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Abstract. A rectangular cartogram is a type of map where every region
is a rectangle. The size of the rectangles is chosen such that their areas
represent a geographic variable such as population or GDP. In recent
years several algorithms for the automated construction of rectangular
cartograms have been proposed, some of which are based on rectangu-
lar duals of the dual graph of the input map. In this paper we present a
new approach to efficiently search within the exponentially large space of
all possible rectangular duals. We employ evolution strategies that find
rectangular duals which can be used for rectangular cartograms with
correct adjacencies and (close to) zero cartographic error. This is a con-
siderable improvement upon previous methods that have to either relax
adjacency requirements or deal with larger errors. We present extensive
experimental results for a large variety of data sets.

Keywords: Rectangular cartogram, evolution strategy, regular edge la-
beling.
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Fig. 1. The population of Europe 2011.

Cartograms [3, 13], also called value-by-
area maps, are a useful and intuitive
tool to visualize statistical data about
a set of regions like countries, states,
or counties. The size (area) of a region
in a cartogram corresponds to a par-
ticular geographic variable. A common
variable is population: in a population
cartogram, the sizes of the regions are
proportional to their population. The
sizes of the regions in a cartogram are
not the true sizes and hence the regions
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generally cannot keep both their shape and their adjacencies. A good cartogram,
however, preserves the recognizability in some way.

Globally speaking, there are four types of cartogram. The standard type—
also referred to as contiguous area cartogram—has deformed regions so that the
desired sizes can be obtained and the adjacencies kept. The most prominent
algorithm for such cartograms was developed by Gastner and Newman [8]. The
second type of cartogram is the non-contiguous area cartogram [14]. The regions
have the true shape, but are scaled down and generally do not touch anymore.
Sometimes the scaled-down regions are shown on top of the original regions.
A third type of cartogram was introduced by Dorling [4] and is in its original
form based on circles. Dorling cartograms maintain neither correct adjacencies
between regions nor correct relative positions. A variant of Dorling cartograms
are Demers cartograms which use squares instead of circles. Demers cartograms
also do not maintain correct adjacencies and disturb relative positions even more
than Dorling cartograms. We concentrate on a fourth type of cartograms, rect-
angular cartograms, as introduced by Raisz in 1934 [15], where each region is
represented by a rectangle and adjacencies are maintained as well as possible.

Quality criteria. Whether a rectangular cartogram is good is determined by
several factors. One of these is the cartographic error [5], which is defined for
each region as |Ac−As| /As, where Ac is the area of the region in the cartogram
and As is the specified area of that region, given by the geographic variable to be
shown. Another factor are the correct adjacencies of the regions of the cartogram.
This requires that the dual graph of the cartogram is the same as the dual graph
of the original map. Here the dual graph of a map—also referred to as adjacency
graph—is the graph that has one node per region and connects two regions if
they are adjacent, where two regions are considered to be adjacent if they share
a 1-dimensional part of their boundaries (see Fig. 3). A third factor is important
for the recognizability of a rectangular cartogram: the relative position of the
rectangles. For example, a rectangle representing the Netherlands should lie west
of a rectangle representing Germany. To measure how well a cartogram matches
the spatial relations between regions in the input map we use the bounding box
separation distance (BBSD) [2], which is defined in the next section. Finally, it
is important that the aspect ratio of the rectangles does not exceed a certain
maximum since otherwise the areas become difficult to judge.

Rectangular duals. We follow the general approach set out in previous work [2,
16, 18] and construct rectangular cartograms by first finding a suitable rectan-
gular dual of the dual graph of the input map. A rectangular dual is defined as
follows. A rectangular partition of a rectangle R is a partition of R into a set
R of non-overlapping rectangles such that no four rectangles in R meet at one
common point. A rectangular dual of a plane graph G is a rectangular partition
R, such that (i) there is a one-to-one correspondence between the rectangles in
R and the nodes in G; (ii) two rectangles in R share a common boundary if and
only if the corresponding nodes in G are connected.

Not every plane graph has a rectangular dual. A plane graph G has a rect-
angular dual R with four rectangles on the boundary of R if G is an irreducible



Evolution Strategies for Optimizing Rectangular Cartograms 3

DEBE
UA

CY

MT

MK

BA

EE

NO

GR

AL

RU

CH

IE

PL

RO

SE

CS

HU

CZ

IS

PT
TR

IT
ES

BG

GB

LT

DK

BY

SI

LV

SK

NL

FI

ATFR

HR

DE

BE

UA

CY

MT

MK

BA

EE

NO

GR

AL

RU

CH

IE

PL

RO

SE

CSHU

CZ

IS

PT

TR

IT

ES

BG

GB

LT

DK

BY

SI

LV

SK

NL

FI

AT

FR

HR

Fig. 2. Two rectangular duals of the dual graph of a map of Europe (from [2]).

triangulation: (i) G is triangulated and the exterior face is a quadrangle; (ii) G
has no separating triangles (a 3-cycle with vertices both inside and outside the
cycle) [1, 12]. A plane triangulated graph G has a rectangular dual if and only
if we can augment G with four external vertices such that the augmented graph
is an irreducible triangulation.

The dual graph F of a typical geographic map can be easily turned into an
irreducible triangulation in a preprocessing step. F is in most cases already tri-
angulated. We triangulate any remaining non-triangular faces (for example the
face formed by the nodes for Colorado, Utah, New Mexico, and Arizona). It re-
mains to preprocess internal nodes of degree less than four, such as Luxembourg,
Moldova, or Lesotho. In these cases, we add the region to one of its neighbors.

A rectangular dual is not necessarily unique. Consider the two rectangular
duals of the dual graph G of a map of Europe shown in Fig. 2. To ensure that
G is an irreducible triangulation, Luxembourg and Moldova have been removed.
Furthermore, “sea regions” have been added to improve the shape of the outline.
The left dual will lead to a recognizable cartogram, whereas the right dual (with
France east of Germany and Hungary north of Austria) is useless as basis for
a cartogram. Most irreducible triangulations have in fact exponentially many
different rectangular duals which are described by regular edge labelings.

Regular edge labelings. The equivalence classes of the rectangular duals of an
irreducible triangulation G correspond one-to-one to the regular edge labelings
(RELs) of G. An REL of an irreducible triangulation G is a partition of the
interior edges of G into two subsets of red and blue directed edges such that:
(i) around each inner vertex in clockwise order we have four contiguous sets
of incoming blue edges, outgoing red edges, outgoing blue edges, and incoming
red edges; (ii) the left exterior vertex has only blue outgoing edges, the top
exterior vertex has only red incoming edges, the right exterior vertex has only
blue incoming edges, and the bottom exterior vertex has only red outgoing edges
(see Fig. 3, red edges are dashed). Kant and He [11] show how to find a regular
edge labeling and construct the corresponding rectangular dual in linear time.
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Fig. 3. A subdivision and its augmented dual graph G, a regular edge labeling of G,
and a corresponding rectangular dual (from [2]).

left alternatingright alternating

An alternating 4-cycle is an undirected 4-cycle in
which the colors of the edges alternate between red
and blue. There are two kinds of alternating 4-cycles,
depending on the color of the interior edges incident
to the cycle. If these are the same color as the next
clockwise cycle edge the cycle is right alternating, otherwise it is left alternating.
Fusy [7] proved that the set of RELs of a fixed irreducible triangulation form
a distributive lattice. The flip operation consists of switching the edge colors
inside a right alternating 4-cycle, turning it into a left alternating 4-cycle. An
REL with no right alternating 4-cycle is called minimal ; it is at the bottom of
the distributive lattice.

Although an irreducible triangulation can have exponentially many RELs and
hence exponentially many rectangular duals this does not imply that an error
free cartogram for this graph exists. The area specification for every rectangle,
as well as other criteria for good cartograms, may make it impossible to realize.
The lattice structure of the RELs allows us to traverse the space of all RELs
for a given graph and find the best rectangular dual for a given set of input
values to be realized. However, already for small graphs it is unfeasible to test
all possible rectangular duals: the dual graphs of the countries of Europe or the
contiguous states of the US both have over four billion labelings. This calls for
search strategies that efficiently explore a significant part of the lattice structure.
In this paper we present a new search algorithm based on evolution strategies
which clearly outperforms previous approaches.

Related work. The only algorithm for standard cartograms that can be adapted
to handle rectangular cartograms is Tobler’s pseudo-cartogram algorithm [17]
combined with a rectangular dual algorithm. However, Tobler’s method is known
to produce a large cartographic error and is mostly used as a preprocessing step
for cartogram construction [13]. The first method for the automated construction
of rectangular cartograms was presented by Van Kreveld and Speckmann [18].
Their cartograms have small cartographic error but require (mildly) disturbed
adjacencies to realize most data sets. Their method searches through a com-
paratively small user-specified subset of the RELs. Every labeling in this subset
is considered acceptable with respect to the relative positions of the countries.
Speckmann et al. [16] improved on their earlier results by using an iterative linear
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programming method to build a cartogram from an REL. With this methodol-
ogy world maps could be realized, although small disturbances in the adjacen-
cies were still necessary to obtain acceptable cartographic errors. Speckmann et
al. [16] used the same user-specified subset of the RELs as Van Kreveld and
Speckmann [18]. In a recent paper [2] we presented the first method which uses
a heuristic search strategy, namely simulated annealing, on the complete lattice
of RELs. We restricted ourselves solely to cartograms with correct adjacencies
and nevertheless improved upon the cartographic error of the resulting maps.

A different approach was taken by Inoue et al. [10] who compute rectan-
gular and rectilinear cartograms by triangulating the regions and transforming
the triangles to meet the desired area requirements. Their rectilinear cartograms
have high region complexity and their rectangular cartograms exhibit large car-
tographic errors. Finally, Heilmann et al. [9] gave an algorithm that always pro-
duces regions with the correct areas; but the adjacencies can be disturbed badly.

Results and organization. In this paper we show how to employ evolution
strategies to search effectively in the exponentially large lattice of RELs. We find
rectangular duals that allow us to realize rectangular cartograms with correct
adjacencies and (close to) zero cartographic error. This is a considerable improve-
ment over previous methods. In Section 2 we describe our evolution strategies
and in Section 3 we present and discuss an extensive set of experiments.

2 Evolution strategies

The dual graph of a map can have an exponential number of valid RELs, hence
we turn to meta-heuristics to find good solutions in this huge search space. In this
section, we present a new approach based on evolution strategies that performs
significantly better than our previous method based on simulated annealing [2].

Evolution strategies are an optimization technique that is heavily inspired by
natural selection. They use a population of candidate solutions, from which the
next generation is constructed by selecting promising individuals and mutating
these. If the population is initialized with random solutions, this leads to a
broad initial search that quickly focuses on promising regions of the search space.
The individuals for our problem consist of valid RELs of the augmented dual
graph of our input map. The validity requirement is important, as it reduces the
search space by an exponential factor. The population is initialized with semi-
random individuals, by starting at the minimum labeling and flipping d

(
1
2 + r

8

)
random left alternating 4-cycles, where d is the diameter of the lattice and r
is a standard normal distributed random number. Since the lattice of RELs is
distributive, every upward path between the same two RELs has the same length
and therefore the diameter is simply the number of left alternating 4-cycles we
need to flip until we reach the maximum labeling from the minimum labeling.
We compute the minimum labeling using a linear-time algorithm by Fusy [6].

After this initialization, every generation follows the same three steps:

1. Compute the fitness scores of all individuals. If the quality measure gives
a higher score to better individuals, use this score directly, otherwise (as is
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the case with cartographic error and bounding box separation distance) use
1/m, where m is the score given by the measure.

2. Copy the best 4% of the current population to the next generation. This
ensures that the best solutions stay in the population unmodified.

3. Fill the remainder of the next generation by repeating the following process:
– Use rank selection to select an individual from the current population.

The individuals are sorted by fitness in decreasing order. Each individual
is assigned a score of 0.9i, where i is the individual’s rank, so the best
individual gets a score of 0.9 and so on. Then each individual is selected
with probability equal to the proportion of their score to the total score.
Since the selection depends only on the rank of the individuals and not
on the fitness values themselves, it is a good choice for optimization using
user-specified fitness measures.

– With probability 0.05, generate a standard normal distributed random
number r. If r is positive, move dr

6 steps up the lattice, by flipping random

left alternating 4-cycles. If r is negative, move dr
6 steps down the lattice,

by flipping random right alternating 4-cycles. This is a drastic mutation
that is used to keep the population from stagnating too much.

– With probability 0.9, flip a random alternating 4-cycle. This is a small
mutation, used for local exploration of the neighbourhood of the selected
individual.

Finally, the best REL found during the process is returned. The parameter values
presented can be slightly changed to increase performance on various maps and
quality measures, but the presented values were found to work well for our
instances.

Quality measures. We now explain how we capture the quality criteria for
rectangular cartograms in our evolution strategy. To create a cartogram from an
REL we follow the iterative linear programming method presented in [16] with
correct adjacencies. Since we consider only valid RELs of the dual graphs of our
input maps, this implies that all cartograms we generate have correct adjacencies.
That is, all regions that share borders on the geographic input map will do so
in the cartogram and regions that do not share borders will not be adjacent in
the cartogram. Furthermore, we bound the aspect ratio of all rectangles by 12.

To make a rectangular cartogram as recognizable as possible, it is important
that the directions of adjacency between the rectangles of the cartogram follow
the spatial relation of the regions of the geographical map as closely as possible.
Since these directions of adjacency are specified by the REL, we can assess the
recognizability of a rectangular cartogram by looking at its REL. We use the
bounding box separation distance (BBSD) [2] to quantify how well the directions
of adjacency match the geographical directions. The BBSD measures the distance
the bounding boxes of the regions would need to be moved to separate them in
the direction indicated by the edge label (see Fig. 4).

Finally, to compute the fitness score of an individual we used the weighted
sum of 0.7 times the average of squared cartographic errors and 0.3 times the
average of squared bounding box separation distances of its regions.
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d d d d

Fig. 4. The BBSD measures the distance d which the bounding boxes of the regions
need to be moved to separate them in the direction indicated by the edge label (arrow).

3 Experimental Results

We evaluated our method on a large variety of data sets. For each data set, we
measured the cartographic error, bounding box separation distance and running
time. We generated cartograms based on three different geographical maps: the
contiguous states of the US, the countries of Europe and the countries of the
world with a population over 1 million. For the US we used data from the US
Census Bureau State and County quickfacts3. Since cartograms can not easily
represent negative or zero values, we used all 45 data sets from the 2010 census
where each state was assigned a positive value. Additionally we used the results
of the US presidential election of 20084. For Europe we used data from the
ranked CIA World Fact Book data sets5. We used all 19 ranked WFB data sets
that have data for all countries of Europe included in our cartograms6. Our final
cartogram uses the world population data from Worldmapper7. We conclude
with a direct comparison with our previous method [2].

We generated 20 cartograms for each data set. For each run we recorded the
average cartographic error, the maximum cartographic error, and the bounding
box separation distance. We summarized these results by taking the average,
minimum and maximum over all runs per data set in Table 1. For the US census
data we included only the population and geography data sets in the summary,
the other data sets show similar trends. The columns ‘min’ give the average car-
tographic error, maximum cartographic error and the bounding box separation
distance of the best cartograms generated for the data set. Since we need only
one cartogram per data set, we focus on the values in the ‘min’ columns.

The rectangular cartograms in the figures have regions that are colored based
on their error. Shades of red show that a region is too small and shades of blue

3 http://quickfacts.census.gov/qfd/index.html, accessed 2011/11/22.
4 http://elections.nytimes.com/2008/results/president/votes.html, accessed

2012/02/06.
5 https://www.cia.gov/library/publications/the-world-factbook/index.html,

accessed 2011/12/10.
6 For the area cartogram we use the area of Russia within Europe, http;//en.

wikipedia.org/wiki/European_Russia, accessed 2012/02/06.
7 http://www.worldmapper.org/data/nomap/2_worldmapper_data.xls, accessed

2012/02/01.



8 Kevin Buchin, Bettina Speckmann, and Sander Verdonschot

Table 1. Average cartographic error (ACE), maximum cartographic error (MCE) and
average squared bounding box separation distance (BBSD) for 2010 US census data
(people + geography) and World Factbook data of Europe. Average (avg), minimum
(min) and maximum (max) taken over 20 runs of our algorithm.

data set description ACE MCE BBSD

avg min max avg min max avg min max

US census data 2010
Resident total population 0.04 0.01 0.08 0.29 0.02 0.76 0.05 0.03 0.10
Resident population (RP) 2000 0.05 0.01 0.14 0.34 0.06 0.74 0.05 0.03 0.10
RP < 5 years, percentage (%) 0.04 0.00 0.09 0.16 0.02 0.34 0.04 0.02 0.06
RP < 18 years, % 0.03 0.02 0.07 0.18 0.06 0.24 0.05 0.02 0.13
RP ≥ 65 years, % 0.04 0.01 0.08 0.18 0.04 0.43 0.05 0.02 0.10
RP: total females, % 0.03 0.00 0.05 0.16 0.00 0.32 0.04 0.02 0.07
RP: White alone, % 0.04 0.00 0.08 0.17 0.02 0.40 0.05 0.03 0.07
RP: Black alone, % 0.06 0.01 0.13 0.36 0.05 0.70 0.05 0.03 0.09
RP: Amer. Indian + Alaska Na., % 0.07 0.02 0.14 0.44 0.21 0.89 0.04 0.03 0.07
RP: Asian alone, % 0.05 0.00 0.11 0.32 0.02 0.73 0.05 0.02 0.09
RP: Two or more races, % 0.03 0.00 0.06 0.15 0.00 0.31 0.06 0.03 0.09
RP: Hispanic or Latino Origin, % 0.05 0.00 0.10 0.27 0.02 0.82 0.05 0.03 0.09
RP: Not Hisp., White alone, % 0.04 0.00 0.08 0.19 0.00 0.49 0.05 0.03 0.13
Same househ. 1 yr ago, % ’05–’09 0.04 0.00 0.06 0.16 0.00 0.28 0.04 0.02 0.08
Pl. of birth, foreign born,% ’05–’09 0.06 0.01 0.10 0.31 0.04 0.77 0.05 0.03 0.09
Pop. ≥ 5 yrs, % lang. other ’05–’09 0.04 0.00 0.08 0.22 0.00 0.55 0.05 0.03 0.08
≥ 25 yrs % high sch. grad. ’05–’09 0.03 0.00 0.06 0.15 0.00 0.25 0.04 0.02 0.10
≥ 25 yrs % bachelor’s deg. ’05–’09 0.04 0.00 0.08 0.21 0.00 0.48 0.05 0.02 0.12
Veterans - total ’05-’09 0.03 0.00 0.08 0.14 0.01 0.45 0.04 0.03 0.09
Land area in square miles 0.00 0.00 0.01 0.01 0.00 0.04 0.02 0.02 0.04
Population per square mile 0.08 0.02 0.14 0.65 0.11 1.00 0.05 0.03 0.12

World Factbook: Europe (Dec. 2011)
GDP (purchasing power parity) 0.00 0.00 0.01 0.01 0.00 0.07 0.08 0.08 0.09
GDP real growth rate 0.11 0.09 0.14 0.60 0.50 1.00 0.09 0.08 0.10
GDP - per capita (PPP) 0.07 0.03 0.10 0.34 0.08 0.67 0.09 0.07 0.11
Electricity - production 0.00 0.00 0.01 0.03 0.00 0.11 0.08 0.07 0.10
Electricity - consumption 0.00 0.00 0.01 0.02 0.00 0.15 0.08 0.07 0.10
Airports 0.00 0.00 0.01 0.02 0.00 0.08 0.08 0.07 0.10
Exports 0.01 0.00 0.04 0.03 0.00 0.25 0.08 0.08 0.09
Roadways 0.01 0.00 0.02 0.03 0.00 0.11 0.09 0.08 0.09
Imports 0.00 0.00 0.02 0.01 0.00 0.08 0.09 0.08 0.10
Inflation rate (consumer prices) 0.05 0.01 0.11 0.30 0.09 0.54 0.09 0.08 0.11
Labor force 0.00 0.00 0.01 0.01 0.00 0.04 0.08 0.08 0.10
Population 0.00 0.00 0.01 0.01 0.00 0.11 0.09 0.08 0.10
Unemployment rate 0.10 0.03 0.18 0.54 0.16 0.94 0.09 0.07 0.10
Area 0.00 0.00 0.01 0.02 0.00 0.05 0.08 0.07 0.09
Telephones - main lines in use 0.00 0.00 0.00 0.01 0.00 0.03 0.08 0.08 0.10
Telephones - mobile cellular 0.00 0.00 0.01 0.01 0.00 0.08 0.08 0.07 0.11
Distr. of family income - Gini Ind. 0.03 0.00 0.05 0.22 0.00 0.65 0.09 0.07 0.09
Current account balance 0.05 0.03 0.11 0.49 0.20 0.81 0.09 0.08 0.10
Commercial bank prime lend. rate 0.05 0.02 0.07 0.29 0.10 0.43 0.09 0.08 0.10
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Fig. 5. US population (left) and US population per square mile (right).

show that a region is too large. If the error is below 0.05, the region is white.
Note that only Fig. 5 (right) has non-white regions.

All code was written in Java and executed single-threaded, using the Open-
JDK Runtime Environment IcedTea6 1.9.9, corresponding to java version 1.6.0 20.
For solving linear programs we used IBM ILOG CPLEX 12.0. The measurements
of the running time were performed on a 64-bit quad core 1.86GHz Intel Xeon
E5320 server with 8 GB RAM, running Ubuntu 10.04.3. On average it took 476
seconds to generate a cartogram for the US, 354 seconds for Europe and 207
minutes for the world. Since the running times showed little variation between
data sets, we do not discuss them further.

For all data sets from the US census in the table our algorithm generated at
least one map with average cartographic error (ACE) of 2% or less. The average
ACE over all runs of the algorithm is between 0% and 8%, where land area in
square miles has the lowest average and population per square mile the highest.
For all except two data sets (percentage of American Indian and Alaska Native
population and population per square mile) our algorithm generated maps with
a maximum cartographic error (MCE) of at most 6% (and an average over all
runs of at most 36%). The bounding box separation distance (BBSD) does not
vary much and the average over all runs was between 0.02 and 0.06 depending
on the data set. For the data sets not included in the table the results are
similar, except that there is one data set with a minimum ACE of 4% (wholesale
trade) and 4 data sets with a minimum MCE above 7% (Hispanic-owned firms,
manufacturing, wholesale trade, and accommodation and food services).

Our rectangular cartogram of the US population in Fig. 5 (left) has an ACE
of 0.5%, a MCE of 2.2%, and a BBSD of 0.365. Our results considerably improve
on previous work: Van Kreveld and Speckmann [18] obtained a cartogram with
an ACE of 8.6% and a MCE of 87.3%, Buchin et al. [2] one with an ACE of 10.2%
and a MCE of 59.7%. Inoue et al. [10] don’t report on these errors specifically
but obtain a rectangular cartogram in which 22 states have a cartographic error
between 5% and 20%, and 7 states have a cartographic error larger than 20%.

The data set on population per square mile is one of the few data sets where
the MCE obtained is still high (above 7%). Our cartogram in Figure 5 (right)
has an ACE of 2%, a MCE of 11.3%, and a BBSD of 0.376. In the cartogram
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Fig. 6. Percentage of non-Hispanic, white population (left) and number of businesses
without payed employees (right). In the left cartogram the correlation to land area is
negative, while in the right cartogram the coefficient of variation is high.

we see several causes for the comparably high MCE. In terms of the global
layout, the northwest requires so much space (relative to its actual size) that
little room is left for the remaining states. The northwest still has not enough
space, while the remaining states are depicted with fairly narrow rectangles.
More locally, the largest problems seem to be around Pennsylvania, which has
to accommodate 4 neighbors with very high population density (and 2 neighbors
with lower population density).

In the following we analyze the causes for high MCE further. In terms of
the global layout, population density bears several challenges: it is negatively
correlated to land area and has a large variation.

Typically cartograms for land area can be generated easily because regions
use nearly the same area as on a regular map. It seems natural that data which
is negatively correlated to land area is difficult to depict in a cartogram. In
our results, however, there does not seem to be a such a relation. Fig. 6 (left)
shows a typical cartogram for which land area and the variable depicted have a
high negative correlation. The variable is the percentage of non-Hispanic, white
population. The cartogram has 0% ACE and MCE, and a BBSD of 0.381.
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Generally, high variation in a variable
does not necessarily make a variable difficult
to depict in a rectangular cartogram. Land
area has high variation but can typically
be depicted well. Our experiments, however,
do indicate a relation between variation and
high cartographic error. The scatterplot on
the right shows the coefficient of variation (standard deviation divided by mean)
for the data sets from the US census plotted against the best MCE error achieved.
While the MCE does not seem to change for coefficients up to about 1, be-
yond that the maximum cartographic error increases considerably. The popula-
tion density has a coefficient of 1.3. Another data set with a high coefficient is
nonemployer businesses (typically self-employed individuals). The coefficient of
variation for this data set is 1.2. For this data set we did obtain a cartogram
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shown in Fig. 6 (right) with low cartographic error. Here the ACE is 0.7%, the
MCE 3.1% and the BBSD 0.371.
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Fig. 7. The US electoral college 2008.

Our final cartogram of the US is
a rectangular cartogram showing the
results of the US presidential elec-
tion of 2008. The area of each state
corresponds to the number of elec-
toral votes. States won by the Repub-
licans are depicted in red, while states
won by the Democrats are depicted
in blue. Note that Nebraska does not
have a winner-takes-all system, and
therefore is two-colored.

We next turn to the data sets for
Europe. To ensure that the dual graph of the map is an irreducible triangula-
tion we joined Luxembourg and Belgium, and Moldova and Ukraine. For most
data sets we obtained cartograms without cartographic error, see, for example,
the population cartogram on page 1. For 6 data sets, however, the MCE was
relatively high, namely between 8% and 50%. This is caused by either unpropor-
tionately high or unproportionately low values for the countries in the southeast.

For the maps with very low cartographic error, there is still variation in
terms of the layout. Fig. 8 shows two cartograms for European exports. The
cartogram on the left-hand side has no cartographic error and a BBSD of 0.088.
The cartogram on the right-hand side has ACE 0.2%, MCE 1.6% and a BBSD of
0.078. It seems that it easier to recognize Europe in the cartogram on the right.
Hence this cartogram might be preferable despite a small cartographic error.

Our final cartogram shows the world population in 2002. Fig. 9 compares the
rectangular cartogram generated by our method to a non-rectangular cartogram
from the Worldmapper collection. Our cartogram has ACE 1.17% and MCE
18.5%. Note that we also use a lower percentage of sea area. Overall, recogniz-
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Fig. 8. EU exports: no cartographic error (left) and low cartographic error (right).
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Table 2. Evolution strategy vs. simulated annealing approaches. The values are average
(avg), minimum (min) and maximum (max) of the average squared bounding box
separation distances of the world over 100 runs.

Algorithm avg min max

Simulated annealing 0.101 0.064 0.117
Bootstrapped simulated annealing 0.041 0.019 0.096
Evolution strategy 0.017 0.013 0.025

ability is high for this cartogram, with the most noticeable distortion being the
abnormal orientation of Russia. This is a change we noticed in all low-error world
population maps. It is unlikely that these orientations would have been consid-
ered for a hand-picked set of directions, which demonstrates the clear advantage
of searching the entire lattice.

We now compare our previous simulated annealing approach [2] to our new
evolution strategy. Both use a probabilistic walk over the lattice of regular edge
labelings (RELs) to find good solutions, using the fact that neighbouring label-
ings are likely to be similar in quality. The largest difference is that the evolu-
tion strategy starts many random walks simultaneously and concentrates on the
promising ones, while simulated annealing performs a single guided walk.

Results of a comparison are given in Table 2. The goal was to find a REL of
the world with a low average squared bounding box separation distance. Simu-
lated annealing was run for 10000 steps, while the evolution strategy was given
a population size of 50 with 200 generations, resulting in the same number of fit-
ness evaluations. The original simulated annealing was started at the minimum
labeling each time. We also include a bootstrapped version of the simulated
annealing approach in the comparison that starts at a random labeling. This
random labeling was chosen in the same way as labelings in the initial popula-
tion of the evolution strategy. The evolution strategy significantly outperforms
both simulated annealing versions. Not only is the best REL it finds better than
the best RELs found by the simulated annealing versions, its average quality is
even better than the best quality found by the others. This is caused mainly by
improved reliability, which can be seen from the far smaller range of qualities.
The evolution strategy has only a 0.012 difference between the best and worst
REL, compared to 0.053 and 0.077 for the simulated annealing versions.

4 Conclusion

We presented a new method based on evolution strategies for generating rect-
angular cartograms with correct adjacencies. The resulting cartograms—for a
large range of data sets for Europe, US, and the world—have (close to) zero
cartographic error and high visual quality. This is a considerable improvement
over previous methods. Nevertheless, several challenges remain. Data sets with
extremely high variability still prove difficult to realize as cartograms with cor-
rect adjacencies, low error, and reasonable aspect ratio. Generally speaking, we
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would like to be able to search in the lattice of RELs for cartograms with the
best visual properties. These require different trade-offs between adjacencies,
relative positions, aspect ratio and error for every data set and it is a challenge
to automatically adapt the fitness function to the requirements of each input.
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