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Abstract

We present improved upper and lower bounds on the spanning ratio of θ-
graphs with at least six cones. Given a set of points in the plane, a θ-graph
partitions the plane around each vertex into m disjoint cones, each having
aperture θ = 2π/m, and adds an edge to the ‘closest’ vertex in each cone. We
show that for any integer k ≥ 1, θ-graphs with 4k+ 2 cones have a spanning
ratio of 1 + 2 sin(θ/2) and we provide a matching lower bound, showing that
this spanning ratio tight.

Next, we show that for any integer k ≥ 1, θ-graphs with 4k + 4 cones
have spanning ratio at most 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). We also
show that θ-graphs with 4k+3 and 4k+5 cones have spanning ratio at most
cos(θ/4)/(cos(θ/2) − sin(3θ/4)). This is a significant improvement on all
families of θ-graphs for which exact bounds are not known. For example, the
spanning ratio of the θ-graph with 7 cones is decreased from at most 7.5625 to
at most 3.5132. These spanning proofs also imply improved upper bounds on
the competitiveness of the θ-routing algorithm. In particular, we show that
the θ-routing algorithm is (1 + 2 sin(θ/2)/(cos(θ/2)− sin(θ/2)))-competitive
on θ-graphs with 4k + 4 cones and that this ratio is tight.

Finally, we present improved lower bounds on the spanning ratio of these
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graphs. Using these bounds, we provide a partial order on these families
of θ-graphs. In particular, we show that θ-graphs with 4k + 4 cones have
spanning ratio at least 1 + 2 tan(θ/2) + 2 tan2(θ/2), where θ is 2π/(4k + 4).
This is somewhat surprising since, for equal values of k, the spanning ratio
of θ-graphs with 4k + 4 cones is greater than that of θ-graphs with 4k + 2
cones, showing that increasing the number of cones can make the spanning
ratio worse.

Keywords: Computational geometry, Spanners, Theta-graphs, Spanning
Ratio, Tight bounds

1. Introduction1

A geometric graph G is a graph whose vertices are points in the plane2

and whose edges are line segments between pairs of points. A graph G is3

called plane if no two edges intersect properly. Every edge is weighted by the4

Euclidean distance between its endpoints. The distance between two vertices5

u and v in G, denoted by δG(u, v), or simply δ(u, v) when G is clear from the6

context, is defined as the sum of the weights of the edges along the shortest7

path between u and v in G. A subgraph H of G is a t-spanner of G (for8

t ≥ 1) if for each pair of vertices u and v, δH(u, v) ≤ t ·δG(u, v). The smallest9

value t for which H is a t-spanner is the spanning ratio or stretch factor of10

H. The graph G is referred to as the underlying graph of H. The spanning11

properties of various geometric graphs have been studied extensively in the12

literature (see [1, 2] for a comprehensive overview of the topic).13

Given a spanner, however, it is important to be able to route, i.e. find14

a short path, between any two vertices. A routing algorithm is said to be15

c-competitive with respect to G if the length of the path returned by the16

routing algorithm is not more than c times the length of the shortest path17

in G [3]. The smallest value c for which a routing algorithm is c-competitive18

with respect to G is the routing ratio of that routing algorithm.19

In this paper, we consider the situation where the underlying graph G is20

a straightline embedding of the complete graph on a set of n points in the21

plane with the weight of an edge (u, v) being the Euclidean distance |uv|22

between u and v. A spanner of such a graph is called a geometric spanner.23

We look at a specific type of geometric spanner: θ-graphs.24

Introduced independently by Clarkson [4] and Keil [5], θ-graphs are con-25

structed as follows (a more precise definition follows in Section 2): for each26
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vertex u, we partition the plane into m disjoint cones with apex u, each hav-27

ing aperture θ = 2π/m. When m cones are used, we denote the resulting28

θ-graph by the θm-graph. The θ-graph is constructed by, for each cone with29

apex u, connecting u to the vertex v whose projection onto the bisector of30

the cone is closest. Ruppert and Seidel [6] showed that the spanning ratio31

of these graphs is at most 1/(1 − 2 sin(θ/2)), when θ < π/3, i.e. there are32

at least seven cones. This proof also showed that the θ-routing algorithm33

(defined in Section 2) is 1/(1− 2 sin(θ/2))-competitive on these graphs.34

Recently, Bonichon et al. [7] showed that the θ6-graph has spanning ratio35

2. This was done by dividing the cones into two sets, positive and negative36

cones, such that each positive cone is adjacent to two negative cones and vice37

versa. It was shown that when edges are added only in the positive cones, in38

which case the graph is called the half-θ6-graph, the resulting graph is equiv-39

alent to the Delaunay triangulation where the empty region is an equilateral40

triangle. The spanning ratio of this graph is 2, as shown by Chew [8]. An41

alternative, inductive proof of the spanning ratio of the half-θ6-graph was42

presented by Bose et al. [3], along with an optimal local competitive routing43

algorithm on the half-θ6-graph.44

Tight bounds on spanning ratios are notoriously hard to obtain. The45

standard Delaunay triangulation (where the empty region is a circle) is a46

good example. Its spanning ratio has been studied for over 20 years and47

the upper and lower bounds still do not match. Also, even though it was48

introduced about 25 years ago, the spanning ratio of the θ6-graph has only49

recently been shown to be finite and tight, making it the first and, until now,50

only θ-graph for which tight bounds are known.51

In this paper, we improve on the existing upper bounds on the spanning52

ratio of all θ-graphs with at least six cones. First, we generalize the spanning53

proof of the half-θ6-graph given by Bose et al. [3] to a large family of θ-graphs:54

the θ(4k+2)-graph, where k ≥ 1 is an integer. We show that the θ(4k+2)-graph55

has a tight spanning ratio of 1 + 2 sin(θ/2) (see Section 4.1).56

We continue by looking at upper bounds on the spanning ratio of the57

other three families of θ-graphs: the θ(4k+3)-graph, the θ(4k+4)-graph, and the58

θ(4k+5)-graph, where k is an integer and at least 1. We show that the θ(4k+4)-59

graph has a spanning ratio of at most 1+2 sin(θ/2)/(cos(θ/2)−sin(θ/2)) (see60

Section 4.3). We also show that the θ(4k+3)-graph and the θ(4k+5)-graph have61

spanning ratio at most cos(θ/4)/(cos(θ/2)− sin(3θ/4)) (see Section 4.4). As62

was the case for Ruppert and Seidel, the structure of these spanning proofs63

implies that the upper bounds also apply to the competitiveness of θ-routing64
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on these graphs. These results are summarized in Table 1.65

Current
Spanning

Current
Routing

Previous Spanning &
Routing

θ(4k+2)-graph 1 + 2 sin
(
θ
2

) 1

1−2 sin( θ2)
[6] 1

1−2 sin( θ2)
[6]

θ(4k+3)-graph
cos( θ4)

cos( θ2)−sin( 3θ
4 )

1+
2 sin( θ2) cos( θ4)
cos( θ2)−sin( θ2)

1

1−2 sin( θ2)
[6]

θ(4k+4)-graph 1+
2 sin( θ2)

cos( θ2)−sin( θ2)
1+

2 sin( θ2)
cos( θ2)−sin( θ2)

1

1−2 sin( θ2)
[6]

θ(4k+5)-graph
cos( θ4)

cos( θ2)−sin( 3θ
4 )

1+
2 sin( θ2) cos( θ4)
cos( θ2)−sin( θ2)

1

1−2 sin( θ2)
[6]

Table 1: An overview of current and previous spanning and routing ratios of θ-graphs

Finally, we present improved lower bounds on the spanning ratio of these66

graphs (see Section 5) and we provide a partial order on these families (see67

Section 6). In particular, we show that θ-graphs with 4k+4 cones have span-68

ning ratio at least 1 + 2 tan(θ/2) + 2 tan2(θ/2). This is somewhat surprising69

since, for equal values of k, the spanning ratio of θ-graphs with 4k+ 4 cones70

is greater than that of θ-graphs with 4k + 2 cones, showing that increasing71

the number of cones can make the spanning ratio worse.72

2. Preliminaries73

Let a cone be the region in the plane between two rays originating from74

the same vertex (referred to as the apex of the cone). When constructing75

a θm-graph, for each vertex u consider the rays originating from u with the76

angle between consecutive rays being θ = 2π/m (see Figure 1). Each pair of77

consecutive rays defines a cone. The cones are oriented such that the bisector78

of some cone coincides with the vertical halfline through u that lies above u.79

We refer to this cone as Cu
0 and number the cones in clockwise order around80

u. The cones around the other vertices have the same orientation as the ones81

around u. If the apex is clear from the context, we write Ci to indicate the82

i-th cone.83
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For ease of exposition, we only consider point sets in general position: no84

two vertices lie on a line parallel to one of the rays that define the cones, no85

two vertices lie on a line perpendicular to the bisector of one of the cones,86

and no three points are collinear.87

C0

C1C5

C4

C3

C2

u

Figure 1: The cones having apex u in the θ6-graph

The θm-graph is constructed as follows: for each cone Cu
i of each vertex u,88

add an edge from u to the closest vertex in that cone, where the distance89

is measured along the bisector of the cone (see Figure 2). More formally,90

we add an edge between two vertices u and v if v ∈ Cu
i , and for all vertices91

w ∈ Cu
i , |uv′| ≤ |uw′|, where v′ and w′ denote the orthogonal projection of v92

and w onto the bisector of Ci. Note that our assumptions of general position93

imply that each vertex adds at most one edge per cone to the graph.94

u

v

Figure 2: Three vertices are projected onto the bisector of a cone of u. Vertex v is the
closest vertex

Using the structure of the θm-graph, θ-routing is defined as follows. Let95

t be the destination of the routing algorithm and let u be the current vertex.96

5



If there exists a direct edge to t, follow this edge. Otherwise, follow the edge97

to the closest vertex in the cone of u that contains t.98

Finally, given a vertex w in cone C of a vertex u, we define the canonical99

triangle Tuw to be the triangle defined by the borders of C and the line100

through w perpendicular to the bisector of C. We use m to denote the101

midpoint of the side of Tuw opposite u and α to denote the smaller unsigned102

angle between uw and um (see Figure 3). Note that for any pair of vertices103

u and w in the θm-graph, there exist two canonical triangles: Tuw and Twu.104

w

u

m

α

Figure 3: The canonical triangle Tuw

3. Some Geometric Lemmas105

First, we prove a few geometric lemmas that are useful when bounding106

the spanning ratios of the graphs. We start with a nice geometric property107

of the θ(4k+2)-graph.108

Lemma 1. In the θ(4k+2)-graph, any line perpendicular to the bisector of a109

cone is parallel to the boundary of some cone.110

Proof. The angle between the bisector of a cone and the boundary of that111

cone is θ/2. In the θ(4k+2)-graph, since θ = 2π/(4k+2), the angle between the112

bisector and the line perpendicular to this bisector is π/2 = ((4k+2)/4) ·θ =113

k · θ + θ/2. Thus the angle between the line perpendicular to the bisector114

and the boundary of the cone is π/2− θ/2 = k · θ. Since a cone boundary is115

placed at every multiple of θ, the line perpendicular to the bisector is parallel116
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to the boundary of some cone. �117

118

This property helps when bounding the spanning ratio of the θ(4k+2)-119

graph. However, before deriving this bound, we prove a few other geometric120

lemmas. We use ∠xyz to denote the smaller angle between line segments xy121

and yz.122

Lemma 2. Let a, b, c, and d be four points on a circle such that ∠cad ≤123

∠bad ≤ ∠adc. It holds that |ac|+ |cd| ≤ |ab|+ |bd| and |cd| ≤ |bd|.124

Proof. This situation is illustrated in Figure 4. Without loss of generality,125

we assume that |ad| = 1. Since b and c lie on the same circle and ∠abd126

and ∠acd are the angle opposite to the same chord ad, the inscribed angle127

theorem implies that ∠abd = ∠acd. Furthermore, since ∠cad ≤ ∠adc, c lies128

to the right of the perpendicular bisector of ad.129

a

b

c

d

c′

Figure 4: Illustration of the proof of Lemma 2

First, we show that |ac|+ |cd| ≤ |ab|+ |bd| by showing that |ac|+ |cd|+130

|ad| ≤ |ab| + |bd| + |ad|. Let c′ be the point on the circle when we mirror c131

along the perpendicular bisector of ad. Points c and c′ partition the circle132

into two arcs. Since ∠cad ≤ ∠bad ≤ ∠adc, b lies on the upper arc of the133

circle. We focus on triangle acd. The locus of the point c such that the134

perimeter of acd is constant defines an ellipse. This ellipse has major axis135

ad and goes through c and c′. Since this major axis is horizontal, the ellipse136
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does not intersect the upper arc of the circle. Hence, since b lies on the upper137

arc of the circle, which is outside of the ellipse, the perimeter of abd is greater138

than that of acd, completing the first half of the proof.139

Next, we show that |cd| ≤ |bd|. Using the sine law, we have that140

|cd| = sin∠cad/ sin∠acd and |bd| = sin∠bad/ sin∠abd. Since ∠cad ≤141

∠bad ≤ ∠adc ≤ π − ∠cad, we have that sin∠cad ≤ sin∠bad. Hence, since142

∠abd = ∠acd, we have that |cd| ≤ |bd|. �143

144

Lemma 3. Let u, v and w be three vertices in the θ(4k+x)-graph, where145

x ∈ {2, 3, 4, 5}, such that w ∈ Cu
0 and v ∈ Tuw, to the left of w. Let a be the146

intersection of the side of Tuw opposite to u with the left boundary of Cv
0 .147

Let Cv
i denote the cone of v that contains w and let c and d be the upper148

and lower corner of Tvw. If 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, then149

max {|vc|+ |cw|, |vd|+ |dw|} ≤ |va|+ |aw| and max {|cw|, |dw|} ≤ |aw|.150

Proof. This situation is illustrated in Figure 5. We perform case distinction151

on max{|cw|, |dw|}.152

u

wa

v

u

wa

v

c

dCv
i

d′
c

dCv
i

(a) (b)

Figure 5: The two cases for the situation where we apply Lemma 2: (a) |cw| > |dw|,
(b) |cw| ≤ |dw|

Case 1: If |cw| > |dw| (see Figure 5a), we need to show that when153

1 ≤ i ≤ k − 1, we have that |vc|+ |cw| ≤ |va|+ |aw| and |cw| ≤ |aw|. Since154
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angles ∠vaw and ∠vcw are both angles between the boundary of a cone and155

the line perpendicular to its bisector, we have that ∠vaw = ∠vcw. Thus,156

c lies on the circle through a, v, and w. Therefore, if we can show that157

∠cvw ≤ ∠avw ≤ ∠vwc, Lemma 2 proves this case.158

We show ∠cvw ≤ ∠avw ≤ ∠vwc in two steps. Since w ∈ Cv
i and i ≥ 1,159

we have that ∠avc = i · θ ≥ θ. Hence, since ∠avw = ∠avc+ ∠cvw, we have160

that ∠cvw ≤ ∠avw. It remains to show that ∠avw ≤ ∠vwc. We note that161

∠avw ≤ (i + 1) · θ and (π − θ)/2 ≤ ∠vwc, since |cw| > |dw|. Using that162

θ = 2π/(4k + x) and x ∈ {2, 3, 4, 5}, we have the following.163

i ≤ k − 1

i ≤ k +
x

4
− 3

2

i ≤ π · (4k + x)

4π
− 3

2

i ≤ π

2θ
− 3

2

(i+ 1) · θ ≤ π − θ
2

∠avw ≤ ∠vwc

Case 2: If |cw| ≤ |dw| (see Figure 5b), we need to show that when164

1 ≤ i ≤ k, we have that |vd|+|dw| ≤ |va|+|aw| and |dw| ≤ |aw|. Since angles165

∠vaw and ∠vdw are both angles between the boundary of a cone and the166

line perpendicular to its bisector, we have that ∠vaw = ∠vdw. Thus, when167

we reflect d in the line through vw, the resulting point d′ lies on the circle168

through a, v, and w. Therefore, if we can show that ∠d′vw ≤ ∠avw ≤ ∠vwd′,169

Lemma 2 proves this case.170

We show ∠d′vw ≤ ∠avw ≤ ∠vwd′ in two steps. Since w ∈ Cv
i and i ≥ 1,171

we have that ∠avw ≥ ∠avc = i · θ ≥ θ. Hence, since ∠d′vw ≤ θ, we have172

that ∠d′vw ≤ ∠avw. It remains to show that ∠avw ≤ ∠vwd′. We note173

that ∠vwd′ = ∠dwv = π − (π − θ)/2− ∠dvw and ∠avw = ∠avd− ∠dvw =174

(i+ 1) · θ − ∠dvw. Using that θ = 2π/(4k + x) and x ∈ {2, 3, 4, 5}, we have175
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the following.176

i ≤ k

i ≤ k +
x

4
− 1

2

i ≤ π · (4k + x)

4π
− 1

2

i ≤ π

2θ
− 1

2

(i+ 1) · θ − ∠dvw ≤ π + θ

2
− ∠dvw

∠avw ≤ ∠vwd′

�177

178

Lemma 4. Let u, v and w be three vertices in the θ(4k+x)-graph, such that
w ∈ Cu

0 , v ∈ Tuw to the left of w, and w 6∈ Cv
0 . Let a be the intersection of

the side of Tuw opposite to u with the left boundary of Cv
0 . Let c and d be

the corners of Tvw opposite to v. Let β = ∠awv and let γ be the unsigned
angle between vw and the bisector of Tvw. Let c be a positive constant. If

c ≥ cos γ − sin β

cos
(
θ
2
− β

)
− sin

(
θ
2

+ γ
) , (1)

then

max {|vc|+ c · |cw|, |vd|+ c · |dw|} ≤ |va|+ c · |aw|. (2)

Proof. This situation is illustrated in Figure 6. Since the angle between the179

bisector of a cone and its boundary is θ/2, by the sine law, we have the180

following.181

|vc| = |vd| = |vw| · cos γ

cos
(
θ
2

)
max {|cw|, |dw|} = |vw| ·

(
sin γ + cos γ tan

(
θ

2

))
|va| = |vw| · sin β

cos
(
θ
2

)
|aw| = |vw| ·

(
cos β + sin β tan

(
θ

2

))
10



w

v

d

a

c

γ

β

θ
2

Tvw

Figure 6: Finding a constant c such that |vd|+ c · |dw| ≤ |va|+ c · |aw|

To show that (2) holds, we first multiply both sides by cos(θ/2)/|vw| and182

rewrite as follows.183

cos
(
θ
2

)
|vw|

·max {|vc|+ c · |cw|, |vd|+ c · |dw|}

= cos γ + c ·
(

sin γ cos

(
θ

2

)
+ cos γ sin

(
θ

2

))
= cos γ + c · sin

(
θ

2
+ γ

)
184

cos
(
θ
2

)
|vw|

· (|va|+ c · |aw|) = sin β + c ·
(

cos β cos

(
θ

2

)
+ sin β sin

(
θ

2

))
= sin β + c · cos

(
θ

2
− β

)
Therefore, to prove that (1) implies (2), we rewrite (1) as follows.185

c ≥ cos γ − sin β

cos
(
θ
2
− β

)
− sin

(
θ
2

+ γ
)

cos γ − sin β ≤ c ·
(

cos

(
θ

2
− β

)
− sin

(
θ

2
+ γ

))
cos γ + c · sin

(
θ

2
+ γ

)
≤ sin β + c · cos

(
θ

2
− β

)
It remains to show that c > 0. Since w 6∈ Cv

0 , we have that β ∈ (0, (π −186

θ)/2). Moreover, we have that γ ∈ [0, θ/2), by definition. This implies that187
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sin(π/2+γ) > sin β, or equivalently, cos γ−sin β > 0. Thus, we need to show188

that cos(θ/2 − β) − sin(θ/2 + γ) > 0, or equivalently, sin(π/2 + θ/2 − β) >189

sin(θ/2 + γ). It suffices to show that θ/2 + γ < π/2 + θ/2− β < π− θ/2− γ.190

This follows from β ∈ (0, (π−θ)/2), γ ∈ [0, θ/2), and the fact that θ ≤ 2π/7.191

�192

193

4. Upper Bounds194

In this section, we provide improved upper bounds for the four families195

of θ-graphs: the θ(4k+2)-graph, the θ(4k+3)-graph, the θ(4k+4)-graph, and the196

θ(4k+5)-graph. We first prove that the θ(4k+2)-graph has a tight spanning ratio197

of 1+2 sin(θ/2). Next, we provide a generic framework for the spanning proof198

for the three other families of θ-graphs. After providing this framework, we199

fill in the blanks for the individual families.200

4.1. Optimal Bounds on the θ(4k+2)-Graph201

We start by showing that the θ(4k+2)-graph has a spanning ratio of 1 +202

2 sin(θ/2). At the end of this section, we also provide a matching lower203

bound, proving that this spanning ratio is tight.204

Theorem 5. Let u and w be two vertices in the plane. Let m be the mid-
point of the side of Tuw opposite u and let α be the unsigned angle between
uw and um. There exists a path connecting u and w in the θ(4k+2)-graph of
length at most ((

1 + sin
(
θ
2

)
cos
(
θ
2

) )
· cosα + sinα

)
· |uw|.

Proof. We assume without loss of generality that w ∈ Cu
0 . We prove the205

theorem by induction on the area of Tuw (formally, induction on the rank,206

when ordered by area, of the canonical triangles for all pairs of vertices).207

Let a and b be the upper left and right corners of Tuw and let y and z be208

the left and right intersections of the left and right boundaries of Tuw and209

the boundaries of Cw
2k+1, the cone of w that contains u (see Figure 7). Our210

inductive hypothesis is the following, where δ(u,w) denotes the length of the211

shortest path from u to w in the θ(4k+2)-graph:212

• If ayw is empty, then δ(u,w) ≤ |ub|+ |bw|.213
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• If bzw is empty, then δ(u,w) ≤ |ua|+ |aw|.214

• If neither ayw nor bzw is empty, then δ(u,w) ≤ max{|ua|+ |aw|, |ub|+215

|bw|}.216

Note that if both ayw and bzw are empty, the induction hypothesis implies217

that δ(u,w) ≤ min{|ua|+ |aw|, |ub|+ |bw|}.218

We first show that this induction hypothesis implies the theorem. Basic
trigonometry gives us the following equalities: |um| = |uw| · cosα, |mw| =
|uw| · sinα, |am| = |bm| = |uw| · cosα tan(θ/2), and |ua| = |ub| = |uw| ·
cosα/ cos(θ/2). Thus, the induction hypothesis gives us that δ(u,w) is at
most

|ua|+ |am|+ |mw| =

((
1 + sin

(
θ
2

)
cos
(
θ
2

) )
· cosα + sinα

)
· |uw|.

Base case: Tuw has rank 1. Since the triangle is a smallest triangle,219

w is the closest vertex to u in that cone. Hence, the edge (u,w) is part of220

the θ(4k+2)-graph and δ(u,w) = |uw|. From the triangle inequality, we have221

|uw| ≤ min{|ua|+ |aw|, |ub|+ |bw|}, so the induction hypothesis holds.222

Induction step: We assume that the induction hypothesis holds for223

all pairs of vertices with canonical triangles of rank up to j. Let Tuw be a224

canonical triangle of rank j + 1.225

If (u,w) is an edge in the θ(4k+2)-graph, the induction hypothesis follows226

from the same argument as in the base case. If there is no edge between u227

and w, let v be the vertex closest to u in Cu
0 , and let a′ and b′ be the upper left228

and right corners of Tuv (see Figure 7). By definition, δ(u,w) ≤ |uv|+δ(v, w),229

and by the triangle inequality, |uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.230

Without loss of generality, we assume that v lies to the left of w. We231

perform a case analysis based on the cone of v that contains w: (a) w ∈ Cv
0 ,232

(b) w ∈ Cv
i where 1 ≤ i ≤ k − 1, (c) w ∈ Cv

k .233

Case (a): Vertex w lies in Cv
0 (see Figure 7a). Let c and d be the234

upper left and right corners of Tvw, and let y′ and z′ be the left and right235

intersections of Tvw and the boundaries of Cw
2k+1. Since Tvw has smaller area236

than Tuw, we apply the inductive hypothesis to Tvw. We need to prove all237

three statements of the inductive hypothesis for Tuw.238

1. If ayw is empty, then cy′w is also empty, so by induction δ(v, w) ≤239
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(a) (b) (c)

u

wa b

y

z

c d

v

z′

y′

a′ b′

w w

a′ v

c

d

a′′

a′
a′′
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Figure 7: The three cases of the induction step based on the cone of v that contains w, in
this case for the θ14-graph

|vd|+ |dw|. Since v, d, b, and b′ form a parallelogram, we have:240

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
= |ub|+ |bw|,

which proves the first statement of the induction hypothesis.241

2. If bzw is empty, an analogous argument proves the second statement242

of the induction hypothesis.243

3. If neither ayw nor bzw is empty, by induction we have δ(v, w) ≤244

max{|vc|+ |cw|, |vd|+ |dw|}. Assume, without loss of generality, that245

the maximum of the right hand side is attained by its second argument246

|vd|+ |dw| (the other case is similar). Since vertices v, d, b, and b′ form247

a parallelogram, we have that:248

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
≤ |ub|+ |bw|
≤ max{|ua|+ |aw|, |ub|+ |bw|},
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which proves the third statement of the induction hypothesis.249

Case (b): Vertex w lies in Cv
i where 1 ≤ i ≤ k − 1 (see Figure 7b).250

In this case, v lies in ayw. Therefore, the first statement of the induction251

hypothesis for Tuw is vacuously true. It remains to prove the second and252

third statement of the induction hypothesis. Let a′′ be the intersection of253

the side of Tuw opposite u and the left boundary of Cv
0 . Since Tvw is smaller254

than Tuw, by induction we have δ(v, w) ≤ max{|vc|+ |cw|, |vd|+ |dw|}. Since255

w ∈ Cv
i where 1 ≤ i ≤ k − 1, we can apply Lemma 3. Note that point256

a in Lemma 3 corresponds to point a′′ in this proof. Hence, we get that257

max{|vc| + |cw|, |vd| + |dw|} ≤ |va′′| + |a′′w|. Since |uv| ≤ |ua′| + |a′v| and258

v, a′′, a, and a′ form a parallelogram, we have that δ(u,w) ≤ |ua| + |aw|,259

proving the induction hypothesis for Tuw.260

Case (c): Vertex w lies in Cv
k (see Figure 7c). Since v lies in ayw, the first261

statement of the induction hypothesis for Tuw is vacuously true. It remains to262

prove the second and third statement of the induction hypothesis. Let a′′ and263

b′′ be the upper and lower left corners of Twv, and let z′′ be the intersection264

of Twv and the lower boundary of Cv
k , i.e. the cone of v that contains w.265

Note that z′′ is also the right intersection of Tuv and Twv. Since v is the266

closest vertex to u, Tuv is empty. Hence, b′′z′′v is empty. Since Twv is smaller267

than Tuw, we can apply induction on it. As b′′z′′v is empty, the induction268

hypothesis for Twv gives δ(v, w) ≤ |va′′| + |a′′w|. Since |uv| ≤ |ua′| + |a′v|269

and v, a′′, a, and a′ form a parallelogram, we have that δ(u,w) ≤ |ua|+ |aw|,270

proving the second and third statement of the induction hypothesis for Tuw.271

�272

273

Since ((1+sin(θ/2))/ cos(θ/2)) ·cosα+sinα is increasing for α ∈ [0, θ/2],274

for θ ≤ π/3, it is maximized when α = θ/2, and we obtain the following275

corollary:276

Corollary 6. The θ(4k+2)-graph is a (1 + 2 sin (θ/2))-spanner.277

The upper bounds given in Theorem 5 and Corollary 6 are tight, as278

shown in Figure 8: we place a vertex v arbitrarily close to the upper corner279

of Tuw that is furthest from w. Likewise, we place a vertex v′ arbitrarily280

close to the lower corner of Twu that is furthest from u. Both shortest paths281

between u and w visit either v or v′, so the path length is arbitrarily close282

to (((1 + sin(θ/2))/ cos(θ/2)) · cosα + sinα) · |uw|, showing that the upper283

bounds are tight.284
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Figure 8: The lower bound for the θ(4k+2)-graph

4.2. Generic Framework for the Spanning Proof285

In this section, we provide a generic framework for the spanning proof286

for the three other families of θ-graphs: the θ(4k+3)-graph, the θ(4k+4)-graph,287

and the θ(4k+5)-graph. This framework contains those parts of the spanning288

proof that are identical for all three families. In the subsequent sections, we289

handle the single case that depends on each specific family and determines290

their respective spanning ratios.291

Theorem 7. Let u and w be two vertices in the plane. Let m be the mid-
point of the side of Tuw opposite u and let α be the unsigned angle between
uw and um. There exists a path connecting u and w in the θ(4k+x)-graph of
length at most(

cosα

cos
(
θ
2

) + c ·
(

cosα tan

(
θ

2

)
+ sinα

))
· |uw|,

where c ≥ 1 is a function that depends on x ∈ {3, 4, 5} and θ. For the292

θ(4k+4)-graph, c equals 1/(cos(θ/2)− sin(θ/2)) and for the θ(4k+3)-graph and293

θ(4k+5)-graph, c equals cos(θ/4)/ (cos(θ/2)− sin(3θ/4)).294

Proof. We assume without loss of generality that w ∈ Cu
0 . We prove the295

theorem by induction on the area of Tuw (formally, induction on the rank,296

when ordered by area, of the canonical triangles for all pairs of vertices). Let297

a and b be the upper left and right corners of Tuw. Our inductive hypothesis298
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is the following, where δ(u,w) denotes the length of the shortest path from299

u to w in the θ(4k+x)-graph: δ(u,w) ≤ max{|ua|+ c · |aw|, |ub|+ c · |bw|}.300

We first show that this induction hypothesis implies the theorem. Basic
trigonometry gives us the following equalities: |um| = |uw| · cosα, |mw| =
|uw| · sinα, |am| = |bm| = |uw| · cosα tan(θ/2), and |ua| = |ub| = |uw| ·
cosα/ cos(θ/2). Thus the induction hypothesis gives that δ(u,w) is at most

|ua|+ c · (|am|+ |mw|) =

(
cosα

cos
(
θ
2

) + c ·
(

cosα tan

(
θ

2

)
+ sinα

))
· |uw|.

Base case: Tuw has rank 1. Since the triangle is a smallest triangle,301

w is the closest vertex to u in that cone. Hence, the edge (u,w) is part of302

the θ(4k+x)-graph and δ(u,w) = |uw|. From the triangle inequality and the303

fact that c ≥ 1, we have |uw| ≤ max{|ua| + c · |aw|, |ub| + c · |bw|}, so the304

induction hypothesis holds.305

Induction step: We assume that the induction hypothesis holds for306

all pairs of vertices with canonical triangles of rank up to j. Let Tuw be a307

canonical triangle of rank j + 1.308

If (u,w) is an edge in the θ(4k+x)-graph, the induction hypothesis follows309

from the same argument as in the base case. If there is no edge between u and310

w, let v be the vertex closest to u in Tuw, and let a′ and b′ be the upper left311

and right corners of Tuv (see Figure 9). By definition, δ(u,w) ≤ |uv|+δ(v, w),312

and by the triangle inequality, |uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.313

Without loss of generality, we assume that v lies to the left of w. We314

perform a case analysis based on the cone of v that contains w, where c and315

d are the left and right corners of Tvw, opposite to v: (a) w ∈ Cv
0 , (b) w ∈ Cv

i316

where 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, (c) w ∈ Cv
k and |cw| > |dw|,317

(d) w ∈ Cv
k+1.318

Case (a): Vertex w lies in Cv
0 (see Figure 9a). Since Tvw has smaller319

area than Tuw, we apply the inductive hypothesis to Tvw. Hence we have320

δ(v, w) ≤ max{|vc|+ c · |cw|, |vd|+ c · |dw|}. Since v lies to the left of w, the321

maximum of the right hand side is attained by its first argument, |vc|+c·|cw|.322

Since vertices v, c, a, and a′ form a parallelogram, and c ≥ 1, we have that323

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ua′|+ |a′v|+ |vc|+ c · |cw|
≤ |ua|+ c · |aw|
≤ max{|ua|+ c · |aw|, |ub|+ c · |bw|},
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Figure 9: The four cases of the induction step based on the cone of v that contains w, in
this case for the θ12-graph

which proves the induction hypothesis.324

Case (b): Vertex w lies in Cv
i , where 1 ≤ i ≤ k − 1, or i = k and325

|cw| ≤ |dw| (see Figure 9b). Let a′′ be the intersection of the side of Tuw326

opposite u and the left boundary of Cv
0 . Since Tvw is smaller than Tuw,327

by induction we have δ(v, w) ≤ max{|vc| + c · |cw|, |vd| + c · |dw|}. Since328

w ∈ Cv
i where 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, we can apply329

Lemma 3. Note that point a in Lemma 3 corresponds to point a′′ in this330

proof. Hence, we get that max {|vc|+ |cw|, |vd|+ |dw|} ≤ |va′′| + |a′′w| and331

max {|cw|, |dw|} ≤ |a′′w|. Since c ≥ 1, this implies that max{|vc| + c · |cw|,332

|vd|+ c · |dw|} ≤ |va′′|+ c · |a′′w|. Since |uv| ≤ |ua′|+ |a′v| and v, a′′, a, and333

a′ form a parallelogram, we have that δ(u,w) ≤ |ua| + c · |aw|, proving the334

induction hypothesis for Tuw.335

Case (c) and (d) Vertex w lies in Cv
k and |cw| > |dw|, or w lies in Cv

k+1336

(see Figures 9c and d). Let a′′ be the intersection of the side of Tuw opposite337

u and the left boundary of Cv
0 . Since Tvw is smaller than Tuw, we can apply338

induction on it. The actual application of the induction hypothesis varies for339

the three families of θ-graphs and, using Lemma 4, determines the value of c.340

Hence, these cases are discussed in the spanning proofs of the three families.341

�342

343
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4.3. Upper Bound on the θ(4k+4)-Graph344

In this section, we improve the upper bounds on the spanning ratio of345

the θ(4k+4)-graph, for any integer k ≥ 1.346

Theorem 8. Let u and w be two vertices in the plane. Let m be the mid-
point of the side of Tuw opposite u and let α be the unsigned angle between
uw and um. There exists a path connecting u and w in the θ(4k+4)-graph of
length at most (

cosα

cos
(
θ
2

) +
cosα tan

(
θ
2

)
+ sinα

cos
(
θ
2

)
− sin

(
θ
2

) )
· |uw|.

Proof. We apply Theorem 7 using c = 1/(cos(θ/2) − sin(θ/2)). It remains347

to handle Case (c), where w ∈ Cv
k and |cw| > |dw|, and Case (d), where348

w ∈ Cv
k+1.349

Recall that c and d are the left and right corners of Tvw, opposite to v,350

and a′′ is the intersection of the side of Tuw opposite u and the left boundary351

of Cv
0 . Let β be ∠a′′wv and let γ be the angle between vw and the bisector352

of Tvw. Since Tvw is smaller than Tuw, the induction hypothesis gives an353

upper bound on δ(v, w). Since |uv| ≤ |ua′|+ |a′v| and v, a′′, a, and a′ form a354

parallelogram, we need to show that δ(v, w) ≤ |va′′|+ c · |a′′w| for both cases355

in order to complete the proof.356

a b

a′

d

c

a′′ w

a′ v

v

a ba′′ w

d

c

β
γ

β
γ

(a) (b)

θ
2

Figure 10: The remaining cases of the induction step for the θ(4k+4)-graph: (a) w lies in
Cv

k and |cw| > |dw|, (b) w lies in Cv
k+1

Case (c): When w lies in Cv
k and |cw| > |dw|, the induction hypothesis357

for Tvw gives δ(v, w) ≤ |vc| + c · |cw| (see Figure 10a). We note that γ =358

θ − β. Hence, the inequality follows from Lemma 4 when c ≥ (cos(θ − β)−359
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sin β)/(cos(θ/2 − β) − sin(3θ/2 − β)). Since this function is decreasing in360

β for θ/2 ≤ β ≤ θ, it is maximized when β equals θ/2. Hence, c needs361

to be at least (cos(θ/2) − sin(θ/2))/(1 − sin θ), which can be rewritten to362

1/(cos(θ/2)− sin(θ/2)).363

Case (d): When w lies in Cv
k+1, w lies above the bisector of Tvw (see364

Figure 10b) and the induction hypothesis for Tvw gives δ(v, w) ≤ |wd| + c ·365

|dv|. We note that γ = β. Hence, the inequality follows from Lemma 4366

when c ≥ (cos β − sin β)/(cos(θ/2 − β) − sin(θ/2 + β)), which is equal to367

1/(cos(θ/2)− sin(θ/2)). �368

369

Since cosα/ cos(θ/2) + (cosα tan(θ/2) + sinα)/(cos(θ/2) − sin(θ/2)) is370

increasing for α ∈ [0, θ/2], for θ ≤ π/4, it is maximized when α = θ/2, and371

we obtain the following corollary:372

Corollary 9. The θ(4k+4)-graph is a

(
1 +

2 sin( θ2)
cos( θ2)−sin( θ2)

)
-spanner.373

Furthermore, we observe that the proof of Theorem 8 follows the same374

path as the θ-routing algorithm follows: if the direct edge to the destination375

is part of the graph, it follows this edge, and if it is not, it follows the edge376

to the closest vertex in the cone that contains the destination.377

Corollary 10. The θ-routing algorithm is

(
1 +

2 sin( θ2)
cos( θ2)−sin( θ2)

)
-competitive378

on the θ(4k+4)-graph.379

4.4. Upper Bounds on the θ(4k+3)-Graph and θ(4k+5)-Graph380

In this section, we improve the upper bounds on the spanning ratio of381

the θ(4k+3)-graph and the θ(4k+5)-graph, for any integer k ≥ 1.382

Theorem 11. Let u and w be two vertices in the plane. Let m be the
midpoint of the side of Tuw opposite u and let α be the unsigned angle
between uw and um. There exists a path connecting u and w in the θ(4k+3)-
graph of length at most(

cosα

cos
(
θ
2

) +

(
cosα tan

(
θ
2

)
+ sinα

)
· cos

(
θ
4

)
cos
(
θ
2

)
− sin

(
3θ
4

) )
· |uw|.
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Proof. We apply Theorem 7 using c = cos(θ/4)/(cos(θ/2) − sin(3θ/4)). It383

remains to handle Case (c), where w ∈ Cv
k and |cw| > |dw|, and Case (d),384

where w ∈ Cv
k+1.385

Recall that c and d are the left and right corners of Tvw, opposite to v,386

and a′′ is the intersection of the side of Tuw opposite u and the left boundary387

of Cv
0 . Let β be ∠a′′wv and let γ be the angle between vw and the bisector388

of Tvw. Since Tvw is smaller than Tuw, the induction hypothesis gives an389

upper bound on δ(v, w). Since |uv| ≤ |ua′|+ |a′v| and v, a′′, a, and a′ form a390

parallelogram, we need to show that δ(v, w) ≤ |va′′|+ c · |a′′w| for both cases391

in order to complete the proof.392
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Figure 11: The remaining cases of the induction step for the θ(4k+3)-graph: (a) w lies in
Cv

k and |cw| > |dw|, (b) w lies in Cv
k+1

Case (c): When w lies in Cv
k and |cw| > |dw|, the induction hypothesis393

for Tvw gives δ(v, w) ≤ |vc| + c · |cw| (see Figure 11a). We note that γ =394

3θ/4−β. Hence, the inequality follows from Lemma 4 when c ≥ (cos(3θ/4−395

β)− sin β)/(cos(θ/2− β)− sin(5θ/4− β)). Since this function is decreasing396

in β for θ/4 ≤ β ≤ 3θ/4, it is maximized when β equals θ/4. Hence, c397

needs to be at least (cos(θ/2) − sin(θ/4))/(cos(θ/4) − sin θ), which is equal398

to cos(θ/4)/(cos(θ/2)− sin(3θ/4)).399

Case (d): When w lies in Cv
k+1, w lies above the bisector of Tvw (see Fig-400

ure 11b) and the induction hypothesis for Tvw gives δ(v, w) ≤ |wd|+ c · |dv|.401

We note that γ = θ/4+β. Hence, the inequality follows from Lemma 4 when402

c ≥ (cos(θ/4 + β)− sin β)/(cos(θ/2− β)− sin(3θ/4 + β)), which is equal to403

cos(θ/4)/(cos(θ/2)− sin(3θ/4)). �404

405
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Theorem 12. Let u and w be two vertices in the plane. Let m be the
midpoint of the side of Tuw opposite u and let α be the unsigned angle
between uw and um. There exists a path connecting u and w in the θ(4k+5)-
graph of length at most(

cosα

cos
(
θ
2

) +

(
cosα tan

(
θ
2

)
+ sinα

)
· cos

(
θ
4

)
cos
(
θ
2

)
− sin

(
3θ
4

) )
· |uw|.

Proof. We apply Theorem 7 using c = cos(θ/4)/(cos(θ/2) − sin(3θ/4)). It406

remains to handle Case (c), where w ∈ Cv
k and |cw| > |dw|, and Case (d),407

where w ∈ Cv
k+1.408

Recall that c and d are the left and right corners of Tvw, opposite to v,409

and a′′ is the intersection of the side of Tuw opposite u and the left boundary410

of Cv
0 . Let β be ∠a′′wv and let γ be the angle between vw and the bisector411

of Tvw. Since Tvw is smaller than Tuw, the induction hypothesis gives an412

upper bound on δ(v, w). Since |uv| ≤ |ua′|+ |a′v| and v, a′′, a, and a′ form a413

parallelogram, we need to show that δ(v, w) ≤ |va′′|+ c · |a′′w| for both cases414

in order to complete the proof.415
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Figure 12: The remaining cases of the induction step for the θ(4k+5)-graph: (a) w lies in
Cv

k and |cw| > |dw|, (b) w lies in Cv
k+1 and |cw| < |dw|, (c) w lies in Cv

k+1 and |cw| ≥ |dw|
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Case (c): When w lies in Cv
k and |cw| > |dw|, the induction hypothesis416

for Tvw gives δ(v, w) ≤ |vc| + c · |cw| (see Figure 12a). We note that γ =417

5θ/4−β. Hence, the inequality follows from Lemma 4 when c ≥ (cos(5θ/4−418

β)− sin β)/(cos(θ/2− β)− sin(7θ/4− β)). Since this function is decreasing419

in β for 3θ/4 ≤ β ≤ 5θ/4, it is maximized when β equals 3θ/4. Hence, c420

needs to be at least (cos(θ/2) − sin(3θ/4))/(cos(θ/4) − sin θ), which is less421

than cos(θ/4)/(cos(θ/2)− sin(3θ/4)).422

Case (d): When w lies in Cv
k+1, the induction hypothesis for Tvw gives423

δ(v, w) ≤ max{|vc|+c·|cw|, |vd|+c·|dw|}. If |cw| < |dw| (see Figure 12b), the424

induction hypothesis for Tvw gives δ(v, w) ≤ |vd|+c · |dw|. We note that γ =425

β−θ/4. Hence, the inequality follows from Lemma 4 when c ≥ (cos(β−θ/4)−426

sin β)/(cos(θ/2− β)− sin(θ/4 + β)), which is equal to cos(θ/4)/(cos(θ/2)−427

sin(3θ/4)).428

If |cw| ≥ |dw|, the induction hypothesis for Tvw gives δ(v, w) ≤ |vc|+ c ·429

|cw| (see Figure 12c). We note that γ = θ/4−β. Hence, the inequality follows430

from Lemma 4 when c ≥ (cos(θ/4−β)−sin β)/(cos(θ/2−β)−sin(3θ/4−β)).431

Since this function is decreasing in β for 0 ≤ β ≤ θ/4, it is maximized when432

β equals 0. Hence, c needs to be at least cos(θ/4)/(cos(θ/2)− sin(3θ/4)). �433

434

By looking at two vertices u and w in the θ(4k+3)-graph and the θ(4k+5)-435

graph, we can see that when the angle between uw and the bisector of Tuw is436

α, the angle between wu and the bisector of Twu is θ/2−α. Hence the worst437

case spanning ratio corresponds to the minimum of the spanning ratio when438

looking at Tuw and the spanning ratio when looking at Twu.439

Theorem 13. The θ(4k+3)-graph and θ(4k+5)-graph are
cos( θ4)

cos( θ2)−sin( 3θ
4 )

-spanners.440

Proof. The spanning ratio of the θ(4k+3)-graph and the θ(4k+5)-graph is at
most

min


cosα

cos( θ2)
+

(cosα tan( θ2)+sinα)·cos( θ4)
cos( θ2)−sin( 3θ

4 )
,

cos( θ2−α)
cos( θ2)

+
(cos( θ2−α) tan( θ2)+sin( θ2−α))·cos(

θ
4)

cos( θ2)−sin( 3θ
4 )

 .

Since cosα/ cos(θ/2) + c · (cosα tan(θ/2) + sinα) is increasing for α ∈441

[0, θ/2], for θ ≤ 2π/7, the minimum of these two functions is maximized442

when the two functions are equal, i.e. when α = θ/4. Thus the θ(4k+3)-graph443
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and the θ(4k+5)-graph have spanning ratio at most444

cos
(
θ
4

)
cos
(
θ
2

) +

(
cos
(
θ
4

)
tan
(
θ
2

)
+ sin

(
θ
4

))
· cos

(
θ
4

)
cos
(
θ
2

)
− sin

(
3θ
4

) =
cos
(
θ
4

)
cos
(
θ
2

)
− sin

(
3θ
4

) .
�445

446

Furthermore, we observe that the proofs of Theorem 11 and Theorem 12447

follow the same path as the θ-routing algorithm follows. Since in the case448

of routing, we are forced to consider the canonical triangle with the source449

as apex, the arguments that decreased the spanning ratio cannot be applied.450

Hence, we obtain the following corollary.451

Corollary 14. The θ-routing algorithm is

(
1 +

2 sin( θ2) cos( θ4)
cos( θ2)−sin( 3θ

4 )

)
-competitive452

on the θ(4k+3)-graph and the θ(4k+5)-graph.453

5. Lower Bounds454

In this section, we provide lower bounds for the θ(4k+3)-graph, the θ(4k+4)-455

graph, and the θ(4k+5)-graph. For each of the families, we construct a lower456

bound example by extending the shortest path between two vertices u and457

w. For brevity, we describe only how to extend one of the shortest paths458

between these vertices. To extend all shortest paths between u and w, the459

same transformation is applied to all equivalent paths or canonical triangles.460

For example, when constructing the lower bound for the θ(4k+3)-graph,461

our first step is to ensure that there is no edge between u and w. To this462

end, the proof of Theorem 15 states that we place a vertex v1 in the corner463

of Tuw that is furthest from w. Placing only this single vertex, however, does464

not prevent the edge uw from being present, as u is still the closest vertex in465

Twu. Hence, we also place a vertex in the corner of Twu that is furthest from466

u. Since these two modifications are essentially the same, but applied to467

different canonical triangles, we describe only the placement of one of these468

vertices. The full result of each step is shown in the accompanying figures.469

5.1. Lower Bounds on the θ(4k+3)-Graph470

In this section, we construct a lower bound on the spanning ratio of the471

θ(4k+3)-graph, for any integer k ≥ 1.472
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Theorem 15. The worst case spanning ratio of the θ(4k+3)-graph is at least

3 cos
(
θ
4

)
+ cos

(
3θ
4

)
+ sin

(
θ
2

)
+ sin θ + sin

(
3θ
2

)
3 cos

(
θ
2

)
+ cos

(
3θ
2

) .

Proof. We construct the lower bound example by extending the shortest473

path between two vertices u and w in three steps. We describe only how474

to extend one of the shortest paths between these vertices. To extend all475

shortest paths, the same modification is performed in each of the analogous476

cases, as shown in Figure 13.477

(a) (b) (c)

w

u

v1

v2

v3
w

u

v1

v2

w

u

v1

Figure 13: The construction of the lower bound for the θ(4k+3)-graph

First, we place w such that the angle between uw and the bisector of478

the cone of u that contains w is θ/4. Next, we ensure that there is no edge479

between u and w by placing a vertex v1 in the upper corner of Tuw that is480

furthest from w (see Figure 13a). Next, we place a vertex v2 in the corner of481

Tv1w that lies outside Tuw (see Figure 13b). Finally, to ensure that there is482

no edge between v2 and w, we place a vertex v3 in Tv2w such that Tv2w and483

Tv3w have the same orientation (see Figure 13c). Note that we cannot place484

v3 in the lower right corner of Tv2w since this would cause an edge between485

u and v3 to be added, creating a shortcut to w.486

One of the shortest paths in the resulting graph visits u, v1, v2, v3, and w.487

Thus, to obtain a lower bound for the θ(4k+3)-graph, we compute the length488

of this path.489
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w

u

v1

v2

v3m

v2

v3

w

Figure 14: The lower bound for the θ(4k+3)-graph

Let m be the midpoint of the side of Tuw opposite u. By construction, we490

have that ∠v1um = θ/2, ∠wum = ∠v2v1w = ∠v3v2w = θ/4, ∠v3wv2 = 3θ/4,491

∠uv1w = ∠v1v2w = π/2− θ/2, and ∠v2v3w = π− θ (see Figure 14). We can492

express the various line segments as follows:493

|uv1| =
cos
(
θ
4

)
cos
(
θ
2

) · |uw|
|v1w| =

sin
(
3θ
4

)
sin
(
π
2
− θ

2

) · |uw| =
sin
(
3θ
4

)
cos
(
θ
2

) · |uw|
|v1v2| =

cos
(
θ
4

)
cos
(
θ
2

) · |v1w|
|v2w| =

sin
(
θ
4

)
sin
(
π
2
− θ

2

) · |v1w| =
sin
(
θ
4

)
cos
(
θ
2

) · |v1w|
|v2v3| =

sin
(
3θ
4

)
sin(π − θ)

· |v2w| =
sin
(
3θ
4

)
sin(θ)

· |v2w|

|v3w| =
sin
(
θ
4

)
sin(π − θ)

· |v2w| =
sin
(
θ
4

)
sin(θ)

· |v2w|
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Hence, the total length of the shortest path is |uv1|+|v1v2|+|v2v3|+|v3w|,
which can be rewritten to

3 cos
(
θ
4

)
+ cos

(
3θ
4

)
+ sin

(
θ
2

)
+ sin θ + sin

(
3θ
2

)
3 cos

(
θ
2

)
+ cos

(
3θ
2

) · |uw|,

proving the theorem. �494

495

5.2. Lower Bound on the θ(4k+4)-Graph496

The θ(4k+2)-graph has the nice property that any line perpendicular to497

the bisector of a cone is parallel to the boundary of a cone (Lemma 1). As498

a result of this, if u, v, and w are vertices with v in one of the upper corners499

of Tuw, then Twv is completely contained in Tuw. The θ(4k+4)-graph does not500

have this property. In this section, we show how to exploit this to construct501

a lower bound for the θ(4k+4)-graph whose spanning ratio exceeds the worst502

case spanning ratio of the θ(4k+2)-graph.503

Theorem 16. The worst case spanning ratio of the θ(4k+4)-graph is at least

1 + 2 tan

(
θ

2

)
+ 2 tan2

(
θ

2

)
.

Proof. We construct the lower bound example by extending the shortest504

path between two vertices u and w in three steps. We describe only how505

to extend one of the shortest paths between these vertices. To extend all506

shortest paths, the same modification is performed in each of the analogous507

cases, as shown in Figure 15.508

First, we place w such that the angle between uw and the bisector of509

the cone of u that contains w is θ/2. Next, we ensure that there is no edge510

between u and w by placing a vertex v1 in the upper corner of Tuw that is511

furthest from w (see Figure 15a). Next, we place a vertex v2 in the corner of512

Tv1w that lies in the same cone of u as w and v1 (see Figure 15b). Finally,513

we place a vertex v3 in the intersection of the left boundary of Tv2w and the514

right boundary of Twv2 to ensure that there is no edge between v2 and w515

(see Figure 15c). Note that we cannot place v3 in the lower right corner of516

Tv2w since this would cause an edge between u and v3 to be added, creating517

a shortcut to w.518
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(a) (b)

w

u

v1

v2

w

u

v1
w

u

v1

v2

v3

(c)

Figure 15: The construction of the lower bound for the θ(4k+4)-graph

One of the shortest paths in the resulting graph visits u, v1, v2, v3, and w.519

Thus, to obtain a lower bound for the θ(4k+4)-graph, we compute the length520

of this path.521

Let m be the midpoint of the side of Tuw opposite u. By construction,522

we have that ∠v1um = ∠wum = ∠v2v1w = ∠v3v2w = ∠v3wv2 = θ/2 (see523

Figure 16). We can express the various line segments as follows:524

|uv1| = |uw|

|v1w| = 2 sin

(
θ

2

)
· |uw|

|v1v2| =
|v1w|

cos
(
θ
2

) = 2 tan

(
θ

2

)
· |uw|

|v2w| = tan

(
θ

2

)
· |v1w| = 2 sin

(
θ

2

)
tan

(
θ

2

)
· |uw|

|v2v3| = |v3w| =
1
2
|v1w|

cos
(
θ
2

) = tan2

(
θ

2

)
· |uw|

Hence, the total length of the shortest path is |uv1|+|v1v2|+|v2v3|+|v3w|,
which can be rewritten to(

1 + 2 tan

(
θ

2

)
+ 2 tan2

(
θ

2

))
· |uw|.
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w

u

v1

v2

v3

m

Figure 16: The lower bound for the θ(4k+4)-graph

�525

526

5.3. Lower Bounds on the θ(4k+5)-Graph527

In this section, we give a lower bound on the spanning ratio of the θ(4k+5)-528

graph, for any integer k ≥ 1.529

Theorem 17. The worst case spanning ratio of the θ(4k+5)-graph is at least

1

2

√
4 sec

(
θ

2

)
+ 7 sec2

(
θ

2

)
+ 4 sec3

(
θ

2

)
+ sec4

(
θ

2

)
− 8 cos

(
θ

2

)
− 4

+ tan

(
θ

2

)
+

1

2
sec

(
θ

2

)
tan

(
θ

2

)
.

Proof. We construct the lower bound example by extending the shortest path530

between two vertices u and w in two steps. We describe only how to extend531

one of the shortest paths between these vertices. To extend all shortest paths,532

the same modification is performed in each of the analogous cases, as shown533

in Figure 17.534

First, we place w such that the angle between uw and the bisector of535

the cone of u that contains w is θ/4. Next, we ensure that there is no edge536
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(a) (b)

w

u

v1

v2v′2

w

u

v1

Figure 17: The construction of the lower bound for the θ(4k+5)-graph

between u and w by placing a vertex v1 in the upper corner of Tuw that is537

furthest from w (see Figure 17a). Finally, we place a vertex v2 in the corner538

of Tv1w that lies outside Tuw. We also place a vertex v′2 in the corner of Twv1539

that lies in the same cone of u as w and v1 (see Figure 17b). Note that540

placing v′2 creates a shortcut between u and v′2, as u is the closest vertex in541

one of the cones of v′2.542

One of the shortest paths in the resulting graph visits u, v′2, and w. Thus,543

to obtain a lower bound for the θ(4k+5)-graph, we compute the length of this544

path.545

Let m be the midpoint of the side of Tuw opposite u. By construction,546

we have that ∠v1um = θ/2, ∠wum = θ/4, ∠v1wv′2 = 3θ/4, and ∠uv1v′2 =547

∠uv1w + ∠wv1v′2 = (π − θ)/2 + (π − (π − θ)/2 − 3θ/4) = π − 3θ/4 (see548
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w

u

v1

v′2

m

Figure 18: The lower bound for the θ(4k+5)-graph

Figure 18). We can express the various line segments as follows:549

|uv1| =
cos
(
θ
4

)
cos
(
θ
2

) · |uw|
|v′2w| =

cos
(
θ
4

)
cos
(
θ
2

) · (sin

(
θ

4

)
+ cos

(
θ

4

)
tan

(
θ

2

))
· |uw|

|v1v′2| =

(
sin

(
θ

4

)
+ cos

(
θ

4

)
tan

(
θ

2

))2

· |uw|

|uv′2| =

√
|uv1|2 + |v1v′2|2 − 2 · |uv1| · |v1v′2| · cos

(
π − 3θ

4

)
Hence, the total length of the shortest path is |uv′2|+ |v′2w|, which can be

rewritten to

1

2

√
4 sec

(
θ

2

)
+ 7 sec2

(
θ

2

)
+ 4 sec3

(
θ

2

)
+ sec4

(
θ

2

)
− 8 cos

(
θ

2

)
− 4

+ tan

(
θ

2

)
+

1

2
sec

(
θ

2

)
tan

(
θ

2

)
times the length of uw. �550

551
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6. Comparison552

In this section we prove that the upper and lower bounds of the four553

families of θ-graphs admit a partial ordering. We need the following lemma554

that can be proved by elementary calculus.555

Lemma 18. Let x ∈
[
0, π

4

]
be a real number. Then the following inequalities556

hold:557

1. sin(x) ≤ x with equality if and only if x = 0.558

2. cos(x) ≥ 1− x2

2
with equality if and only if x = 0.559

3. sin(x) ≥ x− x3

6
with equality if and only if x = 0.560

4. cos(x) ≤ 1− x2

2
+ x4

24
with equality if and only if x = 0.561

5. tan(x) ≥ x with equality if and only if x = 0.562

6. tan2(x) ≥ x2 with equality if and only if x = 0.563

Using the above properties, we proceed to prove a number of relations564

between the four families of θ-graphs.565

Lemma 19. Let ub(m) and lb(m) denote the upper and lower bound on the
θm-graph:

ub(m) =



1 + 2 sin
(

π
4k+2

)
if m = 4k + 2 (k ≥ 1)

cos( π
2(4k+3))

cos( π
4k+3)−sin( 3π

2(4k+3))
if m = 4k + 3 (k ≥ 1)

1 + 2
sin( π

4k+4)
cos( π

4k+4)−sin( π
4k+4)

if m = 4k + 4 (k ≥ 1)

cos( π
2(4k+5))

cos( π
4k+5)−sin( 3π

2(4k+5))
if m = 4k + 5 (k ≥ 1)
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lb(m) =



1 + 2 sin
(

π
4k+2

)
if m = 4k + 2 (k ≥ 1)

3 cos( π
2(4k+3))+cos( 3π

2(4k+3))+sin( π
4k+3)+sin( 2π

4k+3)+sin( 3π
4k+3)

3 cos( π
4k+3)+cos( 3π

4k+3)

if m = 4k + 3 (k ≥ 1)

1 + 2 tan
(

π
4k+4

)
+ 2 tan2

(
π

4k+4

)
if m = 4k + 4 (k ≥ 1)

√
4 sec( π

4k+5)+7 sec2( π
4k+5)+4 sec3( π

4k+5)+sec4( π
4k+5)−8 cos( π

4k+5)−4
2

+ tan
(

π
4k+5

)
+ 1

2
sec
(

π
4k+5

)
tan
(

π
4k+5

)
if m = 4k + 5 (k ≥ 1)

Then the following inequalities hold where k is an integer.

ub(4(k + 1) + 2) < lb(4k + 2) (k ≥ 1) (a)

ub(4(k + 1) + 3) < lb(4k + 3) (k ≥ 1) (b)

ub(4(k + 1) + 4) < lb(4k + 4) (k ≥ 1) (c)

ub(4(k + 1) + 5) < lb(4k + 5) (k ≥ 1) (d)

ub(4k + 2) < lb(4k + 4) (k ≥ 1) (e)

ub(4(k + 1) + 4) < lb(4k + 2) (k ≥ 1) (f)

ub(4(k + 1) + 5) < lb(4k + 3) (k ≥ 1) (g)

ub(4(k + 1) + 3) < lb(4k + 5) (k ≥ 1) (h)

ub(4k + 5) < lb(4k + 2) (k ≥ 2) (i)

Proof. We use the same strategy for each inequality. We use the defini-566

tions of ub and lb in combination with Lemma 18. Notice that the restriction567

on k in each of these inequalities ensures that we can apply Lemma 18.568

We are then left with an algebraic inequality that can be translated into a569

polynomial inequality, which is easy to verify.570
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(a)
ub(4(k + 1) + 2)

= 1 + 2 sin

(
π

4(k + 1) + 2

)
by the definition of ub,

< 1 + 2

(
π

4(k + 1) + 2

)
by Lemma 18-1,

< 1 + 2

((
π

4k + 2

)
− 1

6

(
π

4k + 2

)3
)

see below, (3)

< 1 + 2 sin

(
π

4k + 2

)
by Lemma 18-3,

= lb(4k + 2) by the definition of lb.

We now explain why (3) holds. The inequality

1 + 2

(
π

4(k + 1) + 2

)
< 1 + 2

((
π

4k + 2

)
− 1

6

(
π

4k + 2

)3
)

can be simplified to571

192k2 +
(
192− 2π2

)
k +

(
48− 3π2

)
> 0. (4)

The largest real root of the polynomial involved in (4) is negative. More-572

over, (3) holds for k = 1. Therefore, (3) holds for any k ≥ 1.573

(b) The proof is analogous to the one of (a).574

(c) The proof is analogous to the one of (a).575

(d) We let

f(k) =
cos
(

π
2(4(k+1)+5)

)
cos
(

π
4(k+1)+5

)
− sin

(
3π

2(4(k+1)+5)

) ,
r(k) = 4 sec

(
π

4k + 5

)
+ 7 sec2

(
π

4k + 5

)
+ 4 sec3

(
π

4k + 5

)
+

sec4
(

π

4k + 5

)
− 8 cos

(
π

4k + 5

)
− 4,

g(k) = 2 tan

(
π

4k + 5

)
+ sec

(
π

4k + 5

)
tan

(
π

4k + 5

)
,
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so that
ub(4(k + 1) + 5) = f(k),

lb(4k + 5) =

√
r(k) + g(k)

2
.

Using a proof similar to the one of (a), we can prove that
(2f(k)− g(k))2 < r(k).

Using a proof similar to the one of (a), we can prove that 2f(k)−g(k) > 0,
for k ≥ 1, thus we can proceed as follows

2f(k)− g(k) <
√
r(k)

f(k) <

√
r(k) + g(k)

2
ub(4(k + 1) + 5) < lb(4k + 5),

for k ≥ 1.576

(e) The proof is analogous to the one of (a).577

(f) The proof is analogous to the one of (a).578

(g) The proof is analogous to the one of (d).579

(h) The proof is analogous to the one of (d).580

(i) The proof is analogous to the one of (d).581 �582

583

We note that inequalities (a), (b), (c), and (d) imply that the spanning584

ratio is monotonic within each of the four families. We also note that increas-585

ing the number of cones of a θ-graph by 2 from 4k + 2 to 4k + 4 increases586

the worst case spanning ratio, thus showing that adding cones can make587

the spanning ratio worse instead of better. Therefore, the spanning ratio is588

non-monotonic between families.589

Corollary 20. We have the following partial order on the spanning ratios590

of the four families (see Figure 19).591
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Figure 19: Partial order on the spanning ratios of the four families

7. Tight Routing Bounds592

While improving the upper bounds on the spanning ratio of the θ(4k+4)-593

graph, we also improved the upper bound on the routing ratio of the θ-routing594

algorithm. In this section we show that this bound of 1+2 sin(θ/2)/(cos(θ/2)−595

sin(θ/2)) and the current upper bound of 1/ (1− 2 sin(θ/2)) on the θ10-graph596

are tight, i.e. we provide matching lower bounds on the routing ratio of the597

θ-routing algorithm on these families of graphs.598

7.1. Tight Routing Bounds for the θ(4k+4)-Graph599

In this section we show that the upper bound of 1+(2 sin(θ/2))/(cos(θ/2)−600

sin(θ/2)) on the routing ratio of the θ-routing algorithm for the θ(4k+4)-graph601

is a tight bound.602

Theorem 21. The θ-routing algorithm is

(
1 +

2 sin( θ2)
cos( θ2)−sin( θ2)

)
-competitive603

on the θ(4k+4)-graph and this bound is tight.604

Proof. An upper bound of 1+(2 sin(θ/2))/(cos(θ/2)−sin(θ/2)) on the routing605

ratio was shown in Corollary 10, hence it suffices to show that this is also a606

lower bound.607
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We construct the lower bound example on the competitiveness of the θ-608

routing algorithm on the θ(4k+4)-graph by repeatedly extending the routing609

path from source u to destination w. First, we place w in the right corner610

of Tuw. To ensure that the θ-routing algorithm does not follow the edge611

between u and w, we place a vertex v1 in the left corner of Tuw. Next, to612

ensure that the θ-routing algorithm does not follow the edge between v1 and613

w, we place a vertex v′1 in the left corner of Tv1w. We repeat this step until614

we have created a cycle around w (see Figure 20a).615

u

v1 w

v′1

u

v1 w

x1

v′1

v2

(a) (b)

Figure 20: Constructing a lower bound example for θ-routing on the θ(4k+4)-graph: (a)
after constructing the first cycle, (b) after adding v2, the first vertex of the second cycle,
and x1, the auxiliary vertex needed to maintain the first cycle

To extend the routing path further, we again place a vertex v2 in the616

corner of the current canonical triangle. To ensure that the routing algorithm617

still routes to v1 from u, we place v2 slightly outside of Tuv1 . However, another618

problem arises: vertex v′1 is no longer the vertex closest to v1 in Tv1w, as v2 is619

closer. To solve this problem, we also place a vertex x1 in Tv1v2 such that v′1620

lies in Tx1w (see Figure 20b). By repeating this process four times, we create621

a second cycle around w.622
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To add more cycles around w, we repeat the same process as described623

above: place a vertex in the corner of the current canonical triangle and624

place an auxiliary vertex to ensure that the previous cycle stays intact. Note625

that when placing xi, we also need to ensure that it does not lie in Txi−1w, to626

prevent shortcuts from being formed. A lower bound example consisting of627

two cycles is shown in Figure 21.628

u

v1
w

x1

v′1

v2
wv2

x2

Figure 21: A lower bound example for θ-routing on the θ(4k+4)-graph, consisting of two
cycles: the first cycle is coloured orange and the second cycle is coloured blue

This way we need to add auxiliary vertices only to the (k − 1)-th cy-629

cle, when adding the k-th cycle, hence we can add an additional cycle us-630

ing only a constant number of vertices. Since we can place the vertices631

arbitrarily close to the corners of the canonical triangles, we ensure that632

|uv1| = |uw| and that the distance between consecutive vertices vi and v′i633

is always 1/ cos(θ/2) times |viw|. Hence, when we take |uw| = 1 and let634

the number of vertices approach infinity, we get that the total length of the635

path is 1 + 2 sin(θ/2) ·
∑∞

i=0(tani(θ/2)/ cos(θ/2)), which can be rewritten to636

1 + (2 sin(θ/2))/(cos(θ/2)− sin(θ/2)). �637

638
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7.2. Tight Routing Bounds for the θ10-Graph639

In this section we show that the upper bound of 1/(1− 2 sin(θ/2)) on the640

routing ratio of the θ-routing algorithm for the θ10-graph is a tight bound.641

Theorem 22. The θ-routing algorithm is (1/ (1− 2 sin (θ/2)))-competitive642

on the θ10-graph and this bound is tight.643

Proof. Ruppert and Seidel [6] showed that the routing ratio is at most644

1/(1− 2 sin(θ/2)), hence it suffices to show that this is also a lower bound.645

u

v1

v′1

w
x1 v2

wv2

Figure 22: A lower bound example for θ-routing on the θ10-graph, consisting of two cycles:
the first cycle is coloured orange and the second cycle is coloured blue

We construct the lower bound example on the competitiveness of the θ-646

routing algorithm on the θ10-graph by repeatedly extending the routing path647

from source u to destination w. First, we place w in the right corner of Tuw.648

To ensure that the θ-routing algorithm does not follow the edge between u649

and w, we place a vertex v1 in the left corner of Tuw. Next, to ensure that the650
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θ-routing algorithm does not follow the edge between v1 and w, we place a651

vertex v′1 in the left corner of Tv1w. We repeat this step until we have created652

a cycle around w (see Figure 22).653

To extend the routing path further, we again place a vertex v2 in the654

corner of the current canonical triangle. To ensure that the routing algorithm655

still routes to v1 from u, we place v2 slightly outside of Tuv1 . However, another656

problem arises: vertex v′1 is no longer the vertex closest to v1 in Tv1w, as v2 is657

closer. To solve this problem, we also place a vertex x1 in Tv1v2 such that v′1658

lies in Tx1w (see Figure 23). By repeating this process four times, we create659

a second cycle around w.660

v1

x1

v2

x2

Figure 23: The placement of vertices such that previous cycles stay intact when adding a
new cycle

To add more cycles around w, we repeat the same process as described661

above: place a vertex in the corner of the current canonical triangle and662

place an auxiliary vertex to ensure that the previous cycle stays intact. Note663

that when placing xi, we also need to ensure that it does not lie in Txi−1w,664

to prevent shortcuts from being formed (see Figure 23). This means that in665

general xi does not lie arbitrarily close to the corner of Tvivi+1
.666

This way we need to add auxiliary vertices only to the (k − 1)-th cycle,667

when adding the k-th cycle, hence we can add an additional cycle using only a668

constant number of vertices. Since we can place the vertices arbitrarily close669

to the corners of the canonical triangles, we ensure that the distance to w is670

always 2 sin(θ/2) times the distance between w and the previous vertex along671

the path. Hence, when we take |uw| = 1 and let the number of vertices ap-672

proach infinity, we get that the total length of the path is
∑∞

i=0 (2 sin(θ/2))i,673

which can be rewritten to 1/ (1− 2 sin(θ/2)). �674

675

8. Conclusion676

We showed that the θ(4k+2)-graph has a tight spanning ratio of 1 +677

2 sin(θ/2). This is the first time tight spanning ratios have been found for a678
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large family of θ-graphs. Previously, the only θ-graph for which tight bounds679

were known was the θ6-graph. We also gave improved upper bounds on the680

spanning ratio of the θ(4k+3)-graph, the θ(4k+4)-graph, and the θ(4k+5)-graph.681

We also constructed lower bounds for all four families of θ-graphs and682

provided a partial order on these families. In particular, we showed that the683

θ(4k+4)-graph has a spanning ratio of at least 1 + 2 tan(θ/2) + 2 tan2(θ/2).684

This result is somewhat surprising since, for equal values of k, the worst case685

spanning ratio of the θ(4k+4)-graph is greater than that of the θ(4k+2)-graph,686

showing that increasing the number of cones can make the spanning ratio687

worse.688

There remain a number of open problems, such as finding tight spanning689

ratios for the θ(4k+3)-graph, the θ(4k+4)-graph, and the θ(4k+5)-graph. Simi-690

larly, for the θ4 and θ5-graphs, though upper and lower bounds are known,691

these are far from tight. It would also be nice if we could improve the routing692

algorithms for θ-graphs. At the moment, θ-routing is the standard routing693

algorithm for general θ-graphs, but it is unclear whether this is the best694

routing algorithm for general θ-graphs: though we showed that the current695

bounds on the competitiveness of the θ-routing algorithm are tight in case of696

the θ(4k+4)-graph, this does not imply that there exists no algorithm that can697

do better on these graphs. As a special case, we note that the θ-routing algo-698

rithm is not o(n)-competitive on the θ6-graph, but a better (tight) algorithm699

is known to exist [3].700
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