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Abstract

We present tight upper and lower bounds on the span-
ning ratio of a large family of θ-graphs. We show that θ-
graphs with 4k+2 cones (k ≥ 1 and integer) have a span-
ning ratio of 1 + 2 sin(θ/2), where θ is 2π/(4k + 2). We
also show that θ-graphs with 4k + 4 cones have span-
ning ratio at least 1 + 2 tan(θ/2) + 2 tan2(θ/2), where θ
is 2π/(4k + 4). This is somewhat surprising since, for
equal values of k, the spanning ratio of θ-graphs with
4k+4 cones is greater than that of θ-graphs with 4k+2
cones, showing that increasing the number of cones can
make the spanning ratio worse.

1 Introduction

In a weighted graph G, let the distance δG(u, v) between
two vertices u and v be the length of the shortest path
between u and v in G. A subgraph H of G is a t-spanner
of G if for all pairs of vertices u and v, δH(u, v) ≤ t ·
δG(u, v), t ≥ 1. The spanning ratio of H is the smallest
t for which H is a t-spanner. The graph G is referred
to as the underlying graph.

We consider the situation where the underlying graph
G is a straightline embedding of the complete graph
on a set of n points in the plane denoted by Kn, with
the weight of an edge (u, v) being the Euclidean dis-
tance |uv| between u and v. A spanner of such a graph
is called a geometric spanner. We look at a specific type
of geometric spanner: θ-graphs.

Introduced independently by Clarkson [4] and
Keil [5], θ-graphs are constructed as follows (a more
precise definition follows in the next section): for each
vertex u, we partition the plane into m disjoint cones
with apex u, each having aperture θ = 2π/m. When
m cones are used, we denote the resulting θ-graph as
θm. The θ-graph is constructed by, for each cone with
apex u, connecting u to the vertex v whose projection
along the bisector of the cone is closest. Ruppert and
Seidel [6] showed that the spanning ratio of these graphs
is at most 1/(1 − 2 sin(θ/2)), when θ < π/3, i.e. there
are at least seven cones.
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Recently, Bonichon et al. [1] showed that the θ6-
graph has spanning ratio 2. This was done by divid-
ing the cones into two sets, positive and negative cones,
such that each positive cone is adjacent to two neg-
ative cones and vice versa. It was shown that when
edges are added only in the positive cones, in which
case the graph is called the half-θ6-graph, the result-
ing graph is equivalent to the TD-Delaunay triangu-
lation (the Delaunay triangulation where the empty re-
gion is an equilateral triangle) whose spanning ratio is 2
as shown by Chew [3]. An alternative, inductive proof
of the spanning ratio of the θ6-graph was presented by
Bose et al. [2].

Tight bounds on spanning ratios are notoriously hard
to obtain. The standard Delaunay triangulation (where
the empty region is a circle) is a good example. It has
been studied for over 20 years and the upper and lower
bounds still do not match. Also, even though it was
introduced about 25 years ago, the spanning ratio of the
θ6-graph has only recently been shown to be finite and
tight, making it the first and, until now, only θ-graph
for which tight bounds are known.

In this paper, we generalize the results from
Bose et al. [2]. We look at two families of θ-graphs:
the θ(4k+2)-graph and the θ(4k+4)-graph, where k is an
integer and at least 1. We show that the θ(4k+2)-graph
has a tight spanning ratio of 1 + 2 sin(θ/2) and that the
θ(4k+4)-graph has a strictly larger spanning ratio of at
least 1 + 2 tan(θ/2) + 2 tan2(θ/2), for their respective
values of θ.

2 Preliminaries

Let a cone C be the region in the plane between two rays
originating from the same point (referred to as the apex
of the cone). When constructing a θm-graph, for each
vertex u of Kn consider the rays originating from u with
the angle between consecutive rays being θ = 2π/m.
Each pair of consecutive rays defines a cone. The cones
are oriented such that the bisector of some cone coin-
cides with the vertical line through u.

The θm-graph is constructed as follows: for each cone
C of each vertex u, add an edge from u to the closest
vertex in that cone, where distance is measured along
the bisector of the cone. More formally, we add an edge
between two vertices u and v if v ∈ C and for all vertices
w ∈ C (v 6= w), |uv′| ≤ |uw′|, where v′ and w′ denote
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the orthogonal projection of v and w on the bisector of
C.

For ease of exposition, we only consider point sets in
general position: no two vertices lie on a line parallel to
one of the rays that define the cones and no two vertices
lie on a line perpendicular to the bisector of one of the
cones. This implies that each vertex adds at most one
edge per cone to the graph.

Given a vertex w in cone C of vertex u, we define the
canonical triangle Tuw to be the triangle defined by the
borders of C and the line through w perpendicular to
the bisector of C. We use m to denote the midpoint of
the side of Tuw opposite u and α to denote the unsigned
angle between uw and um. See Figure 1. Note that for
any pair of vertices u and w, there exist two canonical
triangles: Tuw and Twu.

w

u

m

α

Figure 1: The canonical triangle Tuw

3 Spanning Ratio of the θ(4k+2)-Graph

In this section, we give matching upper and lower
bounds on the spanning ratio of the θ(4k+2)-graph, for
any integer k ≥ 1. The proof is a generalization of the
proof given by Bose et al. [2]. We first show that the
θ(4k+2)-graph has a very nice geometric property:

Lemma 1 Any line perpendicular to the bisector of a
cone is parallel to the boundary of some cone.

Proof. The angle between the bisector of a cone and
the boundary of that cone is θ/2 and the angle between
the bisector and the line perpendicular to this bisector
is π/2 = ((2k + 1)/2) · θ. Thus the angle between the
line perpendicular to the bisector and the boundary of
the cone is 2π − θ/2 − ((2k + 1)/2) · θ = k · θ. Since a
cone boundary is placed at every multiple of θ, the line
perpendicular to the bisector is parallel to the boundary
of some cone. �

This property implicitly helps when bounding the
spanning ratio of the θ(4k+2)-graph. However, before

deriving this bound, we first prove a useful geometric
lemma.

Lemma 2 Given a convex quadrilateral abcd such that
no three of its vertices lie on a line, ∠abc = ∠adc,
∠bad ≤ ∠bcd, and ∠bad ≤ 2 · ∠bac. It holds that
|ad|+ |dc| ≤ |ab|+ |bc|.

Proof. Since ∠bad ≤ 2 · ∠bac, the bisector of ∠bad
intersects bc. Let x be this intersection. Let y be the
intersection of ad and the line through x, parallel to cd.
Since ∠bad ≤ ∠bcd, the line through d parallel to bc
intersects xy. Let z be this intersection. See Figure 2.
These definitions imply that |zd| = |xc| and |zx| = |dc|.
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Figure 2: Quadrilateral abcd

Since ∠bax = ∠yax and ∠abx = ∠adc = ∠ayx, we
have that ∠bxa = ∠yxa. Since ax is part of both trian-
gle abx and triangle ayx, the law of sines implies that
|ab| = |ay| and |bx| = |yx|. We now rewrite |ad| + |dc|
and |ab|+ |bc|:

|ad|+ |dc| = |ay|+ |yd|+ |dc|
= |ay|+ |yd|+ |zx|

|ab|+ |bc| = |ab|+ |bx|+ |xc|
= |ay|+ |yx|+ |xc|
= |ay|+ |yz|+ |zx|+ |zd|

Therefore |ad| + |dc| ≤ |ab| + |bc| if and only if
|yd| ≤ |yz| + |zd|, which follows from the triangle in-
equality. �

Theorem 3 Let u and w be two vertices in the plane.
Let m be the midpoint of the side of Tuw opposite u and
let α be the unsigned angle between uw and um. There
exists a path in the θ(4k+2)-graph of length at most((

1 + sin
(
θ
2

)
cos
(
θ
2

) )
· cosα+ sinα

)
· |uw|.

Proof. We prove the theorem by induction on the area
of Tuw (formally, induction on the rank, when ordered
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by area, of the canonical triangles for all pairs of ver-
tices). Let a and b be the upper left and right corners of
Tuw, let p and q be the intersections of Tuw and the lower
boundaries of the uppermost cones of w that intersect
Tuw, and let x and y be the left and right intersections
of Tuw and the boundaries of the cone of w that contains
u. See Figure 3.

u

wa b

x

y
p
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m

Figure 3: The canonical triangle Tuw with a, b, p, q, x,
and y being the various intersections of its sides

Our inductive hypothesis is the following, where
δ(u,w) denotes the length of the shortest path from u
to w in the θ(4k+2)-graph:

• If axw is empty, then δ(u,w) ≤ |ub|+ |bw|.

• If byw is empty, then δ(u,w) ≤ |ua|+ |aw|.

• If neither axw nor byw is empty, then
δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

We first show that this induction hypothesis implies
the theorem. Basic trigonometry gives us the follow-
ing equalities: |um| = |uw| · cosα, |mw| = |uw| · sinα,
|am| = |bm| = |uw| · cosα · tan(θ/2), and |ua| = |ub| =
|uw| · cosα/ cos(θ/2). Thus the induction hypothesis
gives that δ(u,w) is at most |ua| + |am| + |mw| =
|uw| · (((1 + sin(θ/2))/ cos(θ/2)) · cosα+ sinα).
Base case: Tuw has rank 1. Since the triangle is

a smallest triangle, w is the closest vertex to u in that
cone. Hence the edge (u,w) is part of the θ(4k+2)-graph,
and δ(u,w) = |uw|. From the triangle inequality, we
have |uw| ≤ min{|ua|+ |aw|, |ub|+ |bw|}, so the induc-
tion hypothesis holds.
Induction step: We assume that the induction hy-

pothesis holds for all pairs of vertices with canonical
triangles of rank up to i. Let Tuw be a canonical trian-
gle of rank i+ 1.

If (u,w) is an edge in the θ(4k+2)-graph, the induc-
tion hypothesis follows by the same argument as in
the base case. If there is no edge between u and w,
let v be the vertex closest to u in the cone of u that
contains w, and let a′ and b′ be the upper left and

right corners of Tuv. See Figure 4. By definition,
δ(u,w) ≤ |uv|+ δ(v, w), and by the triangle inequality,
|uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.
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Figure 4: The three cases: (a) v lies in uxwy, (b) v lies
in xpw, (c) v lies in paw

We perform a case analysis based on the location of v:
(a) v lies in uxwy, (b) v lies in xpw, (c) v lies in paw,
(d) v lies in yqw, and (e) v lies in qbw. Case (d) is anal-
ogous to Case (b) and Case (e) is analogous to Case (c),
so we only discuss the first three cases.

Case (a): Vertex v lies in uxwy. Let c and d be the
upper left and right corners of Tvw, and let x′ and y′ be
the left and right intersections of Tvw and the bound-
aries of the cone of w that contains v. See Figure 4a.
Since Tvw has smaller area than Tuw, we apply the in-
ductive hypothesis on Tvw. Our task is to prove all three
statements of the inductive hypothesis for Tuw.

1. If axw is empty, then cx′w is also empty, so by
induction δ(v, w) ≤ |vd| + |dw|. Since v, d, b, and
b′ form a parallelogram, we have:

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
= |ub|+ |bw|,

which proves the first statement of the induction
hypothesis.

2. If byw is empty, an analogous argument proves the
second statement of the induction hypothesis.

3. If neither axw nor byw is empty, by induction we
have δ(v, w) ≤ max{|vc| + |cw|, |vd| + |dw|}. As-
sume, without loss of generality, that the maximum
of the right hand side is attained by its second ar-
gument |vd| + |dw| (the other case is analogous).
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Since vertices v, d, b, and b′ form a parallelogram,
we have that:

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
≤ |ub|+ |bw|
≤ max{|ua|+ |aw|, |ub|+ |bw|},

which proves the third statement of the induction
hypothesis.

Case (b): Vertex v lies in xpw. Since v lies in
axw, the first statement in the induction hypothesis
for Tuw is vacuously true. It remains to prove the
second and third statement in the induction hypoth-
esis. Let c and d be the upper and lower right cor-
ners of Tvw, and let a′′ be the intersection of aw and
the line through v, parallel to ua. See Figure 4b.
Since Tvw is smaller than Tuw, by induction we have
δ(v, w) ≤ max{|vc|+ |cw|, |vd|+ |dw|}. We perform a
case analysis based on this: (i) δ(v, w) ≤ |vd|+ |dw|,
(ii) δ(v, w) ≤ |vc|+ |cw|.

Case (i): Since ∠va′′w and ∠vdw are both the angle
between the boundary of a cone and the line perpen-
dicular to the bisector of that cone, we have ∠va′′w =
∠vdw = k ·θ. Also, we have that ∠a′′vd ≤ ∠a′′wd, since
∠a′′vd ≤ k · θ and

∠a′′wd = 2π − ∠va′′w − ∠vdw − ∠a′′vd
≥ (4k + 2) · θ − 3k · θ
= (k + 2) · θ

Furthermore, since ∠a′′vw > ∠a′′vc ≥ θ and
∠a′′vd = ∠a′′vc+ θ ≤ 2 ·∠a′′vc, we have that ∠a′′vd <
2 · ∠a′′vw.

Hence we can apply Lemma 2 to quadrilateral va′′wd,
which gives us that |vd| + |dw| ≤ |va′′| + |a′′w|. Since
|uv| ≤ |ua′|+ |a′v| and v, a′′, a, and a′ form a parallel-
ogram, we have that δ(u,w) ≤ |ua|+ |aw|, proving the
second and third statement in the induction hypothesis
for Tuw.
Case (ii): Let z be the lower corner of Twv. Since

vcwz form a parallelogram, we know that |vc|+ |cw| =
|wz|+ |zv|. We now look at quadrilateral wzva′′. Anal-
ogous to Case (i), we have that ∠wzv = ∠wa′′v = k · θ,
∠a′′wz ≤ ∠a′′vz, and ∠a′′wz < 2 · ∠a′′wv. Hence we
can apply Lemma 2 to quadrilateral wzva′′, which gives
us that |wz|+ |zv| ≤ |va′′|+ |a′′w|, proving the second
and third statement in the induction hypothesis for Tuw.

Case (c): Vertex v lies in paw. Since v lies in axw,
the first statement in the induction hypothesis for Tuw
is vacuously true. It remains to prove the second and
third statement in the induction hypothesis. Let a′′ and
b′′ be the upper and lower left corners of Twv, and let
y′′ be the intersection of Twv and the lower boundary of
the cone of v that contains w. See Figure 4c. Note that

y′′ is also the right intersection of Tuv and Twv. Since
v is the closest vertex to u, Tuv is empty. Hence, b′′y′′v
is empty. Since Twv is smaller than Tuw, we can apply
induction on it. As b′′y′′v is empty, the first statement of
the induction hypothesis for Twv gives δ(v, w) ≤ |va′′|+
|a′′w|. Since |uv| ≤ |ua′| + |a′v| and v, a′′, a, and a′

form a parallelogram, we have that δ(u,w) ≤ |ua|+|aw|,
proving the second and third statement in the induction
hypothesis for Tuw. �

Since ((1 + sin(θ/2))/ cos(θ/2)) · cosα + sinα is in-
creasing for α ∈ [0, θ/2], for θ ≤ π/3, it is maximized
when α = θ/2, and we obtain the following corollary:

Corollary 4 The θ(4k+2)-graph is a
(
1 + 2 · sin

(
θ
2

))
-

spanner of Kn.

The upper bounds given in Theorem 3 and Corol-
lary 4 are tight, as shown in Figure 5: we place a ver-
tex v arbitrarily close to the upper corner of Tuw that
is furthest from w. Likewise, we place a vertex v′ arbi-
trarily close to the lower corner of Twu that is furthest
from u. Both shortest paths between u and w visit ei-
ther v or v′, so the path length is arbitrarily close to
(((1 + sin(θ/2))/ cos(θ/2)) · cosα+ sinα) · |uw|, showing
that the upper bounds are tight.

w

u

v

v′

Figure 5: The lower bound for the θ(4k+2)-graph

4 Spanning Ratio of the θ(4k+4)-Graph

The θ(4k+2)-graph has the nice property that any line
perpendicular to the bisector of a cone is parallel to the
boundary of a cone (Lemma 1). As a result of this, if u,
v, and w are vertices with v in one of the upper corners
of Tuw, then Twv is completely contained in Tuw. The
θ(4k+4)-graph does not have this property. In this sec-
tion, we show how to exploit this to construct a lower
bound for the θ(4k+4)-graph whose spanning ratio ex-
ceeds the worst case spanning ratio of the θ(4k+2)-graph.

Theorem 5 The worst case spanning ratio of the
θ(4k+4)-graph is at least 1 + 2 tan

(
θ
2

)
+ 2 tan2

(
θ
2

)
.
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Figure 6: The construction of the lower bound for the θ(4k+4)-graph

Proof. We construct the lower bound example by ex-
tending the shortest path between two vertices u and
w in three steps. We describe only how to extend one
of the shortest paths between these vertices. To extend
all shortest paths, the same modification is performed
in each of the analogous cases, as shown in Figure 6.

First, we ensure that there is no edge between u and
w by placing a vertex v1 in the upper corner of Tuw
that is furthest from w. See Figure 6a. Next, we place
a vertex v2 in the corner of Tv1w that lies in the same
cone of u as w and v1. See Figure 6b. Finally, we place a
vertex v3 in the intersection of Tv2w and Twv2 to ensure
that there is no edge between v2 and w. See Figure 6c.
Note that we cannot place v3 in the lower right corner
of Tv2w since this would cause an edge between u and
v3 to be added, creating a shortcut to w.

One of the shortest paths in the resulting graph visits
u, v1, v2, v3, and w. Thus, to obtain a lower bound for
the θ(4k+4)-graph, we compute the length of this path.

Let m be the midpoint of the side of Tuw opposite u.
By construction, we have that ∠v1um = ∠wum =
∠v2v1w = ∠v3v2w = ∠v3wv2 = θ/2. See Figure 7.
We can express the various line segments as follows:

|uv1| = |uw|

|v1w| = 2 sin

(
θ

2

)
· |uw|

|v1v2| = 2 tan

(
θ

2

)
· |uw|

|v2w| = 2 sin

(
θ

2

)
tan

(
θ

2

)
· |uw|

|v2v3| = |v3w| = tan2

(
θ

2

)
· |uw|

w

u

v1

v2

v3

m

Figure 7: The lower bound for the θ(4k+4)-graph

Hence, the total length of the shortest path is |uv1|+
|v1v2|+ |v2v3|+ |v3w| = (1 + 2 tan(θ/2) + 2 tan2(θ/2)) ·
|uw|. �

Finally, we show that increasing the number of cones
of a θ-graph by 2 from 4k + 2 to 4k + 4 increases the
worst case spanning ratio.

Theorem 6 The worst case spanning ratio of the
θ(4k+4)-graph is greater than that of the θ(4k+2)-graph,
for any integer k ≥ 1.

Proof. Recall that the worst case spanning ratio of
the θ(4k+2)-graph is 1 + 2 sin(π/(4k + 2)) and that of
the θ(4k+4)-graph is at least 1 + 2 tan(π/(4k + 4)) +
2 tan2(π/(4k + 4)). To prove the theorem, it suffices to
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show that tan(π/(4k+ 4)) + tan2(π/(4k+ 4)) is greater
than sin(π/(4k + 2)), for any integer k ≥ 1.

For x ∈ (0, π/6], it holds that sinx < x, tanx > x,
and tan2 x > x2. Since k ≥ 1, both π/(4k + 2) and
π/(4k+ 4) are in the range (0, π/6]. Therefore, we have
that:

sin

(
π

4k + 2

)
<

π

4k + 2

<
π

4k + 4
+

(
π

4k + 4

)2

< tan

(
π

4k + 4

)
+ tan2

(
π

4k + 4

)
,

as required. �

5 Conclusion

We showed that the θ(4k+2)-graph has a tight span-
ning ratio of 1 + 2 sin(θ/2). This is the first time tight
spanning ratios have been found for a large family of
θ-graphs. Previously, the only θ-graph for which tight
bounds were known was the θ6-graph.

Furthermore, we showed that the θ(4k+4)-graph has a
spanning ratio of at least 1 + 2 tan(θ/2) + 2 tan2(θ/2).
This result is somewhat surprising since, for equal values
of k, the worst case spanning ratio of the θ(4k+4)-graph
is greater than that of the θ(4k+2)-graph, showing that
increasing the number of cones can make the spanning
ratio worse.

There remain a number of open problems, such as
finding lower bounds for the θ(4k+3)-graph and the
θ(4k+5)-graph, and finding tight spanning ratios of the
θ(4k+3), θ(4k+4), and θ(4k+5)-graphs. The best known
upper bound for these graphs is 1/(1−2 sin(θ/2)). Fur-
thermore, for the θ4 and θ5-graphs, neither upper nor
lower bounds are known.
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