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Figure 1: A vertex, u, in a θ7-graph; (a) u connects to the “nearest” point in each cone;
(b) “nearest” is defined in terms of the projection onto the axis of each cone.

1 Introduction

Theta graphs [10, 16, 17] are important geometric graphs that have many applications,
including wireless networking [2], motion planning [10], real-time animation [14], and
minimum-spanning tree construction [24]. These graphs are defined on a planar point set,
S, with an integer parameter k. For each i ∈ {1, . . . , k}, define the cone

Ci = {u ∈ R2 : ]qou ∈ [2π(i − 1)/k,2πi/k)} ,

where q = (1,0) and o = (0,0). In the θk-graph, θk(S), each point u ∈ S has an edge connect-
ing it to the nearest point, if any, in the coneCi+u, for each i ∈ {1, . . . , k}. Here, “nearest” has
a special meaning: The theta graph connects u to the point whose orthogonal projection
on the axis of Ci +u is closest to u (see Figure 1).

Theta graphs have two important properties that make them suited to a wide va-
riety of applications: They are sparse; θk(S) has at most k|S | edges and they are spanners;
the length of the shortest path between any two vertices u and w is at most a constant
(depending only on k and not on S) times the Euclidean distance between u and w. For
any point set, S, θk(S) is a spanner for any k ≥ 4 [5, 7, 8, 16, 23].

Note that, although θk(S) has at most k|S | edges, it can also have significantly fewer
edges. For example, if the points of S all lie on a line, then θk(S) has only |S | − 1 edges.
More typical, though, is for θk(S) to have somewhere between k|S |/2 and k|S | edges; each
vertex u ∈ S chooses k edges1 of the graph but sometimes an edge uw is chosen both by u
and w and therefore it should not be counted twice.

1Specifically only the points that are unoriented θ-maxima of S may choose fewer than k edges; the number
of unoriented θ-maxima is typically O(

√
|S |) [4, Theorem 4].
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1.1 The Models and Results

In this paper, we study the typical number of edges in θk-graphs by studying the average
number of edges in two different models of random point sets.

We begin, in Section 2, by studying (the infinite) θk-graphs generated by a homo-
geneous Poisson point process with unit intensity over the entire Euclidean plane. In this
model, we study the average degree of a vertex in the θk-graph. For the θk-graph, this
quantity is at most 2k since each vertex defines k edges of the graph and each edge has
2 endpoints. However, in some cases an edge uw is mutual in the sense that the edge is
created both by u and byw. If we let pk denote the probability that an edge of the θk-graph
is mutual, then the average degree of the θk graph is

dk = (2− pk)k .

(The second term corrects for the double-counting of mutual edges.) Thus, understanding
the average degree of a θk-graph boils down to computing pk .

In Section 2.1 we show that, for all even integers k ≥ 4,

pk =
π
√

3
9
≈ 0.6045997883 .

That is, the probability of an edge being mutual is independent of k. Thus, for all even
integers k ≥ 4, the average degree of a vertex is

dk =
(
2− π

√
3

9

)
k ≈ 1.395400212 · k .

In Section 2.2 we show that, for odd values of k ≥ 5, the situation is very different.
The mutual edge probability, pk , depends on k in a complicated way that includes trigono-
metric functions and square roots. However, the value of pk is significantly larger than
π
√

3
9 for all odd values of k. Indeed, pk is a decreasing function of k and

pk ≥ lim
k→∞

pk = 2arctan(1/3) ≈ 0.6435011088 .

Thus, for all odd values of k ≥ 5,

dk ≤ (2− 2arctan(1/3))k ≈ 1.356498891k

Thus, in some sense, odd values of k offer “more bang for the buck.”

In Section 3, we also study the i.u.d. model, in which a set, S, of n points is indepen-
dently and uniformly distributed in a square. In this model, we show that essentially the
same bounds hold. Specifically, If mk is the number of edges of θk(S), then

E[mk] ∈ ndk/2±O(k
√
n logn) ,

where dk , defined above, is the average degree of the θk-graph in the Poisson model. We
also give a concentration result that shows that the number of edges, mk , is highly concen-
trated around its expected value. In particular

Pr{|mk −ndk/2| ≥ k
√
cn logn} ≤ n−Ω(c) .
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1.2 Related Work

As discussed in the introduction, a plethora of literature exists on theta graphs and their
applications, though most of this work focuses on worst-case analysis. One notable excep-
tion is the work of Devroye et al. [13] who study the maximum degree of theta graphs and
show that, if S is a set of n points independently and uniformly distributed in a certain
unit square, then θk(S) has maximum degree concentrated around Θ((logn)/ loglogn).2

In contrast, properties of other proximity graphs of random point sets have been
studied extensively:

• Devroye [12] presents a general theorem for obtaining exact leading constants for
the expected degree of a number of proximity graphs over point sets drawn from a
large class of distributions. This theorem can be applied to Gabriel graphs, relative
neighbourhood graphs, and nearest-neighbour graphs. This work [12, Section 7]
also mentions “directional nearest-neighbour graphs,” now commonly known as Yao
graphs [15, 24], and points out that the general theorem does not apply to these (nor
does it apply to theta graphs—for the same reasons).

• Penrose and Yukich [21, 22] develop weak laws of large number and central limit
theorems for several statistics of proximity graphs of random point sets under some
assumptions about the locality of the graph and the statistic. Their results apply
to statistics like total edge length and number of components of graphs such as k-
nearest neighbour graphs, sphere of influence graphs, and Delaunay triangulations.

• Bern et al. [6] study the maximum degree of Delaunay triangulations of random
point sets. Devroye et al. study the maximum degree of Gabriel graphs [13] of ran-
dom point sets. Arkin et al. [3] study the length of the longest edge in Delaunay
triangulations of random point sets.

• The issues of connectivity and giant components in the r-disk graph of random point
sets—in which an edge uw is present if and only if the distance between u and w is at
most r—is the subject of intensive research and there are at least two books devoted
to the topic [19, 20].

2 The Poisson Model

In the Poisson model, the number of points in any region with area is A follows a Poisson
distribution with parameter A. For definitions of point Poisson processes and distribu-
tions see, for example, Daley and Vere-Jones [11, Chapter 2]. For our purposes, the most
important properties of the Poisson process are the following:

1. The probability that a particular Lebesgue-measurable set, X, whose area (Lebesgue
measure) is A is empty of points is exactly e−A.

2Devroye et al. actually consider the closely-related Yao graphs [15, 24], but their proofs apply, almost
without modification, to theta graphs.
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Figure 2: The edge uw is mutual if and only if T ′ \ T is empty of points.

2. For disjoint regions X1, . . . ,Xv , the events “Xi is empty of points”, for i ∈ {1, . . . , v} are
independent.

Throughout this section, and in particular in Section 2.2, we have made extensive
use of Mathematica to do symbolic integration and manipulation of trigonometric func-
tions. Mathematica notebooks containing the code for these calculations are available at
the first author’s webpage.

2.1 Analysis of pk for Even k

In this section we determine the value of pk for even values of k. Somewhat surprisingly,
the value of pk in this case does not depend on k.

Lemma 1. For even integers k ≥ 4, pk = π
√

3
9 ≈ 0.6045997883.

Proof. Let u be an arbitrary vertex in a θk-graph and let w be a vertex that u has chosen as
a neighbour in one of its cones, C (w is the “closest” vertex to u in C). Let T be the open
isosceles triangle defined by C and a line through w that is orthogonal to the axis of C;
refer to Figure 2. If the edge of T opposite u has length `, then w partitions this edge into
two pieces of length r and ` − r.

Let T ′ be the triangle obtained by reflecting T through the midpoint of the edge uw
(so that w is a vertex of T ′). Note that, because k is even, T ′ coincides with one of u’s cones.
In particular, if w ∈ u+Ci , then T ′ is contained in w+Cj where j = ((i +k/2−1) mod k) + 1.
Therefore, the edge uw is mutual if and only if T ′ \T contains no points. The area of T ′ \T
is

A(T ′ \ T ) = α(r2 + (` − r)2) ,

where α = cos(θ/2)/(4sin(θ/2)). We now have enough information to compute the proba-
bility that the edge uw is mutual conditional on ` and r:

Pr{uw is mutual | `, r} = exp(−α(r2 + (` − r)2)) .
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Next, observe that the location of w is uniformly distributed on the edge of T opposite u,
so the value of r (conditioned on `) is uniform over [0, `], unconditioning r gives

f (`) ≡ Pr{uw is mutual | `}

=
∫ `

0
(1/`)Pr{uw is mutual | `, r}dr

=
∫ `

0
(1/`)exp(−α(r2 + (` − r)2))dr

=
√
π

`
√

2α
· exp(−α`2/2) · erf(`

√
α/2) ,

where

erf(x) =
2
√
π

∫ x

0
e−z

2
dz

is the Gauss error function [1, Section 7.2].

Next, we remove the conditioning on `. The triangle T defines a region of area α`2

that is empty of points. Therefore, by Property 1 of the Poisson process, the cumulative
distribution function of ` is given by

P (x) ≡ Pr{` ≤ x} = 1− exp(−αx2) ,

for x ≥ 0. The probability density function of ` is therefore given by

p(x) ≡ d
dx
P (x) = 2αx · exp(−αx2) ,

for x ≥ 0. Finally, we obtain pk as

pk =
∫ ∞

0
p(`) · f (`)d` =

π
√

3
9
≈ 0.6045997883 .

2.2 Analysis of pk for Odd k

Next, we determine the values of pk for odd values of k ≥ 5. Although the strategy for
doing this is the same as the even case, the odd case turns out to be considerably more
complicated; the value of pk does, indeed depend on k.
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Lemma 2. For odd k ≥ 5,

pk = 2

 arctan
(
2
(
cos

(
π
k

)
+ cos

(
3π
k

))2
/(αβ)

)
+arctan

(
4
(
2cos

(
2π
k

)
+ sin

(
2π
k

)2
)
/(αβ)

)
cot

(π
k

)
β/ (γα) ,

where
γ = 4 + 11cos

(2π
k

)
+ cos

(6π
k

)
,

α =

√(
27cos

(
π
k

)
+ 17cos

(
3π
k

)
+ 3cos

(
5π
k

)
+ cos

(
7π
k

))
csc

(
π
k

)
γ

,

and

β =

√(
18sin

(2π
k

)
+ 18sin

(4π
k

)
+ 11sin

(6π
k

)
+ sin

(8π
k

)
+ sin

(10π
k

))
.

Proof. The proof proceeds in the same manner as the proof of Lemma 1. Let u be an
arbitrary vertex in a θk-graph and let w be a vertex that u has chosen as a neighbour in
one of its cones, C. Let T be the open isosceles triangle defined by C and a line through w
that is orthogonal to the axis of C. See Figure 3. Assume that the side of T opposite u has
length 2`. Using a suitable rotation, we may assume that the axis of C is horizontal and,
by symmetry, we may assume that w is on or above the axis of C.

Under the preceding assumptions, w is then uniformly distributed on a vertical
segment of length ` whose endpoints are on the axis of C and the upper boundary of C.
Suppose that the distance from w to the axis of C is r. Then a straightforward, but tedious,
calculation that mainly uses the law of sines shows that

Pr{uw is mutual | `, r} = exp(−A−B) ,

where

A =
r2

sin(2π/k)

and

B =
cos(2π/k)

2sin(3π/k)cos(π/k)
· ((` − r)cos(2π/k) + `)2

This calculation is illustrated in Figure 3 and the accompanying worksheet shows the sim-
plifications that lead to the expressions for A and B. Integrating over r gives us

f (`) ≡ Pr{uw is mutual | `} =
∫ `

0
(1/`)exp(−A−B)dr. (1)

Like the corresponding integral in the proof of Lemma 1, (1) has a closed-form that in-
cludes the Gauss error function.

In order to remove the conditioning on `, we need the probability density function
for `. Proceeding as before, we have the cumulative distribution function

P (x) ≡ Pr{` ≤ x} = 1− exp(x2/ tan(π/k)) ,
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and the probability density function

p(x) ≡ d
dx
P (x) =

(
2x

tan(π/k)

)
exp(x2/ tan(π/k))

Finally, we determine pk by integrating over `:

pk =
∫ ∞

0
p(`) · f (`)d` ,

which (after introducing the variables α, β, and γ) yields the expression for pk given in the
statement of the lemma.

3 Points in a Unit Square

Next we argue that results similar to Lemmas 1 and 2, albeit with lower-order error terms,
hold for the graph θk(S), where S is a set of n points independently and uniformly dis-
tributed in the square [0,

√
n]2 of area n. Observe that, in this model, the probability that

any particular region X ⊆ [0,
√
n]2 does not contain any points of S is exactly (1 −A/n)n =

exp(−A) −O(A/n), where A is the area of X. This is consistent with the Poisson model up
to an additive error of O(1/n).

The primary work in this section involves finding quantities that look like those
that appear in the previous section, but have an additive lower-order error term. To help
manage these error terms, the notation x = y±a denotes that x is some value in the interval
[y−a,y+a]. We will abuse this notation slightly by writing equations of the form x±a = y±b
when [x − a,x + a] ⊆ [y − b,y + b]. Occasionally, we may also integrate expressions that use

this notation. In this case, we use the inequality
∫ b
a

(x ± c)dx =
∫ b
a
x ± c(b − a).

We sometimes encounter expressions like A/(1 − x), with 0 < x < 1/2 which we
bound by

A/(1− x) = A+O(Ax) .

We also frequently encouter expressions like (1−A/n)n−c, where c is a constant and
A < n/2. We will always bound these as follows:

(1−A/n)n−c =
(1−A/n)n

(1−A/n)c

=
exp(−A)−O(A/n)

(1−A/n)c

=
exp(−A)−O(A/n)∑c

i=0
(c
i

)
(−A/n)i

=
exp(−A)−O(A/n)

1−O(A/n)

≥ exp(−A)−O(A/n)
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Figure 4: The support, [0,
√
n]2, is partitioned into a core, C, and a near-boundary C̄. A

point u in the core almost surely has a neighbour in every cone, otherwise u is incident on
a large triangle, T ⊂ [0,

√
n]2, that is empty of points.

and, similarly,

(1−A/n)n−c =
(1−A/n)n

(1−A/n)c

≤ exp(−A)
(1−A/n)c

= exp(−A)(1 +O(A/n)) .

3.1 Expected Number of Edges

In this section, we analyze the expected number of edges of θk(S). For each point u ∈ S
and each i ∈ {1, . . . , k}, let e(u, i) be the edge (if any) that u chooses in its ith cone, u +Ci .
That is, e(u, i) is the edge uw where w ∈ u+Ci has the projection onto the axis of u+Ci that
is smallest among all points in S ∩ u +Ci . We define the height of the edge uw = e(u, i) as
the distance between u and the of the orthogonal projection of w onto the axis of u +Ci .

For our analysis, we partition [0,
√
n]2 into a core, C = [2t,

√
n − 2t]2, where t =√

ck logn, and a near-boundary, C̄ = [0,
√
n]2 \ C (see Figure 4). The motivation for par-

titioning into a core and near-boundary is that (1) there are not many points in the near-
boundary and (2) points in the core behave almost exactly like points in the Poisson model.
The following Lemma shows, for example, that points in the core nearly always have a
neighbour in each of their cones.

Lemma 3. For any u ∈ S and any i ∈ {1, . . . , k}, let Eu,i denote the event “e(u, i) exists and has
height at most t.” Then Pr{Eu,i | u ∈ C} ≥ 1−n−Ω(c).
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Proof. Fix some location of u ∈ C and draw an open isosceles triangle, T , with apex u,
contained in u + Ci , whose internal angle at u is θ = 2π/k and whose height is t (see
Figure 4). Observe that, since u is in the core, T ⊂ [0,

√
n]2. Furthermore, the area of T is

A = t2 tan(π/k) ∈Θ(t2/k) =Θ(c logn) .

For T to be empty of points in S, the n−1 points of S \ {u}must all fall outside of T . Thus,
we have

Pr{T ∩ S = ∅ | u ∈ C} = (1−A/n)n−1

≤ exp(−A)(1 +O(A/n))

≤ 2exp(−A) (for sufficiently large n)

= 2exp(−Θ(c logn))

= n−Ω(c) .

If Eu,i does not occur, this means that the event described above has occured. Therefore,
Pr{Eu,i | u ∈ C} ≥ 1−n−Ω(c), as required.

Our next lemma shows that edges generated by points in the core have essentially
the same probability of being mutual as they do in the Poisson model.

Lemma 4. For any u ∈ S and any i ∈ {1, . . . , k}, let Mu,i denote the event “Eu,i and e(u, i) is
mutual.” Then Pr{Mu,i | u ∈ C} = pk ±O((logn)2/n).

Proof. Throughout this proof, all probabilities we compute are conditional on u ∈ C, even
when this is not explicitly stated. The proof is basically a reproving of Lemmas 1 and
2 that takes care to deal with boundary effects. Here, we will prove the case for even k
(Lemma 1) only. The case for odd k (Lemma 2) can be done the same way.

We first compute the probability conditional on Eu,i and for fixed values of ` and
r as described in the proof of Lemma 1 and illustrated in Figure 2. The notations `, r, T ,
and T ′ all have the same meaning as in the proof of Lemma 1. The edge e(u, i) is mutual if
and only if the remaining n− 2 points in S \ {u,w}—which are already conditioned on not
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being in T—also fall outside of T ′. The probability that this happens is

Pr{Mu,i | Eu,i , `, r} =
(

1− area(T ∪ T ′)/n
1− area(T )/n

)n−2

=
(

1− area(T ′ \ T )/n− area(T )/n
1− area(T )/n

)n−2

=
(
1− area(T ′ \ T )/n

1− area(T )/n

)n−2

=
(
1− α(r2 + (` − r)2)/n)

1−α`2/n

)n−2

=
(
1− α(r2 + (` − r)2)(1 +O(α`2/n))

n

)n−2

= exp(−α(r2 + (` − r)2)(1 +O(α`2/n)))±O(α`2/n)

= exp(−α(r2 + (` − r)2)) · exp(O(α2`4/n))±O(α`2/n)

= exp(−α(r2 + (` − r)2))(1 +O(α2`4/n))±O(α`2/n) (2)

= exp(−α(r2 + (` − r)2))±O((α2`4 +α`2)/n)

= exp(−α(r2 + (` − r)2))±O((α2t4 +αt2)/n) .

(Step (2) follows from the inequality 1 + (e − 1)x ≥ ex for 0 ≤ x ≤ 1.) We then remove the
conditioning on r by integrating:

f ′(`) ≡Pr{Mu,i | Eu,i , `}

=
∫ `

0
(1/`)

(
exp(−α(r2 + (` − r)2))±O((α2t4 +αt2)/n)

)
dr

= f (`)±O((α2t4 +αt2)/n) ,

where f (`) is the same f (`) defined in the proof of Lemma 1.

To finish, we need the distribution function for ` conditional on Eu,i . The triangle
T has area α`2 so the probability that it is empty of points of S \ {u} is (1 − α`2/n)n−1.
Therefore, for 0 ≤ x ≤ t, we have the cumulative distribution function

P (x) ≡ Pr{` ≤ x | Eu,i}

=
Pr{Eu,i and ` ≤ x}

Pr{Eu,i}

=
Pr{` ≤ x}
Pr{Eu,i}

(since 0 ≤ x ≤ t, so ` ≤ x implies Eu,i)

=
1− (1−αx2/n)n−1

1− (1−αt2/n)n−1

11



From this we obtain the density function

p′(x) ≡ d
dx
P (x)

=
d
dx

1− (1−αx2/n)n−1

1− (1−αt2/n)n−1

=
2αx(n− 1)(1−αx2/n)n−2

n(1− (1−αt2/n)n−1)

=
2αx(n− 1)(exp(−αx2)±O(αx2/n))

n(1−n−Ω(c))

=
2αx(n− 1)(exp(−αx2)±O(αx2/n))

n−n−Ω(c)

=
2αxn(exp(−αx2)±O(αx2/n))

n−n−Ω(c)
(1− 1/n)

=
2αx(exp(−αx2)±O(αx2/n))

1−n−Ω(c)
(1− 1/n)

= 2αx
(
exp(−αx2)±O(αx2/n)

)
(1 +n−Ω(c))(1− 1/n)

= 2αx
(
exp(−αx2)±O((1 +αx2)/n)

)
= 2αxexp(−αx2)±O((αx+α2x3)/n)

= 2αxexp(−αx2)±O((αt +α2t3)/n)

= p(x)±O(α2t3/n),

where p(x) is the same p(x) that appears in the proof of Lemma 1. And now we have
enough information to finish:

Pr{Mu,i | u ∈ C} = Pr{Eu,i | u ∈ C} ·Pr{Mu,i | Eu,i , u ∈ C}
+ Pr{Ēu,i | u ∈ C} ·Pr{Mu,i | Ēu,i , u ∈ C}

≥ Pr{Eu,i | u ∈ C} ·Pr{Mu,i | Eu,i , u ∈ C}

≥
(
1−n−Ω(c)

)
Pr{Mu,i | Eu,i , u ∈ C}

=
(
1−n−Ω(c)

)∫ t

0
p′(`)f ′(`)d`

=
(
1−n−Ω(c)

)∫ t

0
(p(`)±O(α2t3/n)) · (f (`)±O((α2t4 +αt2)/n))d`

=
(
1−n−Ω(c)

)∫ t

0
p(`)f (`)±O(p(`)(α2t4 +αt2)/n+ f (`)α2t3/n+ (α5t8 +α3t5)/n2)d`

=
(
1−n−Ω(c)

)∫ t

0
p(`)f (`)±O((α2t4 +αt2)/n+ (α5t8 +α3t5)/n2)d`

=
π
√

3
9
±O((α2t4 +αt2)/n)

=
π
√

3
9
±O((logn)2/n)
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C
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Figure 5: The quantities EC , DC , and MC : EC counts the number of segments, DC counts
the number of arrowheads, and MC counts the number of segments with two arrowheads.

and

Pr{Mu,i | u ∈ C} ≤ Pr{Eu,i | u ∈ C} ·Pr{Mu,i | Eu,i}+ (1−Pr{Eu,i})

≤ Pr{Eu,i | u ∈ C} ·Pr{Mu,i | Eu,i}+n−Ω(c)

=
π
√

3
9
±O((logn)2/n) .

Lemma 5. Let S be a set of n points independently and uniformly distributed in [0,1]2. Then
the expected number of edges of θk(S) is ndk/2±O(k

√
nk logn).

Proof. In this proof, it will be helpful to distinguish between directed and undirected
edges. Undirected edges are the edges θk(S) that we have been considering throughout.
In contrast, uw = e(u, i) is a directed edge from u to w. If uw is mutual, then wu = e(w,j) is
a distinct directed edge from w to u. In this way, if we let E denote the number of undi-
rected edges, D the number of directed edges, andM the number of mutual directed edges
of θk(S). Then we have

E =D −M/2 .

Let EC , DC , andMC denote the same quantities but only counting those edges with at least
one endpoint in the core. (See Figure 5.)
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We begin with a lower bound:

E[E] ≥ E[EC]

= E[DC]−E[MC]/2

=
∑
u∈S

k∑
i=1

Pr{u ∈ C}
(
Pr{Eu,i | u ∈ C} −Pr{Mu,i | u ∈ C}/2

)
= k(
√
n− 4t)2 (Pr{Eu,i | u ∈ C} −Pr{Mu,i | u ∈ C}/2

)
≥ k(
√
n− 4t)2

(
1−n−Ω(c) − pk/2−O((logn)

5
2 /n)

)
≥ (kn− 8t

√
n)

(
1−n−Ω(c) − pk/2−O((logn)

5
2 /n)

)
= kn(1− pk/2)−O(t

√
n)

= ndk/2−O(
√
nk logn)

For the upper-bound we proceed as follows:

E[E] ≤ E[EC] + E[k · |S ∩ C̄|]
= E[EC] + k(8t

√
n− 16t2)

≤ E[EC] + 4k
√
nck logn

≤ ndk/2 +O((logn)
5
2 ) + 4k

√
nck logn

= ndk/2 +O(k
√
nk logn)

where the last step follows from a calculation similar to that done in the lower-bound.

3.2 Concentration

Next, we show that the number of edges in this model is tightly concentrated about its ex-
pected value. We begin with the following result, which follows immediately from Hoeffd-
ing’s Inequality [9], and shows that the number of points in the core is highly concentrated
around its expected value:

Lemma 6. Pr
{∣∣∣|S ∩C| − (

√
n− 4t)2

∣∣∣ ≥√
ck logn

}
∈ n−Ω(c).

To prove our concentration bound, we make use of a versatile concentration in-
equality due to McDiarmid [18, Lemma 1.2]:

Lemma 7 (McDiarmid’s Inequality). Let X1, . . . ,Xn be independent all taking values in the set
X and let f : X n 7→ R be a function such that

|f (x1, . . . ,xi , . . . ,xn)− f (x1, . . . ,x
′
i , . . . ,xn)| ≤ k ,

for some k > 0 and all x1, . . . ,xn,x
′
i ∈ X and all i ∈ {1, . . . ,n}. Then, for all ε > 0,

Pr {|f (X1, . . . ,Xn)−E[f (X1, . . . ,Xn)]| ≥ ε} ≤ 2exp(−2ε2/(nk2)) .
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[0,
√
n]2

Figure 6: The set Q ensures that every vertex in S has at least one point in each of its
θk-cones. This figure shows a possible set Q for k = 5.

Lemma 8. Let S be a set of n points independently and uniformly distributed in [0,
√
n]2 and

let mk denote the number of edges in θk(S). Then Pr{|mk −E[mk]| ≥ k
√
cn logn} ≤ n−Ω(c).

Proof. Let Q be a set of k points chosen such that, for any point u ∈ [0,
√
n]2, each of u’s

θk-cones contains exactly one point in Q. (Q could be, for example, the vertices of a suffi-
ciently large regular k-gon. See Figure 6.) We begin by studying θk(S ∪Q). This graph is
somewhat more nicely behaved since each vertex in S defines exactly k directed edges.

For a set S = {u1, . . . ,un} ⊂ [0,
√
n]2, let f (u1, . . . ,un) be the function that counts the

number of edges in θk(S ∪Q). Observe that, for any u1, . . . ,un,u
′
i ∈ [0,1]2, we have that

|f (u1, . . . ,ui , . . . ,un)− f (u1, . . . ,u
′
i , . . . ,un)| ≤ k .

That is, moving ui to location u′i can be though of as removing ui , resulting in the loss
of at most k non-mutual edges emanating from ui , followed by adding u′i resulting in the

15



k pk dk dk/k d̂k
4 0.60459978 5.58160084 1.39540021 5.58190420
5 0.70168463 6.49157685 1.29831537 6.49280635
6 0.60459978 8.37240127 1.39540021 8.37587443
7 0.66778040 9.32553719 1.33221959 9.32743266
8 0.60459978 11.16320170 1.39540021 11.16338275
9 0.65740932 12.08331611 1.34259067 12.08319579

10 0.60459978 13.95400212 1.39540021 13.95657530
11 0.65259895 14.82141149 1.34740104 14.82372518
12 0.60459978 16.74480254 1.39540021 16.74624814
13 0.64993659 17.55082423 1.35006340 17.55520514
14 0.60459978 19.53560297 1.39540021 19.53693380
15 0.64830027 20.27549589 1.35169972 20.27565544
16 0.60459978 22.32640339 1.39540021 22.32956115
17 0.64722020 22.99725644 1.35277979 22.99979580
18 0.60459978 25.11720381 1.39540021 25.12062469
19 0.64646902 25.71708858 1.35353097 25.71956002
20 0.60459978 27.90800424 1.39540021 27.91343314

Table 1: Numeric values of pk and dk .

creation of at most k non-mutual edges emanating from u′i . Letting m′k denote the number
of edges in θk(S ∪Q), we immediately obtain, from McDiarmid’s Inequality,

Pr
{∣∣∣m′k −E[m′k]

∣∣∣ ≥ k√cn logn
}
≤ 2exp(−2c logn) ∈ n−Ω(c) .

To extend this result tomk , the number of edges of θk(S), we study Pr{|m′k−mk | ≥ k
√
cn logn}.

If |m′k −mk | ≥ k
√
cn logn then the number of points of S in the near-boundary C̄ exceeds√

cn logn or θk(S∪Q) contains edges that join points inQ to points in the core, C. Lemma 6
shows that the probability of the former event is at most n−Ω(c), while Lemma 3 shows that
the probability of the latter event is at most n−Ω(c)

4 Discussion

We have given exact closed-form expressions for the average degree of θk-graphs for all
k ≥ 4. It is easily shown that θk graphs with k = 1,2,3 are not spanners, so the cases
k ≥ 4 are the most important. We have also shown that the number of edges in a θk-graph
of n points uniformly distributed in a square is highly concentrated around its expected
value. These results can be used to inform practitioners about the optimal choice of k to
use in a particular application. Table 1 gives the numerical values of dk , pk , and dk/k, for
k ∈ {4, . . . ,20}.

Some of our results involved extensive symbolic manipulations that were done
with the help of Mathematica. There is certainly the possibility of mistakes, either in the
software or by its users. In order to help validate our analytical results, the final column
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in Table 1 also shows the results of the following experiment: 4,000 points were generated
uniformly in the unit square [0,1]2 and their θk-graph was computed. The average degree
of points in the square [1/3,2/3]2 was then computed. The final column of Table 1 shows
the average of these values taken over all 2,000 repetitions of this experiment. In all cases,
it agrees with our theoretical results up to the first 3 digits.

Yao graphs [15, 24] are closely related to theta-graphs. In the Yao graph, Yk(S),
each vertex u is connected by an edge to the closest point in each of its theta cones, where
closest is defined in terms of Euclidean distance. The same strategy we use to determine
the average degree of θk(S) can be applied to Yk(S). Unfortunately, this fails to give closed
form answers. In particular, when trying to repeat the proof of Lemma 1, we obtain the
formula

p′k =
∫ ∞

0
θt exp(−θt2/2)

∫ t

0
exp(−θt2/2 + t2 sin(γ)sin(θ −γ)/ sin(θ))dγ dt ,

for which we are unable to obtain a closed form (here θ = 2π/k). Nevertheless, one can
evaluate this integral numerically to obtain estimates of the mutual edge probability and
average degree in Yao graphs.
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