flips,
preserving the existence of Hamiltonian cycles.

Proof. Given a Hamiltonian triangulation G with Hamiltonian cycle
C, we can decompose it into two outerplanar graphs G1 and G2, such
that each contains C and all edges on one side of C. This is illustrated
in Figure 5.5. Let a be a vertex of degree 2 in G2. We are going to
make a dominant in G1. Since G is 3-connected and a has no addi-
tional neighbours in G2, the degree of a in G1 is at least 3. Thus by
Lemma 5.6, we can make a dominant by at most n− 4 flips. Each of
these flips is valid, as a is not connected to anyone in G2, except for
its neighbours on C.

Now consider the subgraph G ′2 = G2 \ {a}. Since a has degree 2 in
G2, G ′2 is still outerplanar, so by applying Lemma 5.6 again we can
make a vertex of G ′2 dominant as well, which gives us the canonical
triangulation. Since G ′2 has n− 1 vertices and it always has a vertex
of degree at least 4 (provided that n > 6), we need at most n− 6 flips
for this. Since we did not flip any of the edges on C, the theorem
follows.

This shows that the Hamiltonian triangulations are closely con-
nected, so all we need to figure out is how we can quickly make a
triangulation Hamiltonian. Here, we turn to an old result by Whit-
ney [12] that shows that all 4-connected triangulations are Hamilto-
nian. Since a triangulation is 4-connected if and only if it does not
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have any separating triangles (cycles of length 3 whose removal dis-
connects the graph; see Lemma 6.15 for a proof), by removing all sep-
arating triangles from a triangulation, we make it 4-connected and
therefore Hamiltonian. Fortunately, separating triangles are easy to
remove using flips, as the following lemmas show.

lemma 5 .8 (Mori et al. [8], Lemma 11). In a triangulation with n > 6
vertices, flipping any edge of a separating triangle D = abc will remove
that separating triangle. This never introduces a new separating triangle,
provided that the selected edge belongs to multiple separating triangles or
none of the edges of D belong to multiple separating triangles.

Proof. Since D is separating and the newly created edge connects a
vertex on the inside to a vertex on the outside, the flip is always
legal. Since the flip removes an edge of D, it is no longer a separating
triangle. Now suppose that we flipped (a,b) to a new edge (x,y)
and introduced a new separating triangle D ′. Then D ′ must be xyc.
But since n > 6 and our construction so far uses only 5 vertices, one
of the faces ayc, byc, axc, or bcx must be a separating triangle as
well. This means that either (a, c) or (b, c) is an edge that belongs to
multiple separating triangles, while (a,b) only belongs to D, which
contradicts the choice of (a,b).

lemma 5 .9 (Mori et al. [8], Lemma 11). Any triangulation on n vertices
can be made 4-connected by at most n− 4 flips.

Proof. We will show that a triangulation can have at most n− 4 sep-
arating triangles, the result follows by Lemma 5.8. The proof is by
induction on n. For the base case, let n = 4. Then our graph must
be K4, which has no separating triangles as required. For the in-
duction we can assume that our graph G has a separating triangle
T which partitions G into two components G1 and G2. By induc-
tion, G1 and G2 have at most n1 − 4 and n2 − 4 separating trian-
gles, where n1 and n2 are the number of vertices in G1 and G2, re-
spectively, including the vertices of T . Therefore G can have at most
n1 − 4 + n2 − 4 + 1 = (n1 + n2 − 3) − 4 = n − 4 separating trian-
gles.

Now we can prove the main result.

theorem 5 .10 (Mori et al. [8], Theorem 4). Any two triangulations on
n vertices can be transformed into each other by at most 6n− 30 flips.

Proof. The connection between Lemma 5.9 and Theorem 5.7 is an old
proof by Whitney [12] that any 4-connected triangulation is Hamilto-
nian. Therefore we can transform any triangulation into the canonical
form by at most n−4+2n−10 = 3n−14 flips. By looking carefully at
the proof of Theorem 5.7, we see that if the graph is 4-connected, the
first vertex (vertex a) is guaranteed to have degree at least 4, which
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brings the bound down to 3n− 15 flips to the canonical triangulation
and 6n− 30 flips between any pair of triangulations.

Note that, although finding a Hamiltonian cycle is NP-hard in gen-
eral [6], there exists a linear-time algorithm by Asano et al. for finding
a Hamiltonian cycle in any 4-connected triangulation [1]. Thus, the
assumption in the proof that the Hamiltonian cycle is given is not a
practical concern when implementing the resulting algorithm.

5.5 lower bounds

In addition to the upper bound described in Section 5.3, Komuro [7]
also gave a lower bound on the diameter of the flip graph, based on
the maximum degree of the vertices in the graph.

theorem 5 .11 (Komuro [7], Theorem 5). Let G be a triangulation on
n vertices. Then at least 2n− 2∆(G) − 3 flips are needed to transform G

into the canonical triangulation, where ∆(G) denotes the maximum degree
of G.

Proof. Let a and b be the two vertices of degree n− 1 in the canonical
triangulation. Each flip increases the degree in G of either a or b
by at most one. The only possible exception is the flip that creates
the edge (a,b), which increases the degree of both vertices by one.
Since the initial degree of a and b is at most ∆(G), we need at least
2(n− 1−∆(G)) − 1 = 2n− 2∆(G) − 3 flips.

Since there are triangulations that have maximum degree 6, this
gives a lower bound of 2n− 15 flips. It is interesting that one of the
triangulations in the lower bound is the canonical form. This implies
that either the lower bound is very far off, or the canonical triangula-
tion is a bad choice of intermediate triangulation. It also means that
as long as we use this canonical form, the best we can hope for is
an upper bound of 4n− 30 flips. Komuro also gave a lower bound
on the number of flips required to transform between any pair of
triangulations, again based on the degrees of the vertices.

theorem 5 .12 (Komuro [7], Theorem 4). Let G and G ′ be triangula-
tions on n vertices. Let v1, . . . , vn and v ′1, . . . , v ′n be the vertices of G and
G ′, respectively, ordered by increasing degree. Then at least 14D(G,G ′) flips
are needed to transform G into G ′, where D(G,G ′) =

∑n
i=1 |deg(vi) −

deg(v ′i)|.

Proof. Let σ be a mapping between the vertices of G and G ′ and sup-
pose we transform G into G ′ using flips, such that vi ∈ G becomes
v ′σ(i) ∈ G ′. Since every flip changes the degree of a vertex by one, we
need at least |deg(vi) − deg(v ′σ(i))| flips to obtain the correct degree
for v ′σ(i). However, each flip affects the degrees of 4 vertices, giving a
bound of 14

∑n
i=1 |deg(vi) −deg(v

′
σ(i))| flips. Our actual lower bound
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is the minimum of this bound over all mappings σ. Mapping every
vertex to a vertex with the same rank when ordered by degree (i.e.
σ(i) = i) achieves this minimum.

This was the best known lower bound for almost twenty years, but
in a recent pre-print, Frati [4] presented an improved lower bound,
based on the notion of common edges.

theorem 5 .13 (Frati [4], Lemma 1). Let G and G ′ be triangulations on
n vertices. Let σ be the bijection between vertices ofG andG ′ that maximizes
the number of common edges, and let c(σ) be that number. Then any flip
sequence that transforms G into G ′ has length at least 3n− 6− c(σ).

Proof. At the end of the flip sequence, the two graphs will be iso-
morphic, so they will have all 3n− 6 edges in common. Since each
flip can introduce at most one new common edge, the lower bound
follows.

Frati then constructs a graph Glb that shares at most 2n3 edges with
the canonical form, regardless of the bijection used. The graph con-
sists of an arbitrary triangulation on n

3 + 2 vertices with maximum
degree six, with a degree-three vertex inserted in each face. The ver-
tices of the original triangulation are colored blue, while the inserted
vertices are colored red. Note that the red vertices form an indepen-
dent set.

theorem 5 .14 (Frati [4], Theorem 1). The diameter of the flip graph is
at least 7n3 − 34.

Proof. Consider any bijection between the vertices of Glb and 4n.
Since the blue vertices had degree at most six before the red vertices
were inserted, the maximum degree of Glb is twelve. Thus, at most
24 of the edges incident to the dominant vertices of 4n can be com-
mon. Now consider the chain of edges not incident to the dominant
vertices. Since no two red vertices in Glb are adjacent, every edge on
this chain must have one endpoint mapped to a blue vertex. But since
there are only n

3 + 2 blue vertices in Glb, no more than 2n
3 + 4 edges

on the chain can be common. Thus, the maximum number of com-
mon edges between Glb and 4n is 2n3 + 28, which by Theorem 5.13

gives a lower bound of 3n− 6− (2n3 + 28) = 7n
3 − 34 flips.
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6
M A K I N G T R I A N G U L AT I O N S 4 - C O N N E C T E D
U S I N G F L I P S

In this chapter, we show that any combinatorial triangulation on n
vertices can be transformed into a 4-connected one using at most
b(3n− 9)/5c edge flips. We also give an example of an infinite family
of triangulations that requires this many flips to be made 4-connected,
showing that our bound is tight. In addition, for n > 19, we improve
the upper bound on the number of flips required to transform any 4-
connected triangulation into the canonical triangulation (the triangu-
lation with two dominant vertices), matching the known lower bound
of 2n− 15. Our results imply a new upper bound on the diameter of
the flip graph of 5.2n− 33.6, improving on the previous best known
bound of 6n− 30.

This chapter was first published in the proceedings of the 23rd
Canadian Conference on Computational Geometry (CCCG 2011) [4],
and was subsequently invited and accepted to a special issue of Com-
putational Geometry: Theory and Applications [5]. It contains joint
work with Prosenjit Bose, Dana Jansens, André van Renssen and
Maria Saumell.

6.1 introduction

As reviewed in Chapter 5, a lot of research has gone into the following
question: “Given two combinatorial triangulations, how can we trans-
form one into the other using edge flips?" The best known algorithm,
developed independently by Sleator et al. [11] and Mori et al. [9],
consists of two steps. In the first step, the given triangulation is trans-
formed into a 4-connected one, using at most n− 4 flips. Since a 4-
connected triangulation is always Hamiltonian (an old result by Whit-
ney [12]; in fact, the cycle can even be found quickly [2]), the resulting
Hamiltonian triangulation is then transformed into the canonical one
by at most 2n− 11 flips, using a decomposition into two outerplanar
graphs that share a Hamiltonian cycle as their respective outer faces.
Thus 6n− 30 flips are sufficient to transform any triangulation into
any other. The algorithm and analysis are described in more detail in
Section 5.4.

The upper bound on the number of flips used to make the trian-
gulation 4-connected arises from the fact that any separating triangle
can be removed by flipping one of its edges, and that a triangulation
can have at most n − 4 separating triangles. However, this analysis
does not take advantage of the fact that if two separating triangles

87
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share an edge, a single flip can remove both of them. In this chap-
ter, we combine this observation with an edge charging scheme to
show that any triangulation can be made 4-connected using at most
b(3n− 9)/5c flips.

The problem of making triangulations 4-connected has also been
studied in the setting where many edges may be flipped simul-
taneously, provided none of them are part of the same triangle.
Bose et al. [3] showed that any triangulation can be made 4-connected
by one such simultaneous flip and that O(logn) simultaneous flips
are sufficient and sometimes necessary to transform between two
given triangulations.

The remainder of this chapter is organized as follows. In Section 6.2,
we prove the new upper bound on the number of flips to make a trian-
gulation 4-connected, thereby improving the first step of the construc-
tion by Mori et al. For n > 19, we also improve the bound on the sec-
ond step of their algorithm to match the lower bound by Komuro [8].
This results in a new upper bound on the diameter of the flip graph
of 5.2n− 33.6. We then show in Section 6.3 that, when n is a multiple
of 5, there are triangulations that require (3n− 10)/5 = b(3n− 9)/5c
flips to be made 4-connected, showing that our bound is tight. Sec-
tion 6.5 contains proofs for various technical lemmas that are used in
the proof of the upper bound.

After completion of this chapter, Cardinal et al. [6] further im-
proved the upper bound on the diameter of the flip graph to 5n− 23

by proving that a triangulation can be directly transformed into a
Hamiltonian one using at most n/2 flips. This allowed them to con-
struct an arc drawing (a plane drawing with all vertices on a line and
edges represented by a connected sequence of semi-circles centred on
the line) for any planar graph, in which all edges are drawn as a sin-
gle semi-circle, except for n/2 edges that are drawn as a sequence of
two semicircles. In addition, they showed that there always exists a
single simultaneous flip of fewer than 2n/3 edges that makes a trian-
gulation 4-connected, and that this bound is tight up to an additive
constant.

6.2 upper bound

In this section we prove an upper bound on the number of flips to
make any given triangulation 4-connected. Specifically, we show that
b(3n− 9)/5c flips always suffice. The proof references several techni-
cal lemmas whose proofs can be found in Section 6.5. We also prove
that any 4-connected triangulation can be transformed into the canon-
ical form using a worst-case optimal number of 2n− 15 flips. We start
by providing more precise definitions of relevant concepts.
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definitions Our input consists of a triangulation T , along with
a combinatorial embedding specifying the clockwise order of edges
around each vertex of T . In addition, one of the faces of T is marked
as the outer face. If an edge of the outer face is flipped, one of the two
new faces is designated as the new outer face. A separating triangle D
is a cycle in T of length three whose removal splits T into two (non-
empty) connected components. We call the component that contains
vertices of the outer face the exterior of D, and the other component
the interior ofD. A vertex in the interior ofD is said to be insideD and
likewise, a vertex in the exterior of D is said to be outside D. An edge
is inside a separating triangle if one or both endpoints are inside.

A separating triangle A contains another separating triangle B if
and only if the interior of B is a subgraph of the interior of A with a
strictly smaller vertex set. If A contains B, A is the containing triangle.
A separating triangle that is contained by the largest number of sep-
arating triangles in T is called deepest. Since containment is transitive,
a deepest separating triangle cannot contain any separating triangles,
as these would have a higher number of containing triangles.

algorithm We use the same general strategy as the earlier algo-
rithms - flip an edge of a separating triangle until there are none left.
This strategy is guaranteed to terminate by the following Lemma (see
Section 5.4, Lemma 5.8 for a proof).

lemma 6 .1 (Mori et al. [9], Lemma 11). In a triangulation on n > 6
vertices, flipping any edge of a separating triangle D will remove that sep-
arating triangle. This never introduces a new separating triangle, provided
that the selected edge belongs to multiple separating triangles or none of the
edges of D belong to multiple separating triangles.

Since a triangulation is 4-connected if and only if it does not have
any separating triangles (see Lemma 6.15), this strategy transforms
any triangulation into one that is 4-connected. With this in mind, our
algorithm works as follows. The reasoning behind some of the choices
will become clear during the analysis.

algorithm 1 (Make 4-connected)

• Find a deepest separating triangle D, preferring ones that do
not use an edge of the outer face.

◦ If D does not share any edge with other separating trian-
gles, flip an edge of D that is not on the outer face.

◦ If D shares exactly one edge with another separating trian-
gle, flip this edge.

◦ If D shares multiple edges with other separating triangles,
flip one of the shared edges that is not shared with a con-
taining triangle (such an edge always exists in this case).

• Repeat until T is 4-connected.
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analysis Fundamentally, our analysis relies on counting edges.
We separate the edges into two categories: edges that are part of
some separating triangle, and edges that are not. We call the latter
free edges. If there were no free edges, a triangulation would have
sufficiently many edges for each of the maximum n − 4 separating
triangles (from Lemma 5.9) to be edge-disjoint. And since we need to
flip at least one edge of every separating triangle in order to make
the triangulation 4-connected, we would require n− 4 flips. Thus, to
get a better upper bound, we need to show that this situation is im-
possible. The following lemma does so, by showing that the presence
of a separating triangle forces some other edges to be free.

v
e

D ′

e ′

Figure 6.1: Every vertex of a separating triangle is incident to a free edge
inside the triangle.

lemma 6 .2. In a triangulation, every vertex v of a separating triangle D
is incident to at least one free edge inside D.

Proof. Consider one of the edges of D that is incident to v. Since D
is separating, its interior cannot be empty and since D is part of a
triangulation, there is a triangular face inside D that uses this edge.
Let e be the other edge of this face that is incident to v (see Figure 6.1).

The remainder of the proof is by induction on the number of sepa-
rating triangles contained in D. For the base case, assume that D does
not contain any other separating triangles. Then emust be a free edge
and we are done.

For the induction step, there are two further cases. If e does not
belong to a separating triangle, we are again done, so assume that
e belongs to a separating triangle D ′. Since D ′ is itself a separating
triangle contained in D and containment is transitive, the number of
separating triangles contained in D ′ must be strictly smaller than the
number contained in D. Since v is also a vertex of D ′, our induction
hypothesis tells us that there is a free edge incident to v inside D ′.
Since D ′ is contained in D, this edge is also inside D.

This immediately gives us a better bound on the maximum number
of edge-disjoint separating triangles.

corollary 6 .3. If all separating triangles are edge-disjoint, a triangula-
tion on n vertices can contain at most (3n− 10)/5 separating triangles.

Proof. We prove this by assigning five edges to each separating trian-
gle without assigning any edge twice. First, each edge of a separating
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Figure 6.2: Each edge-disjoint separating triangle can be assigned five edges:
the three edges of the triangle (squares) and two free edges inci-
dent to unshared vertices (circles).

triangle is assigned to that triangle. Since they are all edge-disjoint,
this does not assign any edge twice. Next, we turn to the free edges
identified by Lemma 6.2. We start with the topmost separating trian-
gles, i.e. those who are not contained in any other separating triangle,
and assign all three free edges (one per vertex) to them. Note that this
assigns six edges to each of these triangles, instead of five – a fact we
use later to tighten the bound.

Now consider a separating triangle D that is contained in some
other separating triangles. We have to be careful to avoid free edges
that have already been assigned to triangles that contain it. But since
all separating triangles are edge-disjoint, D can share at most one
vertex with a separating triangle that contains it (see Lemma 6.19).
Thus, we can safely assign the two free edges that are incident to the
unshared vertices to the triangle (see Figure 6.2).

Since we assigned five edges to each separating triangle, and a tri-
angulation has exactly 3n− 6 edges, there can be at most (3n− 6)/5

edge-disjoint separating triangles. However, recall that each topmost
separating triangle was actually assigned six edges. And any edge
that is not contained in a separating triangle has not been assigned at
all. To prove a bound of (3n− 10)/5 separating triangles, we need to
find at least four edges between these two categories.

Consider the edges of the outer face. These edges are either free, or
part of a topmost separating triangle. If all three edges of the outer
face are free, then either there are no separating triangles, or there is
at least one topmost separating triangle whose edge we can also use.
In either case, we are done.

If only two edges of the outer face are free, there is a topmost
separating triangle that uses the other edge, giving us three free edges
already. But this triangle cannot use the vertex shared by the two free
edges. Since this vertex has degree at least three, it is incident to
either a free edge, or another topmost separating triangle, both of
which give us four free edges.

Finally, if one or no edges of the outer face are free, we have three
free edges between the edges of the outer face and the topmost sepa-
rating triangles, so we just need to find one more. Consider a vertex v
shared by two non-free edges of the outer face. Let D1 and D2 be the
topmost separating triangles that use these edges. Since D1 and D2
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cannot share an edge, there is at least one face adjacent to v that lies
between D1 and D2. Consider the edge of that face opposite from v.
If it is free, we are done. If it is not free, it must be used by another
topmost separating triangle that does not use any edge of the outer
face, also giving us a fourth free edge. Therefore a triangulation can
contain no more than (3n− 10)/5 separating triangles.

Thus, if all separating triangles are edge-disjoint, we only need
(3n − 10)/5 flips to make a triangulation 4-connected. But what if
some of the separating triangles do share edges? As it turns out, we
can show a similar upper bound on the number of flips needed by
the algorithm we presented earlier.

theorem 6 .4. A triangulation on n > 6 vertices can be made 4-connected
using at most b(3n− 9)/5c flips.

Proof. We prove this using a charging scheme. We begin by placing
a coin on every edge of the triangulation. Then we flip the edges
indicated by the algorithm until no separating triangles remain, while
paying five coins for every flip. The exact charging scheme will be
described later. During this process, we maintain two invariants:

• Every edge of a separating triangle has a coin.

• Every vertex of a separating triangle has an incident free edge
that is inside the triangle and has a coin.

These invariants have several nice properties. First, an edge can ei-
ther be a free edge or belong to a separating triangle, but not both.
So at any given time, only one invariant applies to an edge. Second,
an edge only needs one coin to satisfy the invariants, even if it is
on multiple separating triangles or is a free edge for multiple sepa-
rating triangles. These two properties imply that the invariants hold
initially, since by Lemma 6.2, every vertex of a separating triangle has
an incident free edge.

We now show that these invariants are sufficient to guarantee that
we can pay five coins for every flip. Consider the situation after we
flip an edge that belongs to a deepest separating triangle D and satis-
fies the criteria of Lemma 6.1, but before we remove any coins. Since
flipping the edge has removed D and no new separating triangles are
introduced, both invariants still hold. We proceed by identifying four
types of edges whose coins we can now remove to pay for this flip
without upsetting the invariants.

type 1 ( ): The flipped edge e. By Lemma 6.1, e cannot belong to
any separating triangle after the flip, so the first invariant still holds
if we remove e’s coin. Before the flip, e was not a free edge, so the
second invariant was satisfied even without e’s coin. Since the flip
did not introduce any new separating triangles, this is still the case.
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type 2 ( ): A non-flipped edge e of D that is not shared with
any other separating triangle. By Lemma 6.1, the flip removed D and
did not introduce any new separating triangles. Therefore e cannot
belong to any separating triangle, so the first invariant still holds if
we remove e’s coin. By the same argument as for the previous type, e
is also not required to have a coin to satisfy the second invariant.

type 3 ( ): A free edge e of a vertex of D that is not shared with
any containing separating triangle. Since e did not belong to any sep-
arating triangle and the flip did not introduce any new ones, e is not
required to have a coin to satisfy the first invariant. Further, since the
flip removed D and D was deepest, e is not incident to a vertex of
another separating triangle that contains it. Therefore it is no longer
required to have a coin to satisfy the second invariant.

e
D

v
e ′

B

Figure 6.3: Two type 4 edges.

type 4 ( ): A free edge e incident to a vertex v of D, where v is an
endpoint of an edge e ′ of D that is shared with a non-containing
separating triangle B, provided that we flip e ′ (illustrated in Fig-
ure 6.3). Any separating triangle that containsD but not Bmust share
e ′ (Lemma 6.21) and is therefore removed by the flip.
So every separating triangle after the flip that containsD also contains
B. In particular, this also holds for containing triangles that share v.
Since the second invariant requires only one free edge with a coin
for each vertex of a separating triangle, we can safely charge the one
inside D, as long as we do not charge the free edge in B.

To decide which edges we charge for each flip, we distinguish five
cases, based on the number of edges D shares with other separating
triangles and whether any of these triangles contain D. These cases
are illustrated in Figures 6.4, 6.5, and 6.6.

case 1 . D does not share any edges with other separating trian-
gles (Figure 6.4a). In this case, we flip any of D’s edges. By the first
invariant, each edge of D has a coin. These edges all fall into Types 1

and 2, so we use their coins to pay for the flip. Further, D can share
at most one vertex with a containing triangle (Lemma 6.19), so we
charge two free edges, each incident to one of the other two vertices
(Type 3).
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(a)

D

B

e

(b)

Figure 6.4: The edges that are charged if (a) the deepest separating trian-
gle does not share any edges with other separating triangles, or
(b) the deepest separating triangle only shares edges with non-
containing separating triangles. The flipped edge is dashed and
the charged edges are marked with filled boxes (Type 1), empty
boxes (Type 2), empty disks (Type 3) or filled disks (Type 4).

case 2 . D does not share any edge with a containing triangle, but
shares one or more edges with non-containing separating triangles
(Figure 6.4b). In this case, we flip one of the shared edges e. We charge
e (Type 1) and two free edges insideD that are incident to the vertices
of e (Type 4). This leaves us with two more coins that we need to
charge.

Let B be the non-containing separating triangle that shares e with
D. We first show that B must have the same depth as D. There can
be no separating triangles that contain D but not B, as any such tri-
angle would have to share e (Lemma 6.21) and D does not share any
edge with a containing triangle. Therefore any triangle that contains
D must contain B as well. Since D is contained in the maximal num-
ber of separating triangles, this holds for B as well. This means that B
cannot contain any separating triangles and to satisfy the second in-
variant we only need to concern ourselves with triangles that contain
both B and D.

Now consider the number of vertices of the quadrilateral formed by
B and D that can be shared with containing triangles. Since D does
not share an edge with a containing triangle, it can share at most
one vertex with a containing triangle (Lemma 6.19). Now suppose
that B shares an edge with a containing triangle. Then one of the
vertices of this edge is part of D as well. Since the other two vertices
of the quadrilateral are both part of D, they cannot be shared with
containing triangles. On the other hand, if B does not share an edge
with a containing triangle, it too can share at most one vertex with
containing triangles. Thus, in both cases, at most two vertices of the
quadrilateral can be shared with containing triangles, which means
that there are at least two vertices that are not shared. For each of
these vertices, if it is the vertex of D that is not shared with B, we
charge the free edge in D, otherwise we charge the free edge in B
(both Type 3).
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A
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(a)

A

B

D

v

(b)

Figure 6.5: The edges that are charged if the deepest separating triangle
shares an edge with a containing triangle, and zero (a) or one
(b) edges with non-containing separating triangles.

case 3 . D shares an edge with a containing triangle A and does
not share the other edges with any separating triangle (Figure 6.5a).
In this case, we flip the shared edge and charge all of D’s edges, since
one is the flipped edge (Type 1) and the others are not shared (Type 2).
The vertex of D that is not shared with A cannot be shared with any
containing triangle (Lemma 6.20), so we charge a free edge incident
to this vertex (Type 3).

Further, if A shares an edge with a containing triangle, it either
shares the flipped edge, which means that the containing triangle
is removed by the flip, or it shares another edge, in which case the
vertex that is not an endpoint of this edge cannot be shared with any
containing triangle. If A does not share an edge with a containing
triangle, it can share at most one vertex with a containing triangle
(Lemma 6.19). In both cases, one of the vertices of the flipped edge is
not shared with any containing triangle (Type 3), so we charge a free
edge incident to it.

case 4 . D shares an edge with a containing triangle A and ex-
actly one other edge with a non-containing separating triangle B (Fig-
ure 6.5b). In this case, we flip the edge that is shared with B. Let v
be the vertex of D that is not shared with A. We charge the flipped
edge (Type 1), the unshared edge of D (Type 2) and two free edges
inside D that are incident to the vertices of the flipped edge (Type 4).
We charge the last coin from a free edge in B that is incident to v. We
can charge it, since v cannot be shared with a triangle that contains
D (Lemma 6.20) and every separating triangle that contains B but not
D must share the flipped edge as well (Lemma 6.21) and is therefore
removed by the flip.

All that is left is to argue that there can be no separating triangle
contained in B that requires the coin on this free edge to satisfy the
second invariant. Every separating triangle that contains D but not
B must share the flipped edge (Lemma 6.21). Since D already shares
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another edge with a containing triangle and it cannot share two edges
with containing triangles (Lemma 6.18), all separating triangles that
contain D must also contain B. Since D is deepest, B must be deepest
as well and therefore cannot contain any separating triangles.

B

v

e

D

A

Figure 6.6: The edges that are charged if the deepest separating triangle
shares an edge with a containing triangle and both other edges
with non-containing separating triangles.

case 5 . D shares one edge with a containing triangle A and the
other two with non-containing separating triangles (Figure 6.6). In
this case we also flip the edge shared with one of the non-containing
triangles. The charged edges are identical to the previous case, except
that there is no unshared edge any more. Instead, we charge the last
free edge in D.

Before we argue why we are allowed to charge it, we need to give
some names. Let e be the edge of D that is not shared with A and
is not flipped. Let B be a non-containing triangle that shares e with
D and let v be the vertex that is shared by A, B and D. Now, any
separating triangle that shares v and contains D must contain B as
well. If it did not, it would have to share e with D, but D already
shares an edge with a containing triangle and cannot share more than
one (Lemma 6.18). Since the second invariant requires only a single
free edge with a coin for each vertex of a separating triangle, it is
enough that v still has an incident free edge with a coin in B.

This shows that we can charge 5 coins for every flip while main-
taining the invariants, but we still need to show that after perform-
ing these flips we have indeed removed all separating triangles. So
suppose that our graph contains separating triangles. Since each sep-
arating triangle is contained in a certain number of other separating
triangles (which can be zero), there is at least one deepest separating
triangle D. Since D shares at most one edge with containing separat-
ing triangles (Lemma 6.18), one of the cases above must apply. This
gives us an edge of D to flip and five edges to charge, each of which
is guaranteed by the invariants to have a coin. Therefore the process
stops only after all separating triangles have been removed.
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Finally, since we pay 5 coins per flip and there are 3n − 6 edges,
by initially placing a coin on each edge, we flip at most b(3n− 6)/5c
edges. Now consider the edges of the outer face. We show that these
still have a coin at the end of the algorithm. By definition, these edges
are not inside any separating triangle and since we only charge free
edges inside separating triangles, they can only ever be charged as
Type 1 or 2. Thus, if an edge of the outer face gets charged, it was
part of the deepest separating triangle D that was removed by the
flip. Since an edge of the outer face cannot be shared with a non-
containing separating triangle and it cannot be contained by any sep-
arating triangle, it can only be charged in Case 1 or 3. In Case 1, we
charge only two of the free edges inside D, since there could be a con-
taining separating triangle that shares just a vertex. However, this is
not possible if D uses an edge of the outer face (Lemma 6.22), so we
can charge this free edge instead of the edge of the outer face. Since
we flip one of the edges that is not on the outer face, after the flip, all
edges of the outer face still have their coins. In Case 3 we can charge
this remaining free edge for the same reasons. However, since in this
case we actually flip the edge of the outer face, we are not done yet.
The outer face after the flip consists of the flipped edge, one edge of
the current outer face and a current interior edge. Charging the extra
free edge guarantees that the flipped edge can retain its coin, but we
need to ensure that the current interior edge has a coin as well. Let
A be the deepest of the separating triangles that contain D. Since it,
too, uses an edge of the outer face, A can only be contained in tri-
angles that share this edge (Lemma 6.22). It also cannot contain any
separating triangles other than D, as these would be deepest as well
and we prefer to remove separating triangles that do not use an edge
of the outer face. Therefore there can be no other separating triangle
that uses the free edge incident to the vertex of A that is not on the
outer face and we can move this coin to the new edge of the outer
face. Since this is the only case in which an edge of the outer face is
flipped, this shows that the edges of the outer face retain their coins
during the entire process. Therefore we actually only need 3n − 9

coins, resulting in a maximum of b(3n− 9)/5c flips.

transforming hamiltonian triangulations Now that
we improved the bound on the number of flips needed during the
first step of the algorithm by Mori et al. [9], we can turn our attention
to the second step. This step consists of transforming the obtained
4-connected triangulation into the canonical form. Mori et al. showed
that this can be done using at most 2n − 11 flips. We improve this
slightly to 2n − 15 flips, matching the lower bound by Komuro [8]
(see Theorem 5.11). We first need to prove a few more lemmas.
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Figure 6.7: The neighbourhood of a vertex with degree at least 6 in a 4-
connected triangulation.

lemma 6 .5. In a 4-connected triangulation on n > 13 vertices, every
vertex of degree at least 6 either has a neighbour of degree at least 6, or it
can be connected to a vertex of degree at least 5 by a single flip.

Proof. Let v be a vertex of degree at least 6. Komuro [8] showed that
either the graph consists of a cycle of length n − 2 with v and one
other vertex connected to every vertex on the cycle, or v has a neigh-
bour with degree at least 5. In the first case, there is a vertex of high
degree that can be connected to v by a single flip, so assume that
this is not the case. Let v1 be a neighbour of v with degree at least
5 and let v2, . . . , vk be the other neighbours of v, in clockwise order
from v1. Suppose that none of these neighbours have degree at least 6.
Since the graph is 4-connected, this means that each has degree 4 or
5 and v1 has degree exactly 5. Furthermore, no edge can connect two
non-consecutive neighbours of v, as this would create a separating tri-
angle. Let x1 and x2 be the neighbours of v1 that are not adjacent to
v, in clockwise order (see Figure 6.7). We distinguish two cases, based
on the degree of v2:

If v2 has degree 4, x2 must be connected to v3. Both x1 and x2 can
be connected to v with a single flip, so if either has degree at least
5, we are done. The only way to keep their degree at 4 is to connect
both x1 and vk to v3. But this would give v3 degree at least 6, which
is a contradiction. Therefore either x1 or x2 must have degree at least
5.

If v2 has degree 5, let x3 be its new neighbour. Again, if one of
x1, x2 or x3 has degree at least 5, we are done. Since x2 already has
degree 4, the only way to keep its degree below 5 is to connect x1
and x3 by an edge. But then both x1 and x3 have degree 4 and the
only way to keep one at degree 4 is to create an edge to the other.
Therefore at least one of x1, x2 or x3 must have degree at least 5.

In 1931, Whitney [12] showed that any 4-connected triangulation
has a Hamiltonian cycle. The main ingredient of his proof is the fol-
lowing lemma:
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lemma 6 .6 (Whitney [12]). Consider a cycle C in a 4-connected triangu-
lation, along with two distinct vertices a and b on C. These vertices split
C into two paths C1 and C2 with a and b as endpoints. Consider all edges
on one side of the cycle, say the inside. If no vertex on C1 (resp. C2) is con-
nected to another vertex on C1 (resp. C2) by an edge inside C, we can find
a path from a to b that passes through each vertex on and inside C exactly
once and uses only edges of C and inside C.

We use this to prove the following lemma:

lemma 6 .7. For every edge (u, v) in a 4-connected triangulation, there is
a Hamiltonian cycle that uses (u, v) such that all non-cycle edges incident
to u are on one side of the cycle and all non-cycle edges incident to v are on
the other side.

Proof. Let x and y be the other vertices of the faces that have (u, v)
as an edge. Let v, x,u1, . . . ,uk,y be the neighbours of u in counter-
clockwise order and let y, v1, . . . , vm, x,u be the neighbours of v (see
Figure 6.8). Note that all the ui and vi are distinct vertices, as a vertex
other than x or y that is adjacent to both u and v would form a sep-
arating triangle. This means that x,u1, . . . ,uk,y, v1, . . . , vm, x forms a
cycle. Moreover, no two non-consecutive neighbours of u can be con-
nected by an edge, since this would create a separating triangle as
well. Since this holds for the neighbours of v as well, x and y split
the cycle into two parts that satisfy the conditions of Lemma 6.6. If
we call the side of the cycle that does not contain (u, v) the inside,
this means that we can find a path from x to y that passes through
each vertex on and inside the cycle exactly once and uses only edges
of and inside the cycle. This path can be completed to a Hamiltonian
cycle that satisfies the conditions by adding the edges (y,u), (u, v)
and (v, x).

u v

x

y

u1

uk v1
vm

Figure 6.8: A possible Hamiltonian cycle that uses (u, v) and has all non-
cycle edges incident to u on one side of the cycle and all non-
cycle edges incident to v on the other.
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theorem 6 .8. Any 4-connected triangulation T on n > 13 vertices can
be transformed into the canonical triangulation using at most 2n−∆(T)− 8

flips, where ∆(T) is the maximum degree among vertices of T .

Proof. We use the same approach as used by Mori et al. [9] in the
proof of Theorem 5.7, but instead of taking an arbitrary Hamiltonian
cycle, we use the preceding lemmas to carefully construct a good
cycle.

Let x be a vertex of maximal degree in T and suppose for now that
x has a neighbour y with degree at least 6. We use the cycle given by
Lemma 6.7 to decompose T into two outerplanar graphs T1 and T2,
each sharing the cycle and having all edges on the inside and outside,
respectively. Note that x is an ear in one of these, say T2, while y is an
ear in the other. Mori et al. showed that we can make any vertex v of
an outerplanar graph dominant using at most n− dv − 1 flips, where
dv is the degree of v. Therefore we can make x dominant in T1 using
at most n−∆(T) − 1 flips. These flips are allowed because x does not
have any incident edges in T2. Then we can make y dominant in T2
using at most n− dy − 1 6 n− 7 flips. Thus we can transform T into
the canonical triangulation using at most 2n−∆(T) − 8 flips.

Since any triangulation on n > 13 vertices has a vertex of degree
at least 6, if x does not have a neighbour with degree at least 6,
Lemma 6.5 tells us that there is a vertex v with degree at least 5

that can be connected to x by a single flip. We perform this flip and
use v in the place of y. Since x now has degree ∆(T) + 1, we can make
it dominant using at most n−∆(T) − 2 flips. Similarly, v has degree
at least 6 after the flip, so we can make it dominant using at most
n − 7 flips. Including the initial flip, we again obtain the canonical
triangulation using at most 2n−∆(T) − 8 flips.

Combining this result with Theorem 6.4 gives the following bound
on the maximum flip distance between two triangulations.

corollary 6 .9. Any two triangulations T1 and T2 can be transformed
into each other using at most 5.2n− 19.6−∆(T1)−∆(T2) flips, where ∆(T)
is the maximum degree among vertices of T .

Theorem 6.8 matches the worst-case lower bound of 2n− 15 flips if
the maximum degree is at least 7, but we need a stronger result if the
maximum degree is 6.

lemma 6 .10. In a 4-connected triangulation on n > 19 vertices with
maximum degree 6, there is always a pair of vertices of degree 6 that can be
connected by a flip.

Proof. Suppose that such a pair does not exist and consider the neigh-
bourhood of a vertex v of degree 6. Each edge incident to v can
be flipped, otherwise there would be an edge connecting two non-
consecutive neighbours of v, forming a separating triangle. Thus there
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are 6 pairs of vertices that can be connected by a flip and one vertex
of each pair needs to have degree at most 5. To realize this, v needs
to have at least 4 neighbours of degree at most 5. Similarly, a vertex
of degree 5 needs at least 3 such neighbours and a vertex of degree 4

needs at least 2. Therefore each vertex of degree at most 5 can have
at most 2 neighbours of degree 6.

Let nd be the number of vertices of degree d and let k be the num-
ber of edges between vertices of degree 6 and vertices of degree at
most 5. Every vertex of degree 6 needs at least 4 neighbours of de-
gree at most 5, so k > 4n6. But every vertex of degree at most 5 can
have at most 2 neighbours of degree 6, so k 6 2(n4+n5). Combining
these inequalities, we get that n6 6 (n4+n5)/2. Since a triangulation
with maximum degree 6 can have at most 12 vertices of degree less
than 6, it follows that n = n4 + n5 + n6 6 18. Thus for n > 19, there
is always a pair of vertices of degree 6 that can be connected by a
flip.

theorem 6 .11. Any 4-connected triangulation on n > 19 vertices with
maximum degree 6 can be transformed into the canonical triangulation us-
ing at most 2n− 15 flips.

Proof. By Lemma 6.10, there is always a pair of vertices x and y of
degree 6 that can be connected by a flip. We first perform the flip
that connects x and y, giving both vertices degree 7. We then proceed
similarly to the proof of Theorem 6.8. We make x dominant in one of
the outerplanar graphs using n− 8 flips and we make y dominant in
the other, also using n− 8 flips. Counting the initial flip, we obtain
the canonical triangulation using at most 2n− 15 flips.

By combining this with Theorem 6.8, we get the following bound.

corollary 6 .12. Any 4-connected triangulation T on n > 19 vertices
can be transformed into the canonical triangulation using at most min{2n−

15, 2n−∆(T)− 8} flips, where ∆(T) is the maximum degree among vertices
of T .

Proof. This follows from Theorems 6.8 and 6.11, along with the obser-
vation that 2n− 15 < 2n−∆(T) − 8 if ∆(T) is 6 and 2n−∆(T) − 8 6
2n− 15 if ∆(T) > 7.

And finally, using our bound from Theorem 6.4 on the number of
flips it takes to make triangulations 4-connected, we obtain an im-
proved bound on the diameter of the flip graph.

corollary 6 .13. The diameter of the flip graph of all triangulations on
n > 19 vertices is at most 5.2n− 33.6.

Proof. By Theorem 6.4, any triangulation can be made 4-connected
using at most b(3n− 9)/5c flips. By Corollary 6.12, we can transform
the resulting graph into the canonical triangulation using at most
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2n − 15 flips. Hence, we can transform any triangulation into any
other using at most 2 ·

(
(3n− 9)/5+ 2n− 15

)
= 5.2n− 33.6 flips.

6.3 lower bound

In this section we present a lower bound on the number of flips re-
quired to remove all separating triangles from a triangulation. Specif-
ically, we present a triangulation that has (3n − 10)/5 edge-disjoint
separating triangles. This matches our upper bound on the number
of edge-disjoint separating triangles in a triangulation and shows that
there indeed exist triangulations that require this many flips to make
them 4-connected.

The triangulation that gives rise to the lower bound is constructed
recursively and resembles the Sierpiński triangle [10]. The construc-
tion starts with an empty triangle. The recursive step consists of
adding an inverted triangle in the interior and connecting each ver-
tex of the new triangle to the two vertices of the opposing edge of the
original triangle. This is recursively applied to the three new triangles
that share an edge with the inserted triangle, but not to the inserted
triangle itself (see Figure 6.9). After k iterations, instead of applying
the recursive step again, we add a single vertex in the interior of each
triangle we are recursing on and connect this vertex to each vertex of
the triangle. We also add a single vertex in the exterior face so that
the original triangle becomes separating. The resulting triangulation
is called Tk.

Figure 6.9: The stepwise construction of T2. The triangles used in the next
recursive step are shaded.
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theorem 6 .14. There are triangulations on n vertices that require (3n−

10)/5 flips to make them 4-connected, where n is a multiple of 5.

Proof. In the construction scheme presented above, each of the trian-
gles we recurse on becomes a separating triangle that does not share
any edges with the original triangle or the other triangles that we
recurse on. Thus all these separating triangles are edge-disjoint. But
how many of these triangles do we get? Let Li be the number of trian-
gles that we recurse on after i iterations of the construction, so L0 = 1,
L1 = 3, etc. Now let Vi be the number of vertices of Ti. We can see
that V1 = 10 and if we transform T1 into T2, we have to remove each
of the interior vertices added in the final step and replace them with
a configuration of 6 vertices. So to get T2, we add 5 vertices in each
of the L1 triangles. This is true in general, giving

Vi = Vi−1 + 5Li−1 = 10+ 5

i∑
j=2

Lj−1. (6.1)

Let Si be the number of separating triangles of Ti. We can see that
S1 = 4 and each recursive refinement of a separating triangle leaves
it intact, while adding 3 new ones. Therefore

Si = Si−1 + 3Li−1 = 4+ 3

i∑
j=2

Lj−1. (6.2)

From Equation (6.1), we get that

i∑
j=2

Lj−1 =
Vi − 10

5
.

Substituting this into Equation (6.2) gives

Si = 4+ 3 · Vi − 10
5

=
3Vi − 10

5
.

Since each flip removes only the separating triangle that the edge
belongs to, we need (3n − 10)/5 flips to make this triangulation 4-
connected. Constructions for multiples of 5 between Vi and Vi+1 can
be obtained by recursing on a subset of the triangles in the final re-
cursion step.

Note that this triangulation achieves the upper bound on the num-
ber of edge-disjoint separating triangles from Corollary 6.3. It is nat-
ural to wonder whether this construction also leads to a better lower
bound for the diameter of the flip graph in general. This is unfor-
tunately not the case, as the resulting triangulation is Hamiltonian
(see Figure 6.10). Thus, even though it is not 4-connected, we know
that it can be transformed into the canonical triangulation by at most
2n− 11 flips from the proof by Mori et al. [9].
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Figure 6.10: Updating the Hamilton cycle (bold) after a recursive step. The
top vertex is visited at some other point on the initial cycle.

6.4 conclusions and open problems

We showed that any triangulation on n vertices can be made 4-con-
nected using at most b(3n− 9)/5c flips, while there are triangulations
that require (3n− 10)/5 = b(3n− 9)/5c flips when n is a multiple of
5. This shows that our bound is tight for an infinite family of values
for n, although a slight improvement to b(3n − 10)/5c is still pos-
sible. We believe that this is the true bound. We also showed that
any 4-connected triangulation on n > 19 vertices can be transformed
into the canonical form using at most 2n− 15 flips. This matches the
lower bound by Komuro [8] in the worst case where the graph has
maximum degree 6 and results in a new upper bound of 5.2n− 33.6
on the diameter of the flip graph. It also means that both steps of the
algorithm, when considered individually, are now tight in the worst
case. Therefore, any further improvement must either merge the two
steps in some fashion or employ a different technique.

Since 4-connectivity is not a necessary condition for Hamiltonic-
ity, one possible approach is to show that a triangulation can be
made Hamiltonian with fewer than b(3n − 9)/5c flips. Indeed, Car-
dinal et al. [6] successfully used this approach to lower the bound
further to 5n− 23, by showing that n/2 flips suffice to transform any
triangulation into a Hamiltonian one. However, this still leaves a gap
with the current best lower bound of (n − 8)/3 flips, due to Aich-
holzer et al. [1].

Furthermore, all of the current algorithms use the same, single,
canonical form. Surprisingly, the best known lower bound on the di-
ameter of the flip graph (which was recently improved to 7n

3 − 34

by Frati [7]) actually goes to the canonical form as well. This sug-
gests that at least one of the two bounds still has significant room
for improvement. So is there another canonical form that gives a bet-
ter upper bound? Or can we get a better bound by using multiple
canonical forms and picking the closest?
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Another interesting problem is to minimize the number of flips to
make a triangulation 4-connected. We showed that our technique is
worst-case optimal, but there are cases where fewer flips would suf-
fice. There is a natural formulation of the problem as an instance of
3-hitting set, where the subsets correspond to the edges of separating
triangles and we need to pick a minimal set of edges such that we
include at least one edge from every separating triangle. This gives a
simple 3-approximation algorithm that picks an arbitrary separating
triangle and flips all shared edges or an arbitrary edge if there are no
shared edges. However, it is not clear whether the problem is even
NP-hard, as not all instances of 3-hitting set can be encoded as sep-
arating triangles in a triangulation. Therefore it might be possible to
compute the optimal sequence in polynomial time.

6.5 lemmas and proofs

This section contains proofs for the technical lemmas used in the
proof of Theorem 6.4.

lemma 6 .15. A triangulation is 4-connected if and only if it contains no
separating triangles.

Proof. The first direction is easy. If a triangulation has a separating tri-
angle, by definition, removing three vertices is sufficient to disconnect
the graph, which implies that it is not 4-connected. For the other di-
rection, assume that we have a triangulation T that is not 4-connected.
Since any triangulation is 3-connected, T must have a cut set of size
three that separates the graph into components T1 and T2. Consider
a vertex v in this cut set. This vertex must have neighbours in both T1
and T2. If not, the other two vertices would form a cut set of size two,
which cannot exist as T is 3-connected.

Now look at the clockwise order of the neighbours of v, excluding
the other vertices in the cut set. At some point, v has a neighbour v1
in T1, followed by a neighbour v2 in T2. If there were no other edges
separating these, the edge (v1, v2) would be part of our triangulation,
contradicting the fact that v is part of a cut set. Therefore these edges
must be separated by an edge to a neighbour neither in T1, nor T2:
a vertex of the cut set. The same argument holds for the transition
from T2 to T1. Thus v is connected to both other vertices in the cut set.
And since our choice of v was arbitrary, this same argument applies
to them. Therefore this cut set must be a separating triangle.

lemma 6 .16. If a separating triangle A contains a separating triangle B,
then there is a vertex of B inside A and no vertex of B can lie outside A.

Proof. Let z be a vertex in the interior of B and let y be a vertex of
A that is not shared with B. Since the interior of B is a subgraph of
the interior of A and y is not inside A, y must be outside B. Since
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every triangulation is 3-connected, there is a path from z to y that
stays inside A. This path connects the interior of B to the exterior, so
there must be a vertex of B on the path and hence inside A.

Now suppose that there is another vertex of B outside A. Since
all vertices of a triangle are connected by an edge, there is an edge
between this vertex and the vertex of B inside A. This contradicts the
fact that A is a separating triangle, so no such vertex can exist.

lemma 6 .17. If a vertex x of a separating triangle B is inside a separating
triangle A, then A contains B.

Proof. Let y be a vertex of A that is not shared with B. There is a path
from y to the outer face that stays in the exterior of A. There can be
no vertex of B on this path, since this would create an edge between
the interior and exterior of A. Therefore y is outside B.

Now suppose that A does not contain B. Then there is a vertex z
inside B that is not inside A. There must be a path from z to x that
stays inside B. Since x is inside A, there must be a vertex of A on this
path. But since y is outside B, this would create an edge between the
interior and exterior of B. Therefore A must contain B.

lemma 6 .18. A separating triangle can share at most one edge with con-
taining triangles.

Proof. Suppose we have a separating triangle D that shares two of
its edges with separating triangles that contain it. First of all, these
triangles cannot be the same, since then they would be forced to share
the third edge as well, which means that they are D. Since a triangle
does not contain itself, this is a contradiction. So call one of these
triangles A and call one of the triangles that shares the other edge B.
Let x, y and z be the vertices of D, such that x is shared with A and
B, y is shared only with A and z is shared only with B.

By Lemma 6.16, z must be inside A, while y must be inside B, since
in both cases the other two vertices of D are shared and therefore not
in the interior. But then by Lemma 6.17, A contains B and B contains
A. This is a contradiction, since by transitivity it would imply that
the interior of A is a subgraph of itself with a strictly smaller vertex
set.

lemma 6 .19. A separating triangleD that shares no edge with containing
triangles can share at most one vertex with containing triangles.

Proof. Suppose that D shares two of its vertices with containing trian-
gles. First, both vertices cannot be shared with the same containing
triangle, since then the edge between these two vertices would also be
shared. Now let A be one of the containing triangles and let B be one
of the containing triangles sharing the other vertex. By Lemma 6.16,
there must be a vertex of D inside A. So then both vertices of D that
are not shared with A must be inside A, otherwise there would be
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an edge between the interior and the exterior of A. In particular, the
vertex shared by B and D lies inside A, which by Lemma 6.17 means
that A contains B. But the reverse is also true, so B contains A as well,
which is a contradiction.

lemma 6 .20. A separating triangle that shares an edge with a containing
triangle cannot share the unshared vertex with another containing triangle.

Proof. Suppose we have a separating triangle D = (x,y, z) that shares
an edge (x,y) with a containing triangle A and the other vertex zwith
another containing triangle B. By Lemma 6.16, at least one of x and
y has to be inside B. Since these are vertices of A, by Lemma 6.17, B
contains A. Similarly, z has to be inside A and since it is a vertex of B,
A contains B. This is a contradiction.

lemma 6 .21. Given two separating triangles A and B that share an edge
e, any separating triangle that contains A but not B must use e.

Proof. Suppose that we have a separating triangle D that contains
A, but not B and that does not use one of the vertices v of e. By
Lemma 6.16, v must be inside D. But then D would also contain B
by Lemma 6.17, as v is a vertex of B as well. Therefore D must share
both vertices of e and hence e itself.

lemma 6 .22. A separating triangle D that uses an edge e of the outer face
cannot be contained in a separating triangle that does not share e.

Proof. SupposeD is contained in a separating triangleA. IfA does not
share e, by Lemma 6.16, at least one of the vertices of emust be inside
A. But since e is part of the outer face, this is a contradiction.
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7
E D G E - L A B E L L E D F L I P S

The number of edge flips required to transform one triangulation
into another has been studied extensively for unlabelled and vertex-
labelled triangulations. In this chapter, we study this question for
edge-labelled triangulations, in which every edge has a unique label
that is carried over when the edge is flipped. Specifically, we prove
that O(n logn) flips or O(log2 n) simultaneous flips suffice to trans-
form any combinatorial triangulation or triangulation of a convex
n-gon into any other, and that Ω(n logn) flips are sometimes re-
quired. For edge-labelled pseudo-triangulations, we also obtain a
Θ(n logn) bound, although the upper bound increases to O(n2)

when we restrict ourselves to pointed pseudo-triangulations and
exchanging flips.

The results on pseudo-triangulations have been accepted to the
27th Canadian Conference on Computational Geometry (CCCG
2015) [7]. This chapter is based on joint work with Prosenjit Bose,
Anna Lubiw, and Vinayak Pathak.

7.1 introduction

Flips have been studied in many different settings. While Wagner [22]
originally studied them in the context of combinatorial triangulations
(as surveyed in Chapter 5), interest in flips increased after Sleator, Tar-
jan and Thurston [19] showed a simple bijection between binary trees
and triangulations of a convex polygon (subdivisions of the polygon
into triangles using only diagonals), such that a flip in the triangu-
lation corresponds to a rotation in the binary tree. This observation
helped them in deriving a precise bound of 2n− 10 flips on the di-
ameter of the flip graph of an n-vertex convex polygon, and thereby
on the maximal rotation distance between two binary trees on n− 2

nodes.
The same authors also studied flips in combinatorial triangulations

with labelled vertices. Whereas in the unlabelled setting two triangu-
lations are considered the same if they are isomorphic, here the iso-
morphism additionally needs to be consistent with the vertex labels.
They proved an O(n logn) bound on the diameter of the flip graph
in this setting [20]. Additionally, they presented a general framework
for bounding the number of graphs reachable from an initial graph
using simple transformations – including flips. Applying this frame-
work to the vertex-labelled setting results in a matching Ω(n logn)
lower bound.

109
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Figure 7.1: The flip graph of edge-labelled triangulations of a convex pen-
tagon. The colour of the arrows corresponds to the colour of the
flipped edge.

In this chapter, we consider a natural extension of the work by
Sleator et al.: what happens when, instead of the vertices, the edges
are labelled? A flip then reassigns the label of the flipped edge to the
new edge, so that the set of labels does not change.

Edge-labelled flips in triangulations of a convex polygon have been
studied independently by Araujo-Pardo et al. [4]. Their interest lies in
the flip graph itself, which they call the colorful associahedron (see Fig-
ure 7.1 for an example). Although they establish that it is connected,
their proof only gives a quadratic bound on the diameter. They then
proceed to prove various structural properties that relate it to the flip
graph in the unlabelled setting.

Edge labels have also been considered in different settings. Her-
nando et al. [12] investigated edge-labelled spanning trees of graphs.
They showed that one can transform between any two edge-labelled
spanning trees of a 2-connected graph by iteratively removing an
edge and replacing it elsewhere with the same label while maintain-
ing connectivity. The setting considered by Cano et al. [8] is different
still; they transform between non-maximal plane graphs by ‘rotating’
edges around one of their endpoints. They prove that the correspond-
ing edge rotation graph is connected, both in the labelled and unla-
belled setting.

We start with the simplest setting, edge-labelled triangulations of
an n-vertex convex polygon (Section 7.2), and show that this flip
graph has a diameter of Θ(n logn). We reuse Sleator et al.’s frame-
work for the lower bound, but the proof for the upper bound is new.
We then use this result to prove that the same bounds hold for edge-
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labelled combinatorial triangulations (Section 7.3). As an aside, we
consider what changes when we allow multiple edges to be flipped
simultaneously, as long as they are not incident to the same triangle.
In this setting, the upper bound reduces to O(log2 n) both for convex
polygons and combinatorial triangulations, but we no longer have a
matching lower bound.

Finally, we consider edge-labelled pseudo-triangulations of point
sets in the plane (Section 7.4). A pseudo-triangulation is a subdivision
of the convex hull into pseudo-triangles: simple polygons with three
convex interior angles. We first restrict ourselves to edge-labelled
pointed pseudo-triangulations, which have the minimum number of
edges. Here, we show that O(n2) exchanging flips (flips that replace
one edge with another) suffice to transform between any two edge-
labelled pointed pseudo-triangulations. If we additionally allow flips
that only insert or remove an edge, we can transform any edge-la-
belled pseudo-triangulation into any other with O(n log c+ h logh)
flips, where c is the number of convex layers of the point set and h is
the number of points on the convex hull.

7.2 convex polygons

An edge-labelled triangulation of an n-vertex convex polygon is a tri-
angulation of the polygon where each diagonal has a unique label in
{1, . . . ,n− 3}. In this section, we prove a tight Θ(n logn) bound on the
diameter of the flip graph of edge-labelled triangulations of a convex
n-gon. We also show that the upper bound decreases to O(log2 n) if
we allow multiple edges, no two of which are incident on the same
triangle, to be flipped simultaneously.

7.2.1 Upper bound

For the upper bound on the diameter of the flip graph, we show how
to transform any edge-labelled triangulation into a canonical one in
O(n logn) flips. Given two edge-labelled triangulations G1 and G2,
the result then follows by composing this sequence for G1 with the
inverse sequence for G2. First, consider the triangulation where all
edges are incident to the vertex with the lowest y-coordinate. We
call this configuration a fan. The canonical triangulation we use is
a fan triangulation where the interior edges are labelled 1, . . . ,n− 3

in clockwise order around the bottom vertex (see Figure 7.2).
As we can transform any triangulation into a fan with O(n)

flips [10], the problem essentially reduces to sorting the labels of
a fan. In this light, it is not surprising that our solution mimics a well-
known sorting algorithm – quicksort – with a slight modification:
instead of choosing a pivot at random, we always use the median.
This guarantees that even in the worst case, we only use O(n logn)
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Figure 7.2: The canonical edge-labelled triangulation of a convex polygon
with eleven vertices.

flips. We first show that we can use 2.5n flips to perform the ‘parti-
tion’ step of quicksort (ensuring that the first half of the edges of the
fan are labelled with the first half of the labels and vice-versa). The
flip sequence for this step is illustrated in Figure 7.3.

Figure 7.3: The flip sequence used in Lemma 7.1 to swap the labels of the
high (lighter) and low (darker) edges.

lemma 7 .1. Let the diagonals of a fan triangulation of an n-vertex convex
polygon be partitioned into three groups: low, neutral, and high, such that
|low| = |high| and all high edges occur to the left of any low edge. Then we
can exchange the labels on the high and low edges with 2.5n flips, while
leaving those on the neutral edges in place.

Proof. We prove this by induction on n. In the base case (n = 3), there
are no diagonals and we are done. So assume that n > 3 and that the
lemma holds for any convex polygon with fewer than n vertices.

First, suppose that there is a neutral edge e. Flipping e makes it
an ear of the current triangulation. Now the remaining diagonals are
part of a fan triangulation of a convex polygon with n − 1 vertices
that has e on the boundary. By induction, we can exchange the la-
bels on the high and low edges in this polygon with 2.5(n− 1) flips.
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Afterwards, we simply flip e back into place, giving a sequence of
2.5(n− 1) + 2 6 2.5n flips that successfully completes the swap.

Now suppose that there there are no neutral edges. Then the first
half of the edges is high and the second half is low. Let e1 and e2 be
the two edges in the middle, so that e1 is high and e2 is low. Then we
can swap them with five flips, as shown in Figure 7.1. But note that
two flips into this sequence, the two edges are out of the way – the
remaining edges form a fan triangulation of a convex polygon with
n− 2 vertices. As we removed one low and one high edge, the two
groups still have the same size in the smaller polygon. Thus, we can
swap the labels of all other high and low edges with 2.5(n− 2) flips
by induction. Finally, we complete the swap of e1 and e2 with three
more flips. This exchanges the labels of all high and low edges with
a total of 2.5(n− 2) + 5 = 2.5n flips and concludes the proof.

With this in place, we can sort all labels with O(n logn) flips by
recursing on each half.

lemma 7 .2. Given an edge-labelled fan triangulation of a convex polygon
with n vertices, we can sort the labels in ascending order around the bottom
vertex with O(n logn) flips.

Proof. The proof is by induction on n. In the base case n = 3 or
n = 4, so the diagonals are sorted by default. Therefore assume that
n > 4 and the lemma holds for all convex polygons with fewer than
n vertices.

We identify two groups of edges. Let m = bn−32 c be the middle la-
bel. Then high edges have a label in {m+ 1, . . . ,n− 3}, but are among
the m leftmost diagonals in the current fan. Conversely, low edges
have a label in {1, . . . ,m}, but are not among the m leftmost diago-
nals. To see that |high| = |low|, consider the m leftmost diagonals.
By definition, these contain m− |low| edges with a label in {1, . . . ,m}.
Thus, there must be m− (m− |low|) = |low| edges among them with
a label in {m+ 1, . . . ,n− 3}.

Therefore all conditions of Lemma 7.1 are satisfied, and we can
swap the labels of the low and high edges with 2.5n flips. This en-
sures that the first m diagonals contain all labels from 1 through m,
while the rightmost m or m + 1 diagonals (depending on whether
n is even or odd) contain all labels from m + 1 through n − 3. By
induction, we can sort these two halves recursively, thereby sorting
all labels. The total number of flips satisfies the recursion T(n) =

T(bn/2c) + T(dn/2e) + 2.5n, which solves to O(n logn).

Since O(n) flips suffice to transform any edge-labelled triangula-
tion into a fan (by simply ignoring the labels), the upper bound on
the diameter of the flip graph follows.

theorem 7 .3. Any edge-labelled triangulation of a convex polygon with
n vertices can be transformed into any other by O(n logn) flips.
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7.2.2 Lower bound

The lower bound uses a slightly modified version of the Ω(n logn)
lower bound for the vertex-labelled setting by Sleator, Tarjan, and
Thurston [20]. We first give an overview of their technique, before
applying it to edge-labelled triangulations of a convex polygon.

Let a tagged half-edge graph be an undirected graph with maximum
degree ∆, whose vertices have labels called tags, and whose edges are
split into two half-edges. Each half-edge is incident to one endpoint,
and labelled with an edge-end label in {1, . . . ,∆}, such that all edge-end
labels incident on a vertex are distinct (see Figure 7.4a for an example).
A half-edge part is a half-edge graph in which some half-edges do not
have a twin. Note that tags are not restricted to integers: they could
be tuples, or even arbitrary strings.

1
2 3

2 3

2 3
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11

1 1

1

1

(a)

1
2 3

2 3
1

1
2 3

2 3
1

1
2 3

2 3
1

1
2 3

2 3
1

(b)

Figure 7.4: (a) A half-edge graph representation of a rooted binary tree. (b)
A graph grammar for rotations in binary trees. Correspondence
between half-edges is indicated by a combination of colour and
line style.

A graph grammar Γ is a sequence of production rules Γi = (L,→
,T,R), where L and R are half-edge parts with the same number of
half-edges,→ is a correspondence between the half-edges of L and R,
and T is a function that computes the tags of vertices in R from those
in L. A possible graph grammar for rotations in (unlabelled) binary
trees is depicted in Figure 7.4b.

Sleator, Tarjan, and Thurston prove the following theorem.

theorem 7 .4 (Sleator, Tarjan, and Thurston [20]). Let G be a tagged
half-edge graph of n vertices, Γ be a graph grammar, c be the number of
vertices in left sides of Γ , and r be the maximum number of vertices in any
right side of a production of Γ . Then |R(G, Γ ,m)| 6 (c+ 1)n+r·m, where
R(G, Γ ,m) is the set of graphs obtainable from G by derivations in Γ of
length at most m.

We cannot apply this theorem directly to triangulations of a convex
polygon, as these do not have bounded degree. Instead, we turn to
the dual graph. The augmented dual graph of a triangulation of a con-
vex polygon is a tagged half-edge graph G with two sets of vertices:
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triangle-vertices T corresponding to the triangles of the triangulation,
and edge-vertices ECH corresponding to the boundary edges. One
edge-vertex is designated as the root.

Two triangle-vertices are connected by an edge if their triangles are
adjacent. All edge-vertices are leaves, each connected to the triangle-
vertex whose triangle is incident to their corresponding edge (see
Figure 7.5). As every triangle has three edges, the maximum degree
of G is three. The edge towards the root receives edge-end label 1. For
a triangle-vertex, the other edge-end labels are assigned in counter-
clockwise order, as in Figure 7.4a.

1
2

3

4
1 2

3 4

(∅, 1, 2)

(1, ∅, ∅) (2, 3, 4)

(3, ∅, ∅) (4, ∅, ∅)

Figure 7.5: An edge-labelled triangulation of a convex polygon with its aug-
mented dual graph. The edges-labels on the dual graph are
shown to more clearly indicate the correspondence – they are
actually labelled with edge-end labels as in Figure 7.4a.

This is where we deviate slightly from the original paper. Since
Sleator, Tarjan, and Thurston were working in the vertex-labelled set-
ting, they used the tags in the augmented dual graph to encode the
labels of the vertices around the corresponding triangles. Instead, we
use these tags to encode the edge-labels. Specifically, we tag each
triangle-vertex with a triple containing the edge-label of each edge of
its triangle, starting from the edge closest to the root, and proceeding
in counter-clockwise order. Edges of the convex hull are assumed to
have label ∅. Edge-vertices will not be involved in any of the produc-
tion rules, so they do not need tags.

As flips in the triangulation correspond to rotations in the aug-
mented dual graph [19], the graph grammar is identical to the graph
grammar presented before. The only addition is the computation of
new tags for the vertices on the right-hand side (see Figure 7.6). This
grammar has four vertices in left sides, and a maximum of two ver-
tices in any right side. Since a triangulation of an n-vertex convex
polygon has n− 2 triangles and n convex hull edges, the augmented
dual graph has 2n− 2 vertices. Thus, Theorem 7.4 gives us the follow-
ing.
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Figure 7.6: A graph grammar for rotations in augmented dual graphs,
which correspond to flips in edge-labelled triangulations of a
convex polygon.

lemma 7 .5. Given an edge-labelled triangulation G of an n-vertex convex
polygon, the number of distinct edge-labelled triangulations reachable from
G in m flips is at most 52n−2+2m.

This bound can be further refined to 3n−1+2m, using the leader-
follower and zero-elimination techniques from Sleator, Tarjan, and
Thurton’s paper [20]. However, the cruder bound already suffices to
derive the correct asymptotic lower bound.

theorem 7 .6. There are pairs of edge-labelled triangulations of a convex
polygon with n vertices such that transforming one into the other requires
Ω(n logn) flips.

Proof. We first estimate the number of edge-labelled triangulations.
An n-vertex convex polygon has n− 3 diagonals, and in a fan trian-
gulation, each sequence of labellings results in a new triangulation.
Thus, there are at least (n− 3)! edge-labelled triangulations.

Let d be the diameter of the flip graph. Then, for every graph
G, d flips suffice to reach all edge-labelled triangulations. But from
Lemma 7.5, we know that a sequence of m flips can generate at most
52n−2+2m unique edge-labelled triangulations. This gives us the fol-
lowing bound.

52n−2+2d > (n− 3)!

log5 5
2n−2+2d > log5(n− 3)!

2n− 2+ 2d > log5(n!/n3)

2d > log5 n! − log5 n
3 − 2n+ 2

2d > Ω(n logn) −O(n)

d > Ω(n logn)

Combining the upper bound from Theorem 7.3 with the lower
bound from Theorem 7.6 gives us an asymptotically tight bound
on the worst-case number of flips required to transform one edge-
labelled triangulation of a convex polygon into another.

corollary 7 .7. The flip graph of edge-labelled triangulations of a convex
polygon with n vertices has diameter Θ(n logn).
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7.2.3 Simultaneous flips

A simultaneous flip is a transformation that consists of one or more
regular flips that are executed at the same time. For this definition to
make sense, it is important that two of these flips do not interfere with
each other. Therefore we add the restriction that in a single simulta-
neous flip, at most one edge of each triangle can be flipped. In other
words, no two edges in the same simultaneous flip can be incident to
the same triangle. Galtier et al. [11] showed that O(logn) simultane-
ous flips suffice to transform any triangulation of an n-vertex convex
polygon into any other.

The bounds on simultaneous flips are clearly connected to those on
regular flips, as each simultaneous flip can group only O(n) regular
flips. This means that the Ω(n logn) lower bound from Theorem 7.6
also implies an Ω(logn) lower bound for simultaneous flips. This
does not apply to the upper bound, however. For example, it is not
possible, in general, to simply perform each c ·n flips simultaneously
(for some constant c), as two such flips can easily be incident on the
same triangle. The upper bounds do translate in the other direction:
proving that O(k) simultaneous flips suffice immediately implies that
O(kn) regular flips suffice, simply by performing each set of flips in
sequence.

In this section, we show that any edge-labelled triangulation of a
convex polygon with n vertices can be transformed into any other
with O(log2 n) simultaneous flips. We show that even the partition
step of quicksort already requires Ω(logn) simultaneous flips. We
start by proving an analogue to Lemma 7.1, showing that this bound
on the partition step is tight.

lemma 7 .8. Let the diagonals of a fan triangulation of an n-vertex convex
polygon be partitioned into three groups: low, neutral, and high, such that
|low| = |high| and all high edges occur to the left of any low edge. Then we
can exchange the labels on the high and low edges with O(logn) simultane-
ous flips, while leaving those on the neutral edges in place.

Proof. We first flip each neutral diagonal, so that they are no longer
incident to the bottom vertex. Since we can flip every second edge in
a single simultaneous flip, O(logn) simultaneous flips suffice to flip
all neutral diagonals. This leaves only the high and low diagonals,
inside a smaller convex polygon formed by the original polygon and
the neutral edges.

This reduces our problem to transforming a convex polygon where
the first half of the diagonals is high and the second is low to one
where these sets are reversed. We do this by transforming a third
configuration, called an alternating zig-zag, into both, with O(logn)
simultaneous flips. The result then follows by the reversibility of flips.

Let r be a ray from the bottom vertex that has bn/2c of the remain-
ing vertices to its left. Let ai be the vertex to the left of r at distance i
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Figure 7.7: A sequence of simultaneous flips that transforms an alternating
zig-zag into a fan partition. We can choose which group of edges
ends up to the left of the ray. The hexagons involved in the first
two steps are lightly shaded.

from the bottom vertex (along the boundary of the polygon), and let
bi be the analogous vertex to the right of r. The alternating zig-zag
contains the edges a1b1, b1a2, a2b2, etc. Each edge aibi is low, and
each edge biai+1 is high (see Figure 7.7).

To transform the alternating zig-zag into the fan triangulation with
all low edges on the left, we first partition it into hexagons. Each
hexagon is formed by the edges aibi and ai+2bi+2, along with the
boundary edges between them. In this way, each hexagon contains
three diagonals: two high diagonals biai+1 and bi+1ai+2, and one
low diagonal ai+1bi+1. We now use a constant number of simultane-
ous flips to transform the triangulation within each hexagon to have
the low diagonal at aiai+2, and the high diagonals at bibi+2 and
biai+2. Since the hexagons are separated by low diagonals, none of
these simultaneous flips interfere with each other.

Now consider the edges that intersect r in the resulting triangu-
lation. These are the low edges separating the hexagons, and one
high diagonal inside each hexagon. These edges form another alter-
nating zig-zag, half the size of the first one. Therefore we can repeat
this procedure until less than three edges intersect r, halving the size
each time. This requires O(logn) simultaneous flips. Once few edges
intersect r, a constant number of simultaneous flips suffice to prop-
erly partition these, giving a triangulation where all low edges are to
the left of r. Similarly, by consistently moving the low edge in each
hexagon to the right of r, we obtain a sequence of O(logn) simulta-
neous flips that constructs a triangulation where all low edges are to
the right of r.
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Now that we have a triangulation where all low edges are on one
side of r and all high edges are on the other, all that is left is to change
this into a fan triangulation. Since each group forms a triangulation of
a smaller convex polygon, we can use the result by Galtier et al. [11]
to transform these two parts into a fan triangulation with O(logn)
simultaneous flips. This completes the proof.

As in the non-simultaneous upper bound, this allows us to simulate
a deterministic version of quicksort (that always picks the median as
pivot) to sort the labels of a fan, giving the following upper bound.

theorem 7 .9. Any edge-labelled triangulation of a convex polygon with
n vertices can be transformed into any other by O(log2 n) simultaneous
flips.

Proof. We first ignore the edge labels and transform both triangula-
tions into a fan triangulation with O(logn) simultaneous flips [11].
Next, we show how to sort the labels of a fan. The result follows by
the reversibility of flips.

To sort, we partition the edges into high, neutral, and low edges as
in the proof of Lemma 7.2, and use Lemma 7.8 to exchange the edges
with low labels with those with high labels with O(logn) flips. Now
we can sort each half recursively, combining the simultaneous flips in
each part into one larger simultaneous flip. Thus, the total number
of simultaneous flips is given by the recurrence T(n) = T(bn/2c) +
O(logn), which comes out to O(log2 n) flips.

Of course, for the combined simultaneous flip to be valid, we must
ensure that no two flips use an edge of the same triangle. We do this
by finding the edge with the median label and placing it on the right
edge. This is a special case of Lemma 7.8, with one high and low edge,
and all others neutral, so we can do it with O(logn) simultaneous
flips. By recursing to the left and right of this fixed edge, we can
guarantee that the simultaneous flips on each side do not interfere,
proving the theorem.

Unfortunately, we do not have a matching lower bound in this case.
In fact, the best asymptotic lower bound we have is that Ω(logn) si-
multaneous flips are sometimes required – identical to the unlabelled
setting! This bound is easily derived from Theorem 7.6, or directly, by
observing that there are triangulations with constant maximum de-
gree, and every simultaneous flip can at most double the degree of a
vertex. What we can prove is that this lower bound holds already for
the partition step. This means that at least the result of Lemma 7.8 is
best possible.

theorem 7 .10. Let the first half of the diagonals of a fan triangulation of
an n-vertex convex polygon be high, and the rest low. Then any sequence of
simultaneous flips that exchanges the labels on the high and low edges must
have length Ω(logn).
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Proof. Let r be a ray from the bottom vertex that separates the high
edges from the low ones, and let F be a sequence of simultaneous
flips that exchanges the high and low edges. Consider an arbitrary
label `. Before executing F, ` is on one side of r and afterwards it is
on the other side. But since an edge that lies completely on one side
of r cannot intersect an edge that lies completely on the other side,
and a flip always transforms an edge into another that intersects it,
we cannot flip directly from the first edge to the second. In particular,
at some point during the flip sequence, the edge with label ` must
intersect r. This holds for all labels.

Now let Xi be the number of distinct labels that have intersected
r after i simultaneous flips. Clearly X0 = 0, and by the argument
above X|F| = n− 3 (the total number of labels). Consider a flip that
creates a new edge intersecting r. This flip takes place in a quadrilat-
eral that itself intersects r. Therefore two of its boundary edges must
intersect r as well. Since a boundary edge can be shared by at most
two quadrilaterals, and each quadrilateral has two boundary edges
that intersect r, a simultaneous flip that creates k new crossing must
already have had at least k crossings. In other words, Xi+1 6 2Xi.
Since X|F| = n − 3, this implies that |F| > log2(n − 3) = Ω(logn),
proving the lemma.

7.3 combinatorial triangulations

In this section, we show that any edge-labelled combinatorial trian-
gulation can be transformed into any other with O(n logn) flips, and
that this bound is tight. Note that we consider two edge-labelled trian-
gulations to be equivalent if they have an isomorphism that preserves
the edge labels.

7.3.1 Upper bound

For the upper bound, we use a canonical triangulation much like the
one used by Sleator, Tarjan, and Thurston [20] for the vertex-labelled
variant. It is a double wheel: a cycle of length n− 2 (called the spine),
plus a vertex vin inside the cycle and a vertex vout outside the cycle,
each connected to every vertex on the cycle (see Figure 7.8). For our
canonical labelling, we separate the labels into three groups. We call
labels 1, . . . ,n − 2 group S and we place them on the spine edges,
starting with the edge on the outer face and continuing in clockwise
order around vin. The next n− 2 labels make up group Cin and are
placed on the edges incident to vin in clockwise order, starting with
the edge incident to the vertex shared by the edges with labels 1 and
2. Finally, group Cout consists of the last n− 2 labels, which we place
on the edges incident to vout in clockwise order, starting with the edge
that shares a vertex with the edge labelled 2n− 4.
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Figure 7.8: The canonical edge-labelled combinatorial triangulation on 8 ver-
tices. The spine is indicated in bold.

theorem 7 .11. Any edge-labelled combinatorial triangulation with n ver-
tices can be transformed into any other by O(n logn) flips.

Proof. We show that we can transform any edge-labelled combina-
torial triangulation into the canonical one using O(n logn) flips. As
flips are reversible, we can also go from the canonical triangulation
to any other, proving the theorem.

As for convex polygons, our algorithm first ignores the labels and
transforms the given triangulation into the unlabelled canonical trian-
gulation. This requires O(n) flips [20] and results in the correct graph,
although the labels may be in arbitrary positions. To fix the labels, we
first get the groups to have the correct set of labels, that is, all labels in
group S are on the spine, etc., before we rearrange the labels within
each group.

We use two main tools for this. The first is a swap that interchanges
one spine edge with an incident non-spine edge in seven flips, us-
ing the flip sequence depicted in Figure 7.9. Our second tool is a
scramble algorithm that reorders all labels incident to vin or vout using
O(n logn) flips. To do this, we first flip the spine edge that is part
of the exterior face (labelled 1 in Figure 7.8) and then apply the al-
gorithm from Theorem 7.3 to the outerplanar graph induced by the
spine plus vin (or vout), observing that no flip will create a duplicate
edge since the omitted edges are all incident to vout (resp. vin). Note
that this method cannot alter the labels on the two non-spine edges
that lie on the exterior face of the outerplanar graph (labelled 7 and
12 in Figure 7.8), but since there are only two of these, we can move
them to their correct places by swapping them along the spine, using
O(n) flips total.

To get the labels of group S on the spine, we partner every edge
incident to vin that has a label in S with an edge on the spine that has
a label in Cin or Cout. A scramble at vin makes each such edge incident
to its partner, and then swaps exchange partners. By doing the same
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Figure 7.9: A sequence of seven flips that swaps two edges a and b that are
consecutive around a vertex on the spine. Although edge e ends
up at the same place as at the start of the sequence, it essentially
acts as a catalyst here. If we did not flip it, we would not be able
to flip edge a after edge b, as that would create a duplicate edge.
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at vout, all labels of S are placed on the spine. Next we partner every
edge incident to vin that has a label in Cout with an edge incident to
vout that has a label in Cin. A scramble at vin makes partners incident,
and three swaps per pair then exchange partners.

This ensures that each edge’s label is in the correct group, but the
order of the labels within each group may still be incorrect. Rearrang-
ing the labels in Cin and Cout is straightforward, as we can simply
scramble at vin and vout, leaving only the labels on the spine out of
order. We then use swaps to exchange the labels on the spine with
those incident to vin in O(n) flips and scramble at vin to order them
correctly. Since this scramble does not affect the order of labels on
the spine, we can simply exchange the edges once more to obtain the
canonical triangulation.

7.3.2 Lower bound

The proof for the lower bound for combinatorial triangulations is very
similar to the lower bound for triangulations of a convex polygon, de-
scribed in Section 7.2.2. We again construct a graph grammar, which
describes transformations on the dual graph that correspond to flips.

As our primary graph is a combinatorial triangulation, each vertex
of the dual graph corresponds to a triangle and has degree three. As
such, there is no distinction between internal nodes and leaves, and
no root. This means that we need to adapt our definitions slightly.
Without a root, the placement of the edge-end labels is less con-
strained. We only require that they occur in counter-clockwise order
around each vertex. The order of labels in each tag can now follow
the placement of the edge-end labels: the first label belongs to the
primary edge corresponding to the dual edge with edge-end label 1,
and so on.

Finally, we need a few more production rule to deal with all possi-
ble rotations of the edge-end labels around the two triangle-vertices
involved in the flip. The full collection of rules is shown in Figure 7.10.

As the dual graph of an n-vertex combinatorial triangulation has
2n− 4 vertices, Theorem 7.4 gives us the following bound.

lemma 7 .12. Given an n-vertex edge-labelled combinatorial triangulation
G, the number of distinct edge-labelled triangulations reachable from G in
m flips is at most 132n−4+2m.

Again, Sleator, Tarjan, and Thurston [20] show that this bound can
be significantly reduced (to 32n−48m), but the simple bound suffices
for our purposes.

theorem 7 .13. There are pairs of edge-labelled combinatorial triangula-
tions with n vertices such that transforming one into the other requires
Ω(n logn) flips.
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Figure 7.10: A graph grammar that corresponds to flips in edge-labelled
combinatorial triangulations. The right-hand side of all produc-
tions is the same.

Proof. If we fix the labelling of the spine edges in the canonical
triangulation from the proof of Theorem 7.11, any relabelling of
the remaining edges is unique. Thus, there are at least (2n − 6)!
distinct edge-labelled combinatorial triangulations. Combined with
Lemma 7.12, this implies that 132n−4+2d > (2n− 6)!, where d is the
diameter of the flip graph. We derive the following.

132n−4+2d > (2n− 6)!

132n−4+2d > n! (for n > 5)
log13 13

2n−4+2d > log13 n!

2n− 4+ 2d > log13 n!

2d > log13 n! − 2n+ 4

2d > Ω(n logn) −O(n)

d > Ω(n logn)

Combining the upper and lower bound from Theorem 7.11 and 7.13

yields the following.

corollary 7 .14. The flip graph of edge-labelled combinatorial triangula-
tions with n vertices has diameter Θ(n logn).

7.3.3 Simultaneous flips

Recall that, in a triangulation of a convex polygon, a simultaneous
flip is a set of flips that are executed in parallel, such that no two
flipped edges share a triangle. In a combinatorial triangulation, we
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have the additional requirement that the resulting graph may not
contain duplicate edges.

Simultaneous flips in combinatorial triangulations were first stud-
ied by Bose et al. [6]. They showed a tight Θ(logn) bound on the
diameter of the flip graph. As part of their proof, they showed that
every combinatorial triangulation can be made 4-connected with a
single simultaneous flip. Recently, Cardinal et al. [9] proved that it is
possible to find such a simultaneous flip that consists of fewer than
2n/3 individual flips. They used this result to obtain arc drawings of
planar graphs in which only 2n/3 edges are represented by multiple
arcs.

In this section, we show that, just as in the non-simultaneous set-
ting, we obtain the same bounds for edge-labelled convex polygons
and edge-labelled combinatorial triangulations. That is, we can trans-
form any edge-labelled combinatorial triangulation into any other
with O(log2 n) simultaneous flips, and Ω(logn) simultaneous flips
are sometimes necessary. The lower bound holds already in the unla-
belled setting, if one vertex has linear degree in the first triangulation,
while every vertex has constant degree in the second. We now prove
the upper bound.

Figure 7.11: A sequence of three flips that creates a pentagon (shaded) in
which the two highlighted edges can be swapped. All new
edges and all diagonals of the pentagon are incident to one of
the four spine vertices shown.

theorem 7 .15. Any edge-labelled combinatorial triangulation with n ver-
tices can be transformed into any other by O(log2 n) simultaneous flips.

Proof. We closely follow the strategy of the proof of Theorem 7.11.
We first transform the given triangulations into the canonical one
with O(logn) simultaneous flips, using the result of Bose et al. [6].
This reduces the problem to sorting the edge labels on the canonical
triangulation. In the non-simultaneous setting, we did this by reorder-
ing the labels on the edges incident to vin or vout (called scrambling),
and swapping a subset of spine edges with incident non-spine edges.
Thus, the theorem follows if we can show how to perform these op-
erations with O(log2 n) simultaneous flips.
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Since the sequence of flips from Figure 7.9, which swaps a single
spine edge with an incident non-spine edge, only involves a constant
number of triangles, it is tempting to think we can simply perform
many of these swaps simultaneously. Unfortunately, this is not the
case, since the sequence creates the edge (vout, vin). This means that
trying to perform this sequence simultaneously in different locations
would create a duplicate edge. Therefore we use a slightly longer
sequence that creates a pentagon containing the edges to be swapped
(illustrated in Figure 7.11), performs the swap inside this pentagon,
and restores the canonical triangulation, using a total of eleven flips.
The crucial property of this sequence is that it only creates edges
incident to four spine vertices near the edge to be swapped. Thus, we
can perform any number of swaps simultaneously without creating
duplicate edges, as long as each swap is at distance four or more from
the others. This means that, given a set of spine edges to swap, we
can divide them into four rounds such that the edges to be swapped
in each round are at distance four or more, and perform the swaps in
each round simultaneously. Thus, we can swap any subset of spine
edges with O(1) simultaneous flips.

To scramble the edges incident on vout, we first flip to create
(vout, vin) and then apply the algorithm from Theorem 7.9 to the
outerplanar graph induced by the edges incident to vout. This uses
O(log2 n) simultaneous flips to rearrange all labels, except for those
on the two outermost edges that are part of the boundary. In the
non-simultaneous setting, we fixed this by swapping these labels
along the spine, but this would take too many flips here. Instead, if
the labels that need to be on the outermost edges are in the interior,
we use Theorem 7.9 to place these labels on the interior edges closest
to the outermost edges. Then, we can exchange them with the labels
on the outermost edges with only three swaps. This ensures that the
outermost edges have the correct labels, so a second application of
Theorem 7.9 can place the remaining labels in the right order. If the
label for one of the outermost edges is not in the interior and not
already in place, it must be on the other outermost edge. In this case,
we can first exchange it with the label on a nearby interior edge with
a constant number of swaps. The entire sequence requires O(log2 n)
simultaneous flips.

Since these operations use O(1) and O(log2 n) simultaneous flips,
and we can sort the labels with a constant number of applications,
the theorem follows.

7.4 pseudo-triangulations

A pseudo-triangle is a simple polygon with three convex interior an-
gles, called corners, that are connected by reflex chains. Given a set P
of n points in the plane, a pseudo-triangulation of P is a subdivision of
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its convex hull into pseudo-triangles, using all points of P as vertices
(see Figure 7.12a). A pseudo-triangulation is pointed if all vertices are
incident to a reflex angle in some face (including the outer face; see
Figure 7.12b for an example). Pseudo-triangulations find applications
in areas such as kinetic data structures [14] and rigidity theory [21].
More information on pseudo-triangulations can be found in a survey
by Rote, Santos, and Streinu [18].

(a) (b)

Figure 7.12: (a) A pseudo-triangulation with two non-pointed vertices. (b) A
pointed pseudo-triangulation.

Since a regular triangle is also a pseudo-triangle, pseudo-triangula-
tions generalize triangulations (subdivisions of the convex hull into
triangles). In a triangulation, a flip is a local transformation that re-
moves one edge, leaving an empty quadrilateral, and inserts the other
diagonal of that quadrilateral. Note that this is only possible if the
quadrilateral is convex. Lawson [15] showed that any triangulation
with n vertices can be transformed into any other with O(n2) flips,
and Hurtado, Noy, and Urrutia [13] gave a matching Ω(n2) lower
bound.

Pointed pseudo-triangulations support a similar type of flip, but
before we can introduce this, we need to generalize the concept of
pseudo-triangles to pseudo-k-gons: weakly simple polygons with k

convex interior angles. A diagonal of a pseudo-k-gon is called a bi-
tangent if the pseudo-k-gon remains pointed after insertion of the di-
agonal. In a pointed pseudo-triangulation, flipping an edge removes
the edge, leaving a pseudo-quadrilateral, and inserts the unique other
bitangent of the pseudo-quadrilateral (see Figure 7.13a). In contrast
with triangulations, all internal edges of a pointed pseudo-triangu-
lation are flippable. Bereg [5] showed that O(n logn) flips suffice to
transform any pseudo-triangulation into any other.

(a) (b)

Figure 7.13: (a) A flip in a pseudo-quadrilateral. (b) A left-shelling pseudo-
triangulation.
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Aichholzer et al. [2] showed that the same result holds for all pseu-
do-triangulations (including triangulations) if we allow two more
types of flips: insertion and deletion flips. As the name implies, these
either insert or delete one edge, provided that the result is still a pseu-
do-triangulation. To disambiguate, they call the other flips exchanging
flips. In a later paper, this bound was refined to O(n log c) [1], where
c is the number of convex layers of the point set.

In this section, we investigate flips in edge-labelled pseudo-triangula-
tions: pseudo-triangulations where each internal edge has a unique
label in {1, . . . , 3n − 3 − 2h}, where h is the number of vertices on
the convex hull (3n − 3 − 2h is the number of internal edges in a
triangulation). In the case of an exchanging flip, the new edge receives
the label of the old edge. For a deletion flip, the edge and its label are
simply removed, and for an insertion flip, the new edge receives an
unused label from the set of all possible labels.

Our results are the following: using only exchanging flips, we show
that O(n2) flips suffice to transform any edge-labelled pointed pseu-
do-triangulation into any other with the same set of labels. By using
insertion, deletion and exchanging flips, we can transform any edge-
labelled pseudo-triangulation into any other with O(n log c+h logh)
flips.

Before we can start the proof, we need a few more definitions.
Given a set of points in the plane, let v0 be the point with the lowest
y-coordinate, and let v1, . . . , vn be the other points in clockwise order
around v0. The left-shelling pseudo-triangulation is the union of the
convex hulls of v0, . . . , vi, for all 2 6 i 6 n (see Figure 7.13b). Thus,
every vertex after v1 is associated with two edges: a bottom edge con-
necting it to v0 and a top edge that is tangent to the convex hull of
the earlier vertices. The right-shelling pseudo-triangulation is similar,
with the vertices added in counter-clockwise order instead.

7.4.1 Pointed pseudo-triangulations

In this section, we show that every edge-labelled pointed pseudo-
triangulation can be transformed into any other with the same set
of labels by O(n2) exchanging flips. We do this by showing how to
transform a given edge-labelled pointed pseudo-triangulation into a
canonical one. The result then follows by the reversibility of flips. As
canonical pseudo-triangulation, we use the left-shelling pseudo-trian-
gulation, with the bottom edges labelled in clockwise order around
v0, followed by the internal top edges in the same order (based on
their associated vertex).

Since we can transform any pointed pseudo-triangulation into the
left-shelling pseudo-triangulation with O(n logn) flips [5], the main
part of the proof lies in reordering the labels of a left-shelling pseudo-
triangulation. We use two tools for this, called a sweep and a shuffle,
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that are implemented by a sequence of flips. A sweep interchanges
the labels of some internal top edges with their respective bottom
edges, while a shuffle permutes the labels on all bottom edges.

lemma 7 .16. We can transform any left-shelling pseudo-triangulation
into the canonical one with O(1) shuffle and sweep operations.

Proof. In the canonical pseudo-triangulation, we call the labels as-
signed to bottom edges low, and the labels assigned to top edges
high. In the first step, we use a shuffle to line up every bottom edge
with a high label with a top edge with a low label. Then we exchange
these pairs of labels with a sweep. Now all bottom edges have low
labels and all top edges have high labels, so all that is left is to sort
the labels. We can sort the low labels with a second shuffle. To sort
the high labels, we sweep them to the bottom edges, shuffle to sort
them there, then sweep them back.

The remainder of this section describes how to perform a sweep
and a shuffle with flips.

lemma 7 .17. We can interchange the labels of the edges incident to an
internal vertex v of degree two with three exchanging flips.

Proof. Consider what happens when we remove v. Deleting one of its
edges leaves a pseudo-quadrilateral. Removing the second edge then
either merges two corners into one, or removes one corner, leaving
a pseudo-triangle T . There are three bitangents that connect v to T ,
each corresponding to the geodesic between v and a corner of T . Any
choice of two of these bitangents results in a pointed pseudo-triangu-
lation. When one of them is flipped, the only new edge that can be
inserted so that the result is still a pointed pseudo-triangulation is the
bitangent that was not there before the flip. Thus, we can interchange
the labels with three flips (see Figure 7.14).

Figure 7.14: Interchanging the labels of the edges incident to a vertex of
degree two.

lemma 7 .18 (Sweep). In the left-shelling pseudo-triangulation, we can
interchange the labels of any number of internal top edges and their corre-
sponding bottom edges with O(n) exchanging flips.
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Proof. Let S be the set of vertices whose internal top edge should
have its label swapped with the corresponding bottom edge. Con-
sider a ray L from v0 that starts at the positive x-axis and sweeps
through the point set to the negative x-axis. We will maintain the fol-
lowing invariant: the graph induced by the vertices to the left of L is
their left-shelling pseudo-triangulation and the graph induced by the
vertices to the right of L is their right-shelling pseudo-triangulation
(both groups include v0). Furthermore, the labels of the top edges of
the vertices in S to the right of L have been interchanged with their
respective bottom edges. This invariant is satisfied at the start.

Suppose that L is about to pass a vertex vk. If vk is on the convex
hull, its top edge is not internal and no action is required for the
invariant to hold after passing vk. So assume that vk is not on the
convex hull and consider its incident edges. It is currently part of the
left-shelling pseudo-triangulation of points to the left of L, where it
is the last vertex. Thus, vk is connected to v0 and to one vertex to its
left. It is not connected to any vertex to its right, since there are 2n− 3

edges in total, and the left- and right-shelling pseudo-triangulations
to each side of L contribute 2(k+ 1) − 3+ 2(n− k) − 3 = 2n− 4 edges.
So the only edge that crosses L is an edge of the convex hull. Therefore
vk has degree two, which means that we can use Lemma 7.17 to swap
the labels of its top and bottom edge with three flips if vk ∈ S.

Furthermore, the sides of the pseudo-triangle that remains if we
were to remove vk, form part of the convex hull of the points to either
side of L. Thus, flipping the top edge of vk results in the tangent
from vk to the convex hull of the points to the right of L – exactly the
edge needed to add vk to their right-shelling pseudo-triangulation.
Therefore we only need O(1) flips to maintain the invariant when
passing vk.

At the end, we have constructed the right-shelling pseudo-triangu-
lation and swapped the desired edges. An analogous transformation
without any swapping can transform the graph back into the left-
shelling pseudo-triangulation with O(n) flips in total.

Figure 7.15: A pseudo-pentagon with four bitangents. It is impossible to
swap the two diagonals without flipping an edge of the pseudo-
pentagon, as they just flip back and forth between the solid bi-
tangents and the dotted ones, regardless of the position of the
other diagonal.
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Figure 7.16: Interchanging the labels of two bitangents of a pseudo-pen-
tagon with five bitangents. An edge in the pentagon corre-
sponds to a geodesic between two corners of the pseudo-
pentagon.

lemma 7 .19. In the left-shelling pseudo-triangulation, we can interchange
the labels of two consecutive bottom edges with O(1) exchanging flips.

Proof. When we remove the two consecutive bottom edges (say a

and b), we are left with a pseudo-pentagon X. A pseudo-pentagon
can have up to five bitangents, as each bitangent corresponds to a
geodesic between two corners. If X has exactly five bitangents, this
correspondence is a bijection. This implies that the bitangents of X can
be swapped just like diagonals of a convex pentagon (see Figure 7.16).
On the other hand, if X has only four bitangents, it is impossible to
swap a and b without flipping an edge of X (see Figure 7.15).

Fortunately, we can always transform X into a pseudo-pentagon
with five bitangents. If the pseudo-triangle to the right of b is a trian-
gle, X already has five bitangents (see Lemma 7.24 in Section 7.4.1.1).
Otherwise, the top endpoint of b is an internal vertex of degree two
and we can flip its top edge to obtain a new pseudo-pentagon that
does have five bitangents (see Lemma 7.25 in Section 7.4.1.1). After
swapping the labels of a and b, we can flip this top edge back. Thus,
in either case we can interchange the labels of a and b with O(1)

flips.

We can use Lemma 7.19 to reorder the labels of the bottom edges
with insertion or bubble sort, as these algorithms only swap adjacent
values.

corollary 7 .20 (Shuffle). In the left-shelling pseudo-triangulation, we
can reorder the labels of all bottom edges with O(n2) exchanging flips.
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Combining this with Lemmas 7.16 and 7.18, and the fact that we
can transform any pointed pseudo-triangulation into the left-shelling
one with O(n logn) flips [5], gives the main result.

theorem 7 .21. We can transform any edge-labelled pointed pseudo-trian-
gulation with n vertices into any other with O(n2) exchanging flips.

The following lower bound follows from the Ω(n logn) lower
bound on the flip distance between edge-labelled triangulations of a
convex polygon (Theorem 7.6).

theorem 7 .22. There are pairs of edge-labelled pointed pseudo-triangula-
tions with n vertices that require Ω(n logn) exchanging flips to transform
one into the other.

7.4.1.1 Deferred proofs

This section contains a few technical lemmas that were omitted from
the previous section.

a

x y

e

b

(a)

a

x

e

p
s ′

(b)

Figure 7.17: (a) A corner of a pseudo-triangle and an edge such that the
entire pseudo-triangle on the other side of the edge lies inside
the corner’s wedge. (b) If a can see a point past x, then the
geodesic does not contain x.

lemma 7 .23. Let a be a corner of a pseudo-triangle with neighbours x and
y, and let e be an edge on the chain opposite a. If all vertices of the other
pseudo-triangle containing e lie in the wedge formed by extending the edges
ax and ay into half-lines (see Figure 7.17a), then flipping e will result in
an edge incident on a.

Proof. Let T be the pseudo-triangle on the other side of e, and let b
be the corner of T opposite e. Then flipping e inserts the geodesic
between a and b. This geodesic must intersect e in a point s and
then follow the shortest path from s to a. If s lies strictly inside the
wedge, nothing can block as, thus the new edge will contain as and
be incident on a.

Now, if all of e lies strictly inside the wedge, our result follows. But
suppose that e has x as an endpoint and the geodesic between a and
b intersects e in x. As a can see x and all of T lies inside the wedge,
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there is an ε > 0 such that a can see the point X on the boundary of T
at distance ε from x (see Figure 7.17b). The line segment ap intersects
the geodesic at a point s ′. By the triangle inequality, s ′a is shorter
than following the geodesic from s ′ via x to a. But then this would
give a shorter path between a and b, by following the geodesic to s ′

and then cutting directly to a. As the geodesic is the shortest path by
definition, this is impossible. Thus, the geodesic cannot intersect e at
x and the new edge must be incident to a.

lemma 7 .24. Let a and b be two consecutive internal bottom edges in the
left-shelling pseudo-triangulation, such that the pseudo-triangle to the right
of b is a triangle. Then the pseudo-pentagon X formed by removing a and b
has five bitangents.

Proof. Let c0, . . . , c4 be the corners of X in counter-clockwise order
around the boundary. By Lemma 7.23, flipping b results in an edge
b ′ that intersects b and is incident on c1. This edge is part of the
geodesic between c1 and c3, and as such it is tangent to the convex
chain v0, va, . . . , c3, where va is the top endpoint of a (va could be
c3). Therefore it is also the tangent from c1 to the convex hull of
{v0, . . . , va}. This means that the newly created pseudo-triangle with
c1 as corner and a on the opposite pseudo-edge also meets the condi-
tions of Lemma 7.23. Thus, flipping a results in another edge, a ′, also
incident on c1. As b separates c1 from all vertices in {v0, . . . , va}, a ′

must also intersect b. This gives us four bitangents, of which two are
incident on v0 (a and b), and two on c1 (a ′ and b ′). Finally, flipping
a before flipping b results in a bitangent that is not incident on v0 (as
v0 is a corner and cannot be on the new geodesic), nor on c1 (as b
separates a from c1). Thus, X has five bitangents.

lemma 7 .25. Let a and b be two consecutive internal bottom edges in the
left-shelling pseudo-triangulation, such that the pseudo-triangle to the right
of b is not a triangle. Then the pseudo-pentagon X formed by flipping the
corresponding top edge of b and removing a and b has five bitangents.

Proof. Let va and vb be the top endpoints of a and b. By Lemma 7.23

and since b had degree two, flipping the top edge of b results in the
edge vbc1. We get three bitangents for free: a, b, and b ′ – the old top
edge of b and the result of flipping b.
X consists of a reflex chain C that is part of the convex hull of the

points to the left of a, followed by three successive tangents to C, va,
or vb. Since C lies completely to the left of a, it cannot significantly
alter any of the geodesics or bitangents inside the polygon, so we
can reduce it to a single edge. Now, X consists either of a triangle
with two internal vertices, or a convex quadrilateral with one internal
vertex.

If X is a triangle with two internal vertices, the internal vertices
are va and vb. Let its exterior vertices be v0, x, and y. Then there
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are seven possible bitangents: a = v0va,b = v0vb, xva, xvb,yva,yvb,
and vavb. We know that xva and yvb are edges, so there are five
possible bitangents left. As all vertices involved are either corners or
have degree one in X, the only condition for an edge to be a bitangent
is that it does not cross the boundary of X. Since the exterior boundary
is a triangle, this reduces to it not crossing xva and yvb. Two line
segments incident to the same vertex cannot cross. Thus, xvb, yva,
and vavb cannot cross xva and yvb, and X has five bitangents.

If X’s convex hull has four vertices, the internal vertex is vb (oth-
erwise the pseudo-triangle to the right of b would be a triangle). Let
its exterior vertices be v0, x, va, and y. Then there are six possible
bitangents: a = v0va,b = v0vb, xy, xvb,yvb, and vavb, of which one
(yvb) is an edge of X. Since a and b are guaranteed to be bitangents,
and xy, xvb, and vavb all share an endpoint with yvb, the arguments
from the previous case apply and we again have five bitangents.

7.4.2 General pseudo-triangulations

In this section, we extend our results for edge-labelled pointed pseu-
do-triangulations to all edge-labelled pseudo-triangulations. Since
not all pseudo-triangulations have the same number of edges, we
need to allow flips that change the number of edges. In particular, we
allow a single edge to be deleted or inserted, provided that the result
is still a pseudo-triangulation.

Since we are dealing with edge-labelled pseudo-triangulations, we
need to determine what happens to the edge labels. It is useful to first
review the properties we would like these flips to have. First, a flip
should be a local operation – it should affect only one edge. Second, a
labelled edge should be flippable if and only if the edge is flippable in
the unlabelled setting. This allows us to re-use the existing results on
flips in pseudo-triangulations. Third, flips should be reversible. Like
most proofs about flips, our proof in the previous section crucially
relies on the reversibility of flips.

With these properties in mind, the edge-deletion flip is rather
straightforward – the labelled edge is removed, and other edges are
not affected. Since the edge-insertion flip needs to be the inverse of
this, it should insert the edge and assign it a free label – an unused
label in {1, . . . , 3n − 3 − 2h}, where h is the number of vertices on
the convex hull (3n − 3 − 2h is the number of internal edges in a
triangulation).

With the definitions out of the way, we can turn our attention to
the number of flips required to transform any edge-labelled pseudo-
triangulations into any other. In this section, we show that by using
insertion and deletion flips, we can shuffle (permute the labels on
bottom edges) with O(n + h logh) flips. Combined with the unla-
belled bound of O(n log c) flips by Aichholzer et al. [1], this brings
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the total number of flips down to O(n log c+ h logh). Note that, by
Theorem 7.3, this holds for a set of points in convex position (h = n).
In the remainder of this section we assume that h < n. As before, we
first build a collection of simple tools that help prove the main result.

Figure 7.18: Interchanging the label of an edge incident to a vertex of degree
two with a free label.

lemma 7 .26. With O(1) flips, we can interchange the label of an edge
incident to an internal vertex of degree two with a free label.

Proof. Let v be a vertex of degree two and let e be an edge incident to
v. Since v has degree two, its removal leaves an empty pseudo-triangle
T . There are three bitangents that connect v to T , one for each corner.
Thus, we can insert the third bitangent f with the desired free label,
making v non-pointed (see Figure 7.18). Flipping e now removes it
and frees its label. Finally, flipping fmoves it into e’s starting position,
completing the exchange.

This implies that, using an arbitrary free label as placeholder, we
can swap any two edges incident to internal degree-two vertices – no
matter where they are in the pseudo-triangulation.

corollary 7 .27. We can interchange the labels of two edges, each inci-
dent to some internal vertex of degree two, with O(1) flips.

Recall that during a sweep (Lemma 7.18), each internal vertex
has degree two at some point. Since the number of free labels for
a pointed pseudo-triangulation is equal to the number of internal
vertices, this means that we can use Lemma 7.26 to swap every label
on a bottom edge incident to an internal vertex with a free label by
performing a single sweep. Afterwards, a second sweep can replace
these labels on the bottom edges in any desired order. Thus, per-
muting the labels on bottom edges incident to internal vertices can
be done with O(n) flips. Therefore, the difficulty in permuting the
labels on all bottom edges lies in bottom edges that are not incident
to an internal vertex, that is, chords of the convex hull. If there are
few such chords, a similar strategy (free them all and replace them
in the desired order) might work. Unfortunately, the number of free
labels can be far less than the number of chords.

We now consider operations on maximal groups of consecutive
chords, which we call fans. As the vertices of a fan are in convex
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position, fans behave in many ways like triangulations of a convex
polygon, which can be rearranged withO(n logn) flips (Theorem 7.3).
The problem now becomes getting the right set of labels on the edges
of a fan.

Consider the internal vertices directly to the left (vl) and right (vr)
of a fan F, supposing both exist. Vertex vl has degree two and forms
part of the reflex chain of the first pseudo-triangle to the left of F.
Thus, flipping vl’s top edge connects it to the leftmost vertex of F
(excluding v0). Vertex vr is already connected to the rightmost vertex
of F, so we just ensure that it has degree two. To do this, we flip
all incident edges from vertices further to the right, from the bottom
to the top. Now the diagonals of F form a triangulation of a convex
polygon whose boundary consists of v0, vl, the top endpoints of the
chords, and vr (see Figure 7.19a). It is possible that there is no internal
vertex to one side of F. In that case, there is only one vertex on that
side of F, which is part of the convex hull, and we can simply use
that vertex in place of vl or vr without flipping any of its edges. Since
there is at least one internal vertex by assumption, either vl or vr is
an internal vertex. This vertex is called the index of F. If a vertex is the
index of two fans, it is called a shared index.

vl

vr

(a)

vl vl vl

(b)

Figure 7.19: (a) An indexed fan. (b) Shifting the index (vl) from the yellow
edge to the red edge.

A triangulated fan is called an indexed fan if there is one edge in-
cident to the index, the indexed edge, and the remaining edges are
incident to one of the neighbours of the index on the boundary. Ini-
tially, all diagonals of F are incident to v0, so we transform it into an
indexed fan by flipping the diagonal of F closest to the index. Next,
we investigate several operations on indexed fans that help us move
labels between fans.

lemma 7 .28 (Shift). In an indexed fan, we can shift the indexed edge to
the next diagonal with O(1) flips.

Proof. Suppose that vl is the index (the proof for vr is analogous).
Let e be the current indexed edge, and f be the leftmost diagonal
incident to v0. Then flipping f followed by e makes f the only edge
incident to the index and e incident to the neighbour of the index
(see Figure 7.19b). Since flips are reversible, we can shift the index the
other way too.
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Figure 7.20: Changing which side a shared index indexes.

lemma 7 .29. We can switch which fan a shared index currently indexes
with O(1) flips.

Proof. Flipping the current indexed edge “parks" it by connecting it
to the two neighbours of the index, and reduces the degree of the
index to two (see Figure 7.20). Now, flipping the top edge of the index
connects it to the other fan, where we parked the previously indexed
edge. Flipping that edge connects it to the index again.

lemma 7 .30. In a pointed pseudo-triangulation, we can always decrease
the degree of a vertex v of degree three by flipping one of the edges incident
to its reflex angle.

Proof. Consider the geodesic from v to the opposite corner c of the
pseudo-triangle v is pointed in. The line supporting the part of the
geodesic when it reaches v splits the edges incident to v into two
groups. As there are three edges, one of these groups must con-
tain multiple edges. Flipping the edge incident to its reflex angle
in the group with multiple edges results in a geodesic to c. If this
geodesic passed through v, it would insert the missing edges along
the geodesic from v to c (otherwise we could find a shorter path). But
inserting this geodesic would make v non-pointed. Thus, v cannot be
on this geodesic. Therefore the new edge is not incident to v and the
flip reduces the degree of v.

Since the index always has degree three, this allows us to extend
the results from Lemmas 7.26 and 7.17 regarding vertices of degree
two to indexed edges.

corollary 7 .31. In an indexed fan, we can interchange the label of the
indexed edge with a free label in O(1) flips.

corollary 7 .32. Given two indexed fans, we can interchange the labels
of the two indexed edges with O(1) flips.

Now we have enough tools to shuffle the bottom edges.
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lemma 7 .33 (Shuffle). In the left-shelling pseudo-triangulation, we can
reorder the labels of all bottom edges with O(n+ h logh) flips, where h is
the number of vertices on the convex hull.

Proof. In the initial pseudo-triangulation, let B and F be the sets of
labels on bottom edges and free labels, respectively. Let Fi be the set
of labels on the i-th fan (in some fixed order), and let F be the set
of labels on non-fan bottom edges. Let F ′i and F ′ be these same sets
in the target pseudo-triangulation. As we are only rearranging the
bottom labels, we have that B = F1 ∪ . . . ∪ Fk ∪ F = F ′1 ∪ . . . ∪ F ′k ∪ F

′,
where k is the number of fans.

We say that a label ` belongs to fan i if ` ∈ F ′i. At a high level, the
reordering proceeds in four stages. In stage one, we free all labels in
F. In stage two, we place each label from B \ F

′ in the fan it belongs
to, leaving the labels in F ′ free. Then, in stage three, we correct the
order of the labels within each fan. Finally, we place the labels in F ′

correctly.
Since each internal vertex contributes exactly one top edge, one bot-

tom edge, and one free label, we have that |F| = |F|. To free all labels
in F, we perform a sweep (see Lemma 7.18). As every internal vertex
has degree two at some point during the sweep, we can exchange
the label on its bottom edge with a free label at that point, using
Lemma 7.26. This requires O(n) flips. The labels in F remain on the
bottom edges incident to internal vertices throughout stage two and
three, as placeholders.

To begin stage two, we index all fans with O(n) flips and shift these
indices to the first ‘foreign’ edge: the first edge whose label does not
belong to the current fan. If no such edge exists, we can ignore this
fan for the remainder of stage two, as it already has the right set of
labels. Now suppose that there is a fan Fi whose indexed edge e is
foreign: `e /∈ F ′i. Then either `e ∈ F ′j for some j 6= i, or `e ∈ F ′. In
the first case, we exchange `e with the label on the indexed edge of
Fj, and shift the index of Fj to the next foreign edge. In the second
case, we exchange `e with a free label in B \ F

′. If this label belongs
to Fi, we shift its index to the next foreign edge. In either case, we
increased the number of correctly placed labels by at least one. Thus
n− 1 repetitions suffice to place all labels in the fan they belong to,
wrapping up stage two. Since we perform a linear number of swaps
and shifts, and each takes a constant number of flips, the total number
of flips required for stage two is O(n).

For stage three, we note that each indexed fan corresponds to a
triangulation of a convex polygon. As such, we can rearrange the
labelled diagonals of a fan Fi into their desired final position with
O(|Fi| log |Fi|) flips (Theorem 7.3). Thus, if we let h be the number of
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vertices on the convex hull, the total number of flips for this step is
bounded by∑

i

O(|Fi| log |Fi|) 6
∑
i

O(|Fi| logh) = O(h logh).

For stage four, we first return to a left-shelling pseudo-triangulation
by un-indexing each fan, using O(n) flips. After stage two, the labels
in F

′ are all free, so all that is left is to place these on the correct
bottom edges, which we can do with a final sweep. Thus, we can
reorder all bottom labels with O(n+ h logh).

This leads to the following bound.

theorem 7 .34. We can transform any edge-labelled pseudo-triangulation
with n vertices into any other withO(n log c+h logh) flips, where c is the
number of convex layers and h is the number of vertices on the convex hull.

Proof. Using the technique by Aichholzer et al. [1], we first transform
the pseudo-triangulation into the left-shelling pseudo-triangulation
T with O(n log c) flips. Our canonical pseudo-triangulation contains
the labels {1, . . . , 2n−h− 3}, but it is possible for T to contain a differ-
ent set of labels. Since all labels are drawn from {1, . . . , 3n− 2h− 3},
at most n− h labels differ. This is exactly the number of internal ver-
tices. Thus, we can use O(n+ h logh) flips to shuffle (Lemma 7.33)
all non-canonical labels on fan edges to bottom edges incident to an
internal vertex. Once there, we use a sweep (Lemma 7.18) to ensure
that every internal vertex has degree two at some point, at which
time we replace its incident non-canonical labels with canonical ones
with a constant number of flips (Lemma 7.26). Once our left-shelling
pseudo-triangulation has the correct set of labels, we use a constant
number of shuffles and sweeps to sort the labels (Lemma 7.16). Since
we can shuffle and sweep with O(n+ h logh) and O(n) flips, respec-
tively, the total number of flips reduces to O(n log c+ n+ h logh) =
O(n log c+ h logh).

The correspondence between triangulations of a convex polygon
and pseudo-triangulations gives us the following lower bound.

theorem 7 .35. There are pairs of edge-labelled pseudo-triangulations
with n vertices such that any sequence of flips that transforms one into the
other has length Ω(n logn).

7.5 conclusions and open problems

We initiated the study of the diameter of the flip graph of edge-
labelled triangulations in various settings. For edge-labelled triangu-
lations of a convex polygon, we presented matching upper and lower
bounds of Θ(n logn). Allowing simultaneous flips brings the upper
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bound down to O(log2 n), while our best lower bound in that set-
ting is Ω(logn). For edge-labelled combinatorial triangulations, we
obtained the same tight Θ(n logn) bound on the diameter of the
flip graph, as well as the O(log2 n) and Ω(logn) upper- and lower
bounds for simultaneous flips.

We also studied the diameter of the flip graph of edge-labelled
pseudo-triangulations. Here, we showed that O(n2) exchanging flips
suffice to transform any edge-labelled pointed pseudo-triangulation
into any other, while Ω(n logn) flips are sometimes necessary. By
allowing insertion and deletion flips in addition to exchanging flips,
we obtained a tight Θ(n logn) bound on the shortest flip sequence
between any two edge-labelled pseudo-triangulations, even non-
pointed ones.

There is still a lot of room for future work. The most obvious set
of open problems is closing the gaps between the O(log2 n) and
Ω(logn) bounds in the simultaneous setting, and the O(n2) and
Ω(n logn) bounds for pointed pseudo-triangulations. The most likely
solution for the latter is to prove a result similar to Lemma 7.1 in this
setting. This is easy when the vertices in the subsequence form a con-
vex or concave chain, but handling alternations will be trickier.

The next set of open problems is to study what happens to the
edge-labelled flip graph in non-convex polygons or point sets. Since
it is possible for edges to be unflippable in these settings, we can
never change the label of such edges with flips alone, resulting in a
disconnected flip graph. In fact, each edge has a fixed set of other
edges that it can be transformed into via flips. We call this set the
orbit of the edge. This gives rise to the following conjecture.

conjecture 1 (Orbit Conjecture). Given two edge-labelled triangula-
tions, T and T ′, we can transform T into T ′ if and only if for every label `,
the edge with label ` in T ′ is in the orbit of the edge with label ` in T .

For convex polygons, the Orbit Conjecture is implied by Theo-
rem 7.3, since the orbit of each edge contains all other edges. In
addition to convex polygons, the Orbit Conjecture also holds for
polygons with a single reflex chain [17]. For general polygons, it is
fairly easy to show that the condition is necessary, but we have not
been able to show that it is also sufficient. Since triangulations of a
set of points in the plane face the same difficulties, we believe that
the Orbit Conjecture holds for that setting as well.

The final set of open problems relates to the computational hard-
ness of finding the shortest sequence of flips that transforms one edge-
labelled triangulation into the other. For unlabelled convex polygons,
this question has been open for over 30 years [10]. Recently, the prob-
lem was shown to be NP-hard for triangulations of point sets [16] and
simple polygons [3], but the case of convex polygons remains open.

We see two ways in which edge-labelled triangulations can help
here. First, if we lift the restriction that all edge-labels have to be
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unique, the problem directly generalizes the unlabelled setting. Thus,
an NP-hardness proof in this setting might generate techniques that
can be reused for the unlabelled setting.

Second, note that every flip sequence in the unlabelled setting de-
fines a bijection between edges of the initial and final triangulations.
We can view the flip distance problem in the unlabelled setting as
consisting of two steps: find the best bijection, and find a minimum
flip sequence that realizes this bijection. The edge-labelled version of
the problem is just the second step in this chain. Thus, settling the
complexity of the edge-labelled version could give insight into which
part of the unlabelled problem generates the complexity.
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