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We prove that any irreducible triangulation on n vertices has O(4.6807n) regular edge labelings and that there are
irreducible triangulations on n vertices with Ω(3.0426n) regular edge labelings. Our upper bound relies on a novel
application of Shearer’s entropy lemma. As an example of the wider applicability of this technique, we also improve
the upper bound on the number of 2-orientations of a quadrangulation to O(1.87n).
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1 Introduction
An irreducible triangulation is a plane graph G such that (i) G is triangulated and the exterior face is a
quadrangle, and (ii) G has no separating triangles (a 3-cycle with vertices both inside and outside the cy-
cle). A regular edge labeling of an irreducible triangulation G is a partition of the interior edges of G into
two subsets of red and blue directed edges such that: (i) around each inner vertex in clockwise order we

Fig. 1: The local con-
ditions on a regular
edge labeling.

have one contiguous non-empty set each of incoming blue edges, outgoing red
edges, outgoing blue edges, and incoming red edges; (ii) the left exterior ver-
tex has only outgoing blue edges, the top exterior vertex has only incoming red
edges, the right exterior vertex has only incoming blue edges, and the bottom
exterior vertex has only outgoing red edges (see Fig. 1, red edges are dashed).
Regular edge labelings are also known as transversal pairs of bipolar orienta-
tions (Fusy, 2009).

Much of the importance of regular edge labelings stems from their connection
to rectangular partitions. A rectangular partition or floorplan is a partition of
a rectangle into rectangular faces such that no four rectangles meet at a com-
mon point (see Fig. 2, left). Rectangular partitions find applications in various
areas: from floor plans of electronic chips (Koźmiński and Kinnen, 1985; Yeap
and Sarrafzadeh, 1995) or architectural designs (Earl and March, 1979; Rinsma,
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1988), to rectangular cartograms (Raisz, 1934; van Kreveld and Speckmann, 2007) and treemaps (Bruls
et al., 2000).

Two rectangular partitions with n (interior) rectangles are (strongly) equivalent if the partitions contain
(i) the same adjacencies between rectangles and (ii) these adjacencies have the same direction (vertical
or horizontal). There has been considerable effort in counting the number R(n) of equivalence classes
of rectangular partitions with n rectangles. The currently known lower bound is R(n) = Ω(11.56n)
by Amano et al. (2007). The known upper bound is R(n) 6 13.5n−1 by Fujimaki et al. (2009). Inoue
et al. (2009) computed R(n) for n 6 3000. These bounds consider all possible adjacencies between
rectangles, but in practice, these adjacencies are often determined by the application (e.g., for rectangular
cartograms they correspond to shared borders between regions), while the relative positions of regions
can be still chosen. In such a setting we are interested in the number of equivalence classes of rectangular
partitions with given adjacencies. In this article we give upper and lower bounds on this number.

Fig. 2: A rectangular partition, its dual irreducible triangulation and the corresponding regular edge label-
ing.

The equivalence of rectangular partitions can be formulated in graph notion as follows. Given a rectan-
gular partition, we augment it by adding four surrounding rectangles (see Fig. 2, middle). Two partitions
now contain the same adjacencies between rectangles if and only if the dual graphs of the augmented parti-
tions are the same. A plane graph can occur as dual if and only if it is an irreducible triangulation (Bhasker
and Sahni, 1987; Koźmiński and Kinnen, 1985). A rectangular partition dual to an irreducible triangula-
tion G is also referred to as a rectangular dual of G. A given irreducible triangulation might have many
corresponding equivalence classes of rectangular partitions.

Now, given a rectangular partition, the directions of the adjacencies between rectangles can be repre-
sented as a labeling of the edges of the dual irreducible triangulation. In this labeling, all edges corre-
sponding to horizontal (resp. vertical) adjacencies are colored blue (resp. red) and directed from left to
right (resp. from bottom to top). The result is a regular edge labeling. The equivalence classes of the rect-
angular partitions with the same irreducible triangulation G as dual correspond one-to-one to the regular
edge labelings of G.

Our motivation to bound the number of regular edge labelings of an irreducible triangulation stems from
their application to drawing rectangular cartograms. To draw such a cartogram one needs to select one
rectangular dual of a given irreducible triangulation, that is, one needs to select a regular edge labeling.
The design of an algorithm that does so by exploring the space of regular edge labelings (Buchin et al.,
2011, 2012) can be aided by a better understanding of this space and in particular its size.

In this article we prove the following bounds. Any irreducible triangulation G with n vertices has
O(4.6807n) regular edge labelings (Section 2). Furthermore, there are irreducible triangulations with
Ω(3.0426n) regular edge labelings (Section 3).
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Related work. Besides the notion of strong equivalence of rectangular partitions, there is also a notion
of weak equivalence, for which two partitions are considered to be equivalent when the incidence structure
between rectangles and maximal line segments is the same. The number of weak equivalence classes is
in Θ(8n/n4) (Ackerman et al., 2006).

Instead of counting the total number of rectangular partitions, we are interested in the maximum number
of rectangular partitions that all share the same dual graph. This is the same approach taken by Felsner
and Zickfeld (2008), who count different ways of orienting the edges of planar graphs. The most general
of these is called an α-orientation: given a planar graph G = (V,E) and a function α : V → N, an
orientation of the edges of G is an α-orientation if every vertex v has out-degree α(v). They showed that
a planar graph has at mostO(3.73n) α-orientations, for any fixed function α. While regular edge labelings
and α-orientations may not seem directly related, Fusy (2009) showed that there is a function α0 such that
the regular edge labelings of an irreducible triangulation G are in bijection with the α0-orientations of the
angular graph of G (the angular graph of G adds a vertex in every interior face of G and connects it to
the three vertices of that face, then removes all original edges). However, because the angular graph has
3n − 6 vertices, applying the general bound on α-orientations only gives a bound of O(51.90n) on the
number of regular edge labelings – far from the bound we achieve.

A bipolar orientation of a connected graph G is an acyclic orientation of the edges of G such that
there is exactly one vertex with no incoming edges (the source) and one with no outgoing edges (the
sink). Felsner and Zickfeld (2008) showed that any connected planar graph has at most O(3.97n) bipolar
orientations, while also showing that there are planar graphs with Ω(2.91n) bipolar orientations. As a
regular edge labeling consists of two disjoint bipolar orientations (one on the red edges and one on the
blue edges), one might expect that the number of regular edge labelings is related to the number of bipolar
orientations. Indeed, any regular edge labeling can be turned into a bipolar orientation by adding a source
and a sink vertex and connecting the new source to the red and the blue sources and connecting the red and
the blue sinks to the new sink. However, in this way many regular edge labelings can be mapped to the
same bipolar orientation, as some regular edge labelings differ only in edge colors. Conversely, although
Kant and He (1997) developed an algorithm that produces a regular edge labeling from the directions of
the edges, not every bipolar orientation can be turned into a regular edge labeling this way. This is caused
by the fact that bipolar orientations only require each (non-source and non-sink) vertex to have an in- and
outdegree of at least one. Regular edge labelings on the other hand, require an in- and outdegree of at
least two, one blue and one red.

Bipolar orientations are also related to α-orientations. Specifically, Rosenstiehl (1989) showed that
bipolar orientations of a graph G are in bijection with 2-orientations (α-orientations where every vertex
has out-degree 2) of the angular graph of G. As this angular graph is always a quadrangulation, Felsner
and Zickfeld (2008) proved an upper bound ofO(1.91n) and a lower bound of Ω(1.53n) on the maximum
number of 2-orientations a quadrangulation can have. Note that even though 2-orientations are in bijection
with bipolar orientations, the bounds differ because the number of vertices differs.

Our upper bound relies on Shearer’s entropy lemma (Chung et al., 1986), which was recently used by
Björklund et al. (2008) to obtain O

(
(2 − ε)n

)
time algorithms for the traveling salesperson problem. In

contrast to our application of the lemma, they count vertex sets with certain properties and crucially rely
on bounded maximum degree. As an example of the wider applicability of this technique, we also use it
to slightly improve the upper bound on the number of 2-orientations of a quadrangulation to O(1.87n).

Many other interesting substructures have been counted in planar graphs. Aichholzer et al. (2007)
list the known upper bounds for various subgraphs contained in a triangulation: Hamiltonian cycles,
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cycles, perfect matchings, spanning trees, connected graphs and so on. Several of these bounds have
been improved recently (Buchin et al., 2007; Buchin and Schulz, 2010). Some of the techniques used to
count these substructures can also be used to count regular edge labelings. The bounds obtained this way
(see end of Section 2 and end of Section 3), however, are far from the best bounds that we obtain. Also
related to the problem of counting substructures in planar graphs is the problem of counting structures like
triangulations on planar point sets (Dumitrescu et al., 2011; Hoffmann et al., 2013; Sharir and Sheffer,
2011).

Regular edge labelings are not only important because of their connection to rectangular partitions
but also because of their connection to 4-connected plane graphs. Many plane graphs, in particular 4-
connected plane graphs with at least four vertices on the exterior face, can be extended to an irreducible
triangulation Biedl et al. (1997). Regular edge labelings can then be used to obtain straight-line drawings
of these graphs on a small grid (Fusy, 2009).

2 Upper bound
We will use the following properties of regular edge labelings. A regular edge coloring is a regular edge
labeling, with the directions of the edges omitted.

Lemma 1 (Fusy (2009), Proposition 2 and Lemma 1)

(a) A regular edge coloring uniquely determines a regular edge labeling.

(b) A regular edge labeling (of an irreducible triangulation) induces no monochromatic triangles.

LetG = (V,E) be an irreducible triangulation on n vertices. By Lemma 1(a), a regular edge labeling is
uniquely determined by the colors (red and blue) of the edges. Thus, the number of regular edge labelings
of G is bounded by the number of edge colorings with two colors. Since G has less than 3n edges by
Euler’s formula, a simple upper bound is 23n = 8n. However, most of the colorings that we obtain by
coloring the edges independently red or blue do not correspond to a valid regular edge labeling. In the
following we refine our bound using Shearer’s entropy lemma.

Lemma 2 (Shearer’s entropy lemma (Chung et al., 1986)) Let S be a finite set and let A1, . . . , Am be
subsets of S such that every element of S is contained in at least k of the A1, . . . , Am. Let F be a
collection of subsets of S and let Fi = {F ∩Ai : F ∈ F} for 1 6 i 6 m. Then we have

|F|k 6
m∏
i=1

|Fi|.

Shearer’s entropy lemma allows us to use the local conditions on regular edge colorings to bound the
number of regular edge labelings.

Theorem 3 The number of regular edge labelings of an irreducible triangulations is in O(4.6807n).

Proof: Let G = (V,E) be an irreducible triangulation on n vertices. Let S be E with the four edges on
the exterior face excluded. For a regular edge labeling L of G let E(L) be the set of blue edges in L. Let

F := {E(L) | L is a regular edge labeling of G}.
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vi

Ai ∩ E(L)

vi

Ai

e

Fig. 3: A vertex vi with the corresponding set of edges Ai, a locally consistent choice of blue edges, and
an edge e with the four vertices that include e in their Ai.

Since E(L) determines L, the number of regular edge labelings is |F|.
For the vertices vi of G (i = 1, 2, . . . , n) let Ai be the set of edges belonging to S and to a triangle

adjacent to vi (see Fig. 3). Every edge e ∈ S is in four of the setsAi, namely in the four sets corresponding
to the vertices of the two triangles with e as edge. Let Fi be the set of intersections of the set Ai with
the sets E(L), i.e., Fi contains all possible ways to choose blue edges around vi consistent with a regular
edge labeling. By Lemma 2 the number of regular edge labelings is bounded by

∏n
i=1 |Fi|1/4.

For a vertex vi on the outer face there is only one way to choose the colors for the edges in Ai, since
the adjacent edges must all have the same color. Since by Lemma 1(b) a regular edge labeling has no
monochromatic triangle, the remaining edges in Ai need to be of the other color. Now let vi be a vertex
that is not on the outer face. We first bound the number of ways in which the edges adjacent to vi can be
colored. We color these edges starting with an arbitrary one and going clockwise from there. For the first
edge, we have at most 2 choices and moving clockwise, we need to switch colors exactly four times by
the local conditions on regular edge colorings. Therefore the number of choices for the edges adjacent to
vi is bounded by 2

(
di

4

)
, where di is the degree of vi. After coloring the adjacent edges, every triangle in

Ai already has two colored edges. We have no choice for the third edge if these two edges have the same
color, so we only have a choice for the four places where we switched colors.

Therefore, the number of regular edge labelings of G is bounded by

n∏
i=1

(
25
(
di
4

))1/4

=

(
32n

n∏
i=1

(
di
4

))1/4

.

Jensen’s inequality states that given a concave function f and a set of k values xi in its domain,
∑
f(xi) 6

kf(
∑
xi/k). Since the function log

(
d
4

)
is concave, this gives us

∑n
i=1 log

(
di

4

)
6 n log

(∑n
i=1 di/n

4

)
.

Since by Euler’s formula the average degree
∑n

i=1 di/n is bounded from above by 6, we get
∏n

i=1

(
di

4

)
6(

6
4

)n
= 15n. This yields the bound on the number of regular edge labelings of G of 480n/4 < 4.6807n.

2

2-orientations of quadrangulations
Next we improve the upper bound on the number of 2-orientations of quadrangulations. This demonstrates
that the techniques of this section are more generally applicable. A quadrangulation is a plane graph where
all faces are quadrangles (cycles of length four). A 2-orientation of a quadrangulation G is an orientation
of the interior edges ofG such that every interior vertex has out-degree 2, and the four vertices of the outer
face have out-degree 0. By the bijection between bipolar orientations of planar graphs and 2-orientations
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of quadrangulations, counting the latter is the same as counting the former in the number of vertices and
faces combined. This is the approach we take here.

Theorem 4 The number of 2-orientations of a quadrangulation is in O(1.87n).

Proof: Given a plane graphGwith indicated source and sink, we intend to apply Shearer’s entropy lemma
with S being the edges ofG. To define F , we first define a total ordering on the vertices ofG, for example
by ordering them lexicographically by their coordinates in the plane. We can then uniquely identify an
orientation of the edges of G by the subset of edges that are oriented from their lower ranked endpoint to
their higher ranked endpoint. Let F be the collection of subsets of edges that correspond to a valid bipolar
orientation on G.

Fig. 4: The neigh-
bourhoods around a
face and vertex.

As we are counting the number of bipolar orientations in terms of both faces
and vertices, we consider two different neighbourhoods: all edges incident on a
vertex and all edges around a face (see Figure 4). Since each edge is incident on
two vertices and two faces, we have k = 4. In a bipolar orientation, the edges
around each face form two directed paths, with one source and one sink. Thus,
there are f(df ) = df (df − 1) options for each face, where df is the number of
vertices on the face. Likewise, the edges around a vertex form two bundles, one
with all incoming edges and the other with all outgoing edges. As the edges in
each bundle are consecutive, the only choices are which vertex starts each bundle.
This also gives f(dv) options per vertex, where dv is the degree. As each edge
is incident to two faces and two vertices, the total number of edge-face and edge-
vertex incidences is four times the number of edges. Thus, the average degree d
over all faces and vertices is 4. Using the concavity of log(f(d)) and Jensen’s
inequality, we obtain ∏

i

f(di) 6 f(d)n = 12n.

Thus, by Shearer’s entropy lemma, we get that the maximum number of 2-orientations of a quadrangu-
lation is in O(12n/4) = O(1.87n). 2

Probabilistic technique
In the remainder of this section we discuss an alternative derivation of an upper bound on the number of
regular edge labelings. Although it is worse than the bound given in Theorem 3, we hope that the reasoning
may contribute to improving the upper bound in future. If we call the average degree of the inner vertices
d, the exterior vertices have total inner (so not counting the exterior edges) degree (6 − d)n + 2 by the
Euler characteristic. The number of triangles adjacent to the exterior vertices is equal to this total degree.
For each of these triangles, the coloring is already fixed. Again using the Euler characteristic, we can see
that there are (d − 4)n non-fixed triangles left. Each of these triangles must choose one of its corners to
be monochromatic, since by Lemma 1(b) there can be no fully monochromatic triangles. Thus we obtain
a bound of 3(d−4)n labelings.

Not every assignment of monochromatic corners produces a valid regular edge labeling, as every inner
vertex v must have exactly 4 dichromatic corners and dv − 4 monochromatic corners, where dv is the
degree of v. If we now look at a random assignment of monochromatic corners, we can say something
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about the probability that all vertices will satisfy this condition. Since there are 4n dichromatic corners in
total, asking that all inner vertices have at most four dichromatic corners is the same as asking that they
have exactly four. Let Xi denote the event that vertex i has at most four dichromatic corners, and let I be
a subset of the vertices. Then we have for any j ∈ I that

P

(⋂
i∈I

Xi

)
= P

( ⋂
i∈I\{j}

Xi | Xj

)
· P (Xj).

Next we argue that P (
⋂

i∈I\{j}Xi | Xj) 6 P (
⋂

i∈I\{j}Xi). Intuitively, the probability on the left-hand
side is smaller, because the condition Xj forces j to have “few” dichromatic corners, making it more
likely for the neighbors of j to have “many” dichromatic corners. We prove the inequality by showing
how to sample an assignment of colors to corners conditioned under Xj and by observing that in this
process the probability of being dichromatic does not decrease for all corners not incident to j.

For all triangles not incident to j we can assign the monochromatic corner at random as before, since
this is independent of Xj . Now assume that K corners are incident to j. We index these corners and their
corresponding triangles (arbitrarily) by 1, . . . ,K, and define Yk as the random variable which is 1 if the
kth corner of j is dichromatic, and 0 otherwise. LetXj(k,K

′) be the event that Yk+. . .+YK 6 K ′. Note
that Xj = Xj(1, 4). We first assign a monochromatic corner to the first triangle at j conditioned under
Xj . The condition Xj can only decrease the probability that Y1 = 1, and therefore can only increase the
probability for the other two corners of the triangle. We now continue with the assigning a monochromatic
corner to the second triangle at j. If the first corner at j is dichromatic (resp. monochromatic), we now
need to condition under Xj and Y1 = 1 (resp. Y1 = 0). This is equivalent to conditioning under Xj(2, 3)
(resp. Xj(2, 4)). Again this can only increase the probability of the corners of the second triangle that
are not incident to j to be dichromatic. We proceed with the other triangles. Generally for triangle k we
will condition under an event of the type Xj(k,K

′) with 1 6 K ′ 6 4, which then can only increase
the probability of the corners not incident to j to be dichromatic. We conclude that the inequality above
indeed holds. Applying it to the whole set of vertices as I and iteratively removing vertices from I , implies

P
(⋂

i

Xi

)
6
∏
i

P
(
Xi

)
.

Now let Ni be the number of dichromatic corners of vertex i. Then we can expand P
(
Xi

)
= P

(
Ni 6

4
)

= P
(
Ni = 0

)
+ · · ·+ P

(
Ni = 4

)
. And since each triangle has exactly 2 dichromatic corners, Ni is a

binomial random variable, with P
(
Ni = x

)
=
(
di

x

)
(2/3)x(1/3)di−x.

Finally, let p(di) = P
(
Xi

)
=
∑4

x=0

(
di

x

)
(2/3)x(1/3)di−x. Since ln p(d) is concave for d > 4, we

can use Jensen’s inequality to show that
∏

i P
(
Xi

)
6 p(d)n. Thus the probability that any of those

3(d−4)n labelings is valid is at most p(d)n. With the average degree being at most 6, this gives us a bound
of p(6)n · 3(6−4)n ≈ 5.84n. Unfortunately, this is not even close to the bound of O(4.6807n) given in
Theorem 3.

3 Lower bound
Next, we give lower bounds for the number of regular edge labelings in the triangulated square grid. We
refer to the number of rows of a triangulated grid as its height h and to the number of columns as its
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width w. Each square is triangulated in the same way. To obtain an irreducible triangulation, we add four
vertices to the outside of the grid, connecting one to every vertex on the top row, one to the bottom row,
one to the left column, and one to the right column. The total number of vertices of the augmented grid is
n = hw + 4.

Fig. 5: The diagonals in the triangulated grid can be colored arbitrarily if all horizonal edges are blue, and
all vertical edges red.

A simple lower bound on the number of regular edge labelings in a triangulated grid is 2n−h−w−3,
which is in 2n−O(

√
n) for h = w. To see this, color all horizontal edges blue and all vertical edges red

as shown in Fig. 5. Now all vertices already have the required four intervals of alternating red and blue
edges and these intervals cannot be broken up by the diagonals, as these are all adjacent to intervals of
both colors. Therefore all n−h−w−3 diagonals can be colored independently blue or red, which yields
the lower bound. This already shows that the number of regular edge labelings is exponential in n, but
one would expect that there are many more regular edge labelings in a triangulated grid, because fixing
the color of all horizontal and vertical edges, i.e., two-thirds of the edges, seems very restrictive.

We will show a better lower bound by only prescribing the edges of every h′th row to be blue, and not
prescribing any colors for the edges of columns. (Nonetheless, the edges of the first and last column will
be colored red in any regular edge labeling.) We color the parts between the blue rows independently.
Therefore, we can assume for the moment that h = h′ + 1. The reason for the introduction of h′ will
become clear later; suffice it to say that larger values of h (relative to h′) do not change the analysis, but
do improve the lower bound.

Our bounds require the analysis of large matrices, so part of the proof is by computer. We first describe
all steps for h′ = 1, i.e., the edges of all rows are blue. In this case, we can do all calculations by hand.
Then we show how to generalize the method for larger values of h′.

We color the triangulated grid from left to right. The edges of the first and last column will need to
be colored red, since by Lemma 1(b), a regular edge labeling has no monochromatic triangles. Assume
we have colored the triangulated grid up to the ith column. We call the edges of the ith column and
the diagonals connecting to this column from the left the ith extended column. Assuming we have no
restriction from the right, our options for coloring the (i + 1)st extended column are determined by the
colors of he ith extended column.

If h′ = 1, the previous column can be either red or blue, while the color of the previous diagonal does
not influence our choices for this column. If the previous column is red, we can make this column red,
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Fig. 6: The possible labelings of an extended column for the single row case: two options for red to red
and one option each for red to blue, blue to red and blue to blue.

too, and choose either color for the diagonal. We can also make this column blue, but then the diagonal
needs to be red to satisfy the constraints around the top vertex of this column. Likewise, if the previous
column was blue, our diagonal needs to be red to satisfy the constraints around the bottom vertex of the
previous column. These possibilities are depicted in Fig. 6.

We can represent these coloring options as a transition matrix M =
(
2 1
1 1

)
, using the column colors

as state. Now we can compute the number of colorings up to the ith extended column, by starting in the
red state (represented as (1, 0)) and repeatedly multiplying it with M . The resulting vector gives us the
number of colorings ending in a red or a blue edge.

To get from the transition matrixM to a lower bound we use the Perron–Frobenius Theorem, which we
recall in the following. Let A be a non-negative n× n matrix. A matrix is non-negative if all its elements
are non-negative. The matrix A is irreducible if for each (i, j) there is a k > 0 such that (Ak)ij > 0.
Consider the directed graph with adjacency matrix A, where we interpret every non-zero element as an
adjacency. The matrix A is irreducible if and only if the associated graph is strongly connected. The
matrix A is primitive if there is a k > 0 such that all elements of Ak are positive. An irreducible matrix
with a positive diagonal entry is primitive. For more background on the following theorem we refer to
textbooks on matrices (Horn and Johnson, 1985; Minc, 1988).

Theorem 5 (Perron–Frobenius) Let A be a primitive non-negative matrix with maximal eigenvalue λ.

(a) The eigenvalue λ is positive and it is the unique eigenvalue of largest absolute value. It has a positive
eigenvector, and it is the only eigenvalue with non-negative eigenvector.

(b) Let fA(x) = minxi 6=0
(Ax)i
xi

and gA(x) = maxxi 6=0
(Ax)i
xi

. Then fA(x) 6 λ for all non-negative
non-zero vectors x, and gA(x) > λ for all positive vectors x. If fA(x0) = λ then x0 is an eigenvector
of A corresponding to λ.

(c) Let x be a non-negative non-zero vector. Then Atx/‖Atx‖ converges to an eigenvector with eigen-
value λ. Consequently,

lim
t→∞

fA(Atx) = lim
t→∞

gA(Atx) = λ.

To apply this theorem to the transition matrix M , let us first note that since M has only positive ele-
ments, it is primitive. By Theorem 5(c) the ratio between the number of labelings ending in a red column
up to the ith extended column and up to the (i + 1)th extended column converges towards the largest
eigenvalue of M . This eigenvalue is φ+ 1 > 2.61803, where φ is the golden ratio. So for any ε > 0, we
obtain more than (φ+ 1− ε)w labelings for sufficiently large w. Since we need to add two vertices to add
a single column, this yields a lower bound of (φ+ 1− ε)(n−4)/2 > 1.61803n for sufficiently large width
w. However, by increasing h (and thereby glueing multiple copies of h′ rows together) we only need to
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add h vertices to add one column, now with h − 1 rows. This essentially amortizes the additional vertex
over all copies of h′ rows. Thus we get a lower bound of (φ+ 1− ε)(n−4)(h−1)/h, which for sufficiently
large h and w is larger than 2.61803n.

Next we consider the case where h′ > 1, using h′ = 2 as an example. Since we prescribe the color of
fewer edges, this will yield a better bound. The biggest change from h′ = 1 is that we need to extend the
states with information about the vertices, as just using the colors of the edges is not sufficient to decide
how the coloring can be extended. Therefore, we include for each vertex the number of color switches that
should be in the next extended column. With this information, we can reconstruct the colors of all column
edges from a single colored edge, so we will describe the state by the color of the bottom column edge,
followed by the number of color switches at each vertex, moving upwards. As an example, the states for
h′ = 2 are given in Fig. 7.

R1 R2R0 B0 B1 B2


1 4 1 1 2 5
0 5 2 2 1 4
0 2 2 1 1 1
0 2 2 2 2 1
0 1 2 1 2 2
0 0 0 0 0 1




5 2 2 1
2 2 1 1
2 2 2 2
1 2 1 2



Fig. 7: The states for h′ = 2, the corresponding transition matrix and reduced transition matrix.

Some states that can be described in this way cannot in fact be part of a regular edge labeling. We call
such states infeasible. A state is feasible if it can be reached from the initial all-red state (R1 in the case
of h′ = 2) and if the all-red state can be reached from it. Thus a state is feasible if and only if it is in the
strongly connected component of the all-red state. For example, looking at the transition matrix for h′ = 2
given in Fig. 7, we can see that the first state, R0, doesn’t have any incoming transitions from other states
and the last state, B2, doesn’t have any outgoing transitions to other states. Therefore these states are
both infeasible and the matrix can be reduced to include only the feasible states. In our implementation(i),
we use two depth-first searches through the adjacency graph corresponding to the transition matrix and
starting from the all-red state to determine the feasible states. The first search traverses the edges in the
usual way to mark all states that are reachable from the all-red state, while the second search traverses
each edge backwards, to mark all states from which the all-red state is reachable. The feasible states are
exactly those states marked by both searches.

The resulting reduced matrix is primitive, since it is irreducible by construction, and there is always at
least one transition from the all-red state to itself by coloring all diagonals and horizontal edges between
the two columns blue. When constructing a regular edge coloring, we start with the all-red column and
color the columns one by one. By Theorem 5(c) the number of regular edge colorings (and therefore the
number of regular edge labelings) increases with each new column by a factor that converges to the largest
eigenvalue of the reduced transition matrix. Therefore, a strict lower bound on this eigenvalue λh′ of this
matrix gives us a strict lower bound for the growth rate per column (ignoring a constant number of initial
columns).

(i) Our code for generating the transition matrices and estimating the eigenvalues can be found at
http://www.win.tue.nl/˜speckman/demos/TransitionMatrixComputerRelease.zip

http://www.win.tue.nl/~speckman/demos/TransitionMatrixComputerRelease.zip
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We obtain this strict lower bound on λh′ by taking a non-negative non-zero state vector x, multiplying
it with the transition matrix and determining the minimum growth rate for the non-zero elements. If
the vector is not an eigenvector of A (i.e., the growth rate is not the same for all non-zero states) then
the minimum growth rate is a strict lower bound on λh′ by Theorem 5(b). Tab. 1 gives minimum and
maximum growth rates for h′ = 2, where A is the reduced transition matrix and x0 is the vector with a 1
for the all-red state and 0 otherwise. It shows that the growth rates converge quite rapidly to λh′ . We use
x = x0A

100 for our lower bounds. Since in all the cases that we consider the vector x is positive, we also
obtain an upper bound on λh′ by the maximum growth factor.

t 1 2 3 4 100
fA(x0A

t) 6.8 7.56 7.80 7.87 7.89167
gA(x0A

t) 13 8.77 8.10 7.94 7.89167

Tab. 1: Minimum and maximum growth rates for h′ = 2. The values for the smaller values of t are
rounded to 2 decimal places, while the values for t = 100 are rounded to 5 decimal places, although they
only start to deviate at the 58th decimal place.

As for the case h′ = 1, we now use several copies of h′ rows beneath each other to obtain a larger
triangulated grid. The growth rate per vertex in this way approaches λ1/h

′

h′ . Our results are given in Tab. 2.

h′ 1 2 3 4 5 6 7
λh′ 2.61803 7.89167 24.5036 76.8353 241.977 763.785 2414.05
λ
1/h′

h′ 2.61803 2.80921 2.90453 2.96067 2.99746 3.0233 3.04263

Tab. 2: Lower bounds on the growth rate per column and per vertex for different values of h′. Note
that these are rounded down, and that our upper bounds on λh′ (and λ1/h

′

h′ ) equal the (unrounded) lower
bounds up to at least 10 significant digits.

Theorem 6 The number of regular edge labelings of the triangulated grid is in Ω(3.04263n).

4 Discussion

Fig. 8: A planar drawing of the
twisted cylinder with width 6.

The technique used by Felsner and Zickfeld (2008) to bound the num-
ber of bipolar orientations crucially relies on an encoding of bipolar
orientations that uses one bit of information per face of the graph. If
such an encoding were found for regular edge labelings, this would
immediately improve the upper bound to O(4n).

We would like to end with a discussion of why a twisted cylinder is
not suitable to derive an interesting lower bound. A twisted cylinder is
sometimes a good alternative for counting structures that are numerous
on the triangulated grid. For example, it has been used to count sim-
ple and Hamiltonian cycles on planar graphs by Buchin et al. (2007).
Imagine taking a piece of squared paper and bending it to make the
ends meet and form a cylinder. Now instead of lining up the rows with
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each other, shift everything one square to the right. This produces a single line of squares, twisting itself
around the cylinder. The resulting graph can be drawn in the plane without crossings, as if you were
looking through the cylinder (depicted to the right). The advantage over the triangulated grid is that now
cells can be added one at a time, leading to a far less complicated transition matrix than if you would add
an entire column at a time.

Unfortunately, the twisted cylinder has only few regular edge labelings. Although it resembles the
triangulated grid in many ways, the transformation used when drawing the graph in the plane causes the
graph to have a very limited number of regular edge labelings. This is easiest to see when looking at the
regular edge labeling for the first simple lower bound we gave using the triangulated grid, where every
vertical edge was colored red and oriented from bottom to top and every horizontal edge was colored blue
and oriented from left to right. Applying this labeling to the twisted cylinder makes both the red and blue
edges move inwards. This can never lead to a valid regular edge labeling, as this requires that the blue
edges form a bipolar orientation with the west vertex as source and the east vertex as only sink, both on
the outside of the spiral.
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