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Abstract

We present a deterministic local routing scheme that is guar-

anteed to find a path between any pair of vertices in a half-

θ6-graph whose length is at most 5/
√

3 = 2.886... times the

Euclidean distance between the pair of vertices. The half-θ6-

graph is identical to the Delaunay triangulation where the

empty region is an equilateral triangle. Moreover, we show

that no local routing scheme can achieve a better competitive

spanning ratio thereby implying that our routing scheme is

optimal. This is somewhat surprising because the spanning

ratio of the half-θ6-graph is 2. Since every triangulation can

be embedded in the plane as a half-θ6-graph using O(logn)

bits per vertex coordinate via Schnyder’s embedding scheme

(SODA 1990), our result provides a competitive local routing

scheme for every such embedded triangulation.

1 Introduction

A fundamental problem in networking is the routing
of a message from one vertex to another in a graph.
What makes routing more challenging is that often in a
network the routing strategy must be local. Informally,
a routing strategy is local, when the routing algorithm
must decide which vertex to forward a message to
based solely on knowledge of the source and destination
vertex, the current vertex and all vertices directly
connected to the current vertex. Routing algorithms
are considered geometric when the underlying graph is
embedded in the plane. Edges are segments connecting
pairs of points and are weighted by the Euclidean
distance between their endpoints. Geometric routing
algorithms are important in wireless sensor networks
(see [13] and [15] for surveys of the area) since they
offer routing strategies that use the coordinates of the
vertices to help guide the search as opposed to using the
more traditional routing tables.

Papadimitriou and Ratajczak [14] posed a tantaliz-
ing question in this area that led to a flurry of activity:
Does every 3-connected planar graph have a straight-
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line embedding in the plane that admits a local routing
strategy such as greedy1 routing? They provided a par-
tial answer by showing that 3-connected planar graphs
can always be embedded in R3 such that they admit
a greedy routing strategy. They also showed that the
class of complete bipartite graphs, Kk,6k+1 for all k ≥ 1
cannot be embedded such that greedy routing always
succeeds since every embedding has at least one vertex
that is not connected to its nearest neighbor. Bose and
Morin [4] showed that greedy routing always succeeds
on Delaunay triangulations. In fact, a slightly restricted
greedy routing strategy known as greedy-compass is the
first local routing strategy shown to succeed on all tri-
angulations [3]. Dhandapani [6] proved the existence
of an embedding that admits greedy routing for every
triangulation and Angelini et al.[1] provided a construc-
tive proof. Leighton and Moitra [12] settled Papadim-
itriou and Ratajczak’s question by showing that every
3-connected planar graph can be embedded in the plane
such that greedy routing succeeds. One drawback of
these embedding algorithms is that the coordinates re-
quire Ω(n log n) bits per vertex. To address this, He and
Zhang [9] and Goodrich and Strash [8] gave succinct em-
beddings using only O(log n) bits per vertex. Recently,
He and Zhang [10] showed that every 3-connected plane
graph admits a succinct convex embedding2 on which
a slightly modified greedy routing strategy always suc-
ceeds.

In light of these recent successes, it is surprising
to note that the above routing strategies have solely
concentrated on finding an embedding that guarantees
a local routing strategy will succeed. No attention is
paid to the quality of the resulting path relative to the
shortest path. None of the above routing strategies
have been shown to be competitive3. Bose and Morin

1A routing strategy is greedy when a message is always
forwarded to the vertex whose distance to the destination is the

smallest among all vertices in the neighborhood of the current
vertex including the current vertex.

2An embedding of a planar graph is convex when every face is

convex.
3A routing strategy is competitive if the path found by the

routing strategy is not more than a constant (the competitive
spanning ratio) times the shortest path. The competitive span-

ning ratio of a graph is defined as the minimum competitive span-
ning ratio over all routing strategies.



[4] show that many local routing strategies are not
competitive but show how to route competitively on
the Delaunay triangulation. However, Dillencourt [7]
showed that not all triangulations can be embedded
in the plane as Delaunay triangulations. This raises
the following question: can every triangulation be
embedded in the plane such that it admits a competitive
local routing strategy? We answer this question in the
affirmative.

The half-θ6-graph was introduced by Bonichon et
al. [2] who showed that it is identical to the Delaunay
triangulation where the empty region is an equilateral
triangle. Our main result is a deterministic local rout-
ing scheme that is guaranteed to find a path between
any pair of vertices in a half-θ6-graph whose length is
at most 5/

√
3 = 2.886... times the Euclidean distance

between the pair of vertices. On the way to proving our
main result, we uncover some local properties of span-
ning paths in the half-θ6-graph. Since Schnyder [16]
showed that every triangulation can be embedded in
the plane as a half-θ6-graph using O(log n) bits per ver-
tex coordinate, our main result implies that a compet-
itive local routing scheme exists for every triangulation
embedded as such. Moreover, we show that no local
routing scheme can achieve a better competitive span-
ning ratio on half-θ6-graphs, implying that our routing
scheme is optimal. This is somewhat surprising because
Chew [5] showed that the spanning ratio of the half-
θ6-graph is at most 2. Thus, our lower bound provides
a separation between the spanning ratio of the half-θ6-
graph and the competitive spanning ratio of any local
routing scheme on the half-θ6-graph. Finally, we con-
clude by highlighting some similarities and differences
between the half-θ6-graph and the full-θ6-graph [11].

2 Preliminaries

In a weighted graph G, let the distance dG(u, v) between
two vertices u and v be the length of the shortest
path between u and v in G. A subgraph H of G is
a t-spanner of G if for all pairs of vertices u and v,
dH(u, v) ≤ t · dG(u, v), t ≥ 1. Its spanning ratio is the
smallest t for which it is a t-spanner. The graph G is
referred to as the underlying graph.

We consider the situation where the underlying
graph G is a straightline embedding of the complete
graph on a set of n points in the plane denoted by Kn,
with the weight of an edge (u, v) being the Euclidean
distance |uv| between u and v. A spanner of such a
graph is called a geometric spanner. In this paper,
we show how to route competitively on the geometric
spanner called the half-θ6-graph [2]. To define this
graph, we need the following terminology.

Let a cone C be the region in the plane between two

rays originating from the same point (referred to as the
apex of the cone). For each vertex u of Kn consider the
six rays originating from u with angles to the positive
x-axis being multiples of π/3. Each pair of consecutive
rays defines a cone. Let C1, C0, C2, C1, C0, C2 be the
sequence of cones in counterclockwise order starting
from the positive x-axis, as depicted in Figure 1, and
call C0, C1, and C2 positive cones, and C0, C1, and
C2 negative cones. The names are chosen such that
using modulo 3 arithmetic on the indices, a positive cone
Ci has the negative cone Ci+1 (Ci−1) as its clockwise
(counterclockwise) neighbor. An analogous statement
holds for a negative cone Ci. When the apex is not
clear from the context, we use Cu

i to denote cone Ci

with apex u.

C0

C1C2

C1

C0

C2

u

Figure 1: The cones having apex u.

The half-θ6-graph [2] is constructed as follows: for
each of the three positive cones of each vertex u, add an
edge from u to the closest vertex in that cone, where
distance is measured along the bisector of the cone.
More formally, we add an edge between two vertices
u and v if v ∈ Cu

i and for all points w ∈ Cu
i (v 6= w),

|uv′| ≤ |uw′|, where v′ and w′ denote the orthogonal
projection of v and w, respectively, on the bisector of
Cu

i .
For ease of exposition, we only consider point sets

in general position: no two points lie on a line parallel
to one of the rays that define the cones. This implies
that each vertex adds at most one edge per positive cone
to the graph, and hence there are at most 3n edges in
total.

Given a vertex w in a positive cone Cu
i of vertex

u, we define the canonical equilateral triangle Tuw to be
the triangle defined by the borders of Cu

i and the line
through w perpendicular to the bisector of Cu

i . Figure 2
gives an example with w ∈ Cu

0 . Note that for any pair
of vertices u and w, either w lies in a positive cone of
u, or u lies in a positive cone of w, so there is exactly
one canonical equilateral triangle (either Tuw or Twu)
for the pair.
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Figure 2: The canonical equilateral triangle Tuw of u
and w, its bisector um, and the angle α between uw
and the bisector.

3 Spanning Ratio of the Half-θ6-Graph

Bonichon et al. [2] showed that the half-θ6-graph is
equivalent to the Delaunay triangulation based on
empty equilateral triangles, which is known to have
spanning ratio 2 [5]. In this section, we provide an alter-
native proof of the spanning ratio of the half-θ6-graph.
Our proof shows that between any pair of points u,w,
there always exists a path with spanning ratio 2 that
lies in the canonical triangle. This is a key property
used by our routing algorithm.

For a pair of vertices u and w, our bound is
expressed in terms of the angle α between the line from
u to w and the bisector of their canonical equilateral
triangle. See Figure 2.

Theorem 3.1. Let u and w be vertices with w in a
positive cone of u. Let m be the midpoint of the side of
Tuw opposing u, and let α be the unsigned angle between
the lines uw and um. There exists a path in the half-
θ6-graph of length at most

(
√

3 · cosα+ sinα) · |uw|

where all vertices on this path lie in Tuw.

The expression
√

3 · cosα + sinα is increasing for α ∈
[0, π/6]. Inserting the extreme value π/6 for α, we arrive
at the following.

Corollary 3.1. The spanning ratio of the half-θ6-
graph is 2.

We note that the bounds of Theorem 3.1 and Corol-
lary 3.1 are tight: for all values of α ∈ [0, π/6] there
exists a point set for which the shortest path in the half-
θ6-graph for some pair of vertices u and w has length
arbitrarily close to (

√
3 · cosα + sinα) · |uw|. A simple

example appears later in the proof of Theorem 4.1.

Proof of Theorem 3.1. Given two vertices u and w, we

assume w.l.o.g. that w lies in Cu
0 . We prove the theorem

by induction on the area of Tuw (formally, induction on
the rank, when ordered by area, of the triangles Txy for
all pairs of points x and y). Let a and b be the upper
left and right corner of Tuw, and let A = Tuw ∩Cw

1 and
B = Tuw ∩ Cw

2 (see Figure 3).

u

a bw

A
B

Figure 3: The corners a and b, and the areas A and B.

Our inductive hypothesis is the following, where
δ(u,w) denotes the length of the shortest path from u
to w in the half-θ6-graph with all vertices lying in Tuw:

• If A is empty, then δ(u,w) ≤ |ub|+ |bw|.

• If B is empty, then δ(u,w) ≤ |ua|+ |aw|.

• If neither A nor B is empty, then
δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

We first note that this induction hypothesis implies
Theorem 3.1: using the side of Tuw as the unit of
length, we have |wm| = |uw| · sinα and

√
3/2 =

|um| = |uw| · cosα (see Figure 2), hence the induction
hypothesis gives that δ(u,w) is at most 1+1/2+|wm| =√

3 · (
√

3/2) + |wm| = (
√

3 · cosα+ sinα) · |uw|.
Base case: Tuw has rank 1. Since the triangle

is a smallest triangle, w is the closest vertex to u in
a positive cone of u. Hence the edge (u,w) is in the
half-θ6-graph, and δ(u,w) = |uw|. From the triangle
inequality, we have |uw| ≤ min{|ua|+ |aw|, |ub|+ |bw|},
so the induction hypothesis holds.

Induction step: We assume that the induction
hypothesis holds for all pairs of points with canonical
triangles of rank up to k. Let Tuw be a canonical triangle
of rank k + 1.

If (u,w) is an edge in the half-θ6-graph, the in-
duction hypothesis follows by the same argument as
in the base case. If there is no edge between u and
w, let v be the vertex closest to u in the positive cone
Cu

0 , and let a′ and b′ be the upper left and right cor-
ner of Tuv, respectively. See Figure 5. By definition,
δ(u,w) ≤ |uv|+ δ(v, w), and by the triangle inequality,
|uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.
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Figure 4: Visualization of the path inequalities. Thick, dark gray lines signify paths occurring in the inequalities,
and light gray areas indicate emptiness.
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Figure 5: The two cases: (a) v lies in neither A nor B,
(b) v lies in A.

We perform a case analysis based on the location
of v: (a) v lies neither in A nor in B, (b) v lies inside
A, and (c) v lies inside B. Case (c) is analogous to
Case (b), so we only discuss the first two cases.

Case (a): Let c and d be the upper left and right
corner of Tvw, respectively, and let C = Tvw ∩ Cw

1 and
D = Tvw ∩ Cw

2 . See Figure 5. Since Tvw has smaller
area than Tuw, we apply the inductive hypothesis on
Tvw. Our task is to prove all three statements of the
inductive hypothesis for Tuw.

1. If A is empty, then C is also empty, so by induction
δ(v, w) ≤ |vd| + |dw|. Since v, d, b, and b′ form a
parallelogram, we have:

δ(u,w) ≤ |uv|+ δ(v, w)(3.1)

≤ |ub′|+ |b′v|+ |vd|+ |dw|(3.2)

= |ub|+ |bw|,(3.3)

which proves the first statement of the induction
hypothesis. This argument is illustrated in Fig-
ure 4, left, where thick, dark grey lines signify paths
occurring in the inequalities above, and light gray
areas indicate emptiness.

2. If B is empty, an analogous argument proves the
second statement of the induction hypothesis.

3. If neither A nor B is empty, by induction we have
δ(v, w) ≤ max{|vc| + |cw|, |vd| + |dw|}. Assume,
without loss of generality, that the maximum of the
right hand side is attained by its second argument
|vd| + |dw| (the other case is analogous). Since
vertices v, d, b, and b′ form a parallelogram, we
have that:

δ(u,w) ≤ |uv|+ δ(v, w)(3.4)

≤ |ub′|+ |b′v|+ |vd|+ |dw|(3.5)

≤ |ub|+ |bw|(3.6)

≤ max{|ua|+ |aw|, |ub|+ |bw|},(3.7)

which proves the third statement of the induction
hypothesis. This argument is illustrated in Fig-
ure 4, middle.

Case (b): Let E = Tuv ∩ Twv, and let a′′ be
the upper left corner of Twv. See Figure 5. Since v
is the closest vertex to u in the positive cone Cu

0 , Tuv
is empty. Hence, E is empty. Since Twv is smaller than
Tuw, we can apply induction on it. As E is empty, the
first statement of the induction hypothesis for Twv gives
δ(v, w) ≤ |va′′| + |a′′w|. Since |uv| ≤ |ua′| + |a′v| and
v, a′′, a, and a′ form a parallelogram, we have that
δ(u,w) ≤ |ua| + |aw|, proving the second and third
statement in the induction hypothesis for Tuw. This
argument is illustrated in Figure 4, right. Since v lies
in A, the first statement in the induction hypothesis for
Tuw is vacuously true. �

4 Routing in the Half-θ6-Graph

In this section, we give matching upper and lower
bounds for the competitive routing ratio on the half-θ6-
graph. We begin by defining our model. A deterministic
k-local routing scheme defined on a graph G is a
function f(u, t,Nk(u)) specifying the vertex the message
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Figure 6: Lower bound instances.

should be forwarded to given that u is the current
vertex, t is the target or destination vertex, and Nk(u)
is the k-neighborhood of u. The k-neighborhood of a
vertex u is the set of vertices in the graph that can be
reached from u by following at most k edges. When
k = 1, we drop the value and refer to the scheme as
a local routing scheme. We note that in the literature,
many variants of this model have been studied where
the routing scheme knows which node sent the message
to u or the scheme has some memory. However, we
study one of the weakest models and show that it is
still possible to route competitively. Our upper bounds
hold for k = 1 and our lower bounds hold for any fixed
k. Since our graphs are geometric, the identifier for a
vertex is its coordinates in the plane. The competitive
routing ratio of a routing scheme is defined analogously
to the spanning ratio as the smallest t ≥ 1 for which
no route computed by the routing scheme between any
pair of vertices is longer than t times the Euclidean
distance between that pair. Our bounds are expressed in
terms of the angle α between the line from the source to
the destination point and the bisector of their canonical
equilateral triangle. See Figure 2.

Theorem 4.1. Let u and w be vertices with w in a
positive cone of u. Let m be the midpoint of the side of
Tuw opposing u, and let α be the unsigned angle between
the lines uw and um. There is a local routing scheme
on the half-θ6-graph for which every path followed has
length at most

i) (
√

3 · cosα+ sinα) · |uw| when routing from u to w,

ii) (5/
√

3·cosα−sinα)·|uw| when routing from w to u,

and this is best possible for deterministic k-local routing
schemes.

The first expression is increasing for α ∈ [0, π/6],
while the second expression is decreasing. Inserting the
extreme values π/6 and 0 for α, we get the following
worst case version of Theorem 4.1.

Corollary 4.1. Let u and w be two vertices with w in
a positive cone of u. There is a local routing scheme on
the half-θ6-graph with routing ratio

i) 2 when routing from u to w,

ii) 5/
√

3 = 2.886 . . . when routing from w to u,

and this is best possible for deterministic k-local routing
schemes.

Since the spanning ratio of the half-θ6-graph is 2, the
second lower bound shows a separation between the
spanning ratio and the competitive routing ratio in the
half-θ6-graph.

Since every triangulation can be embedded in the
plane as a half-θ6-graph using O(log n) bits per vertex
via Schnyder’s embedding scheme [16], an important
implication of Theorem 4.1 is the following.

Corollary 4.2. Every n-vertex triangulation can be
embedded in the plane using O(log n) bits per coordinate
such that the embedded triangulation admits a determin-
istic local routing scheme with competitive routing ratio
at most 5/

√
3.

In the remainder of this section, we prove Theo-
rem 4.1. We first prove the lower bounds, then describe
the routing scheme, and finally prove the stated upper
bounds.

Lower bound. Let the side of Tuw be the unit
of length. From Figure 2 we have |wm| = |uw| · sinα
and

√
3/2 = |um| = |uw| · cosα. From Instance 1

in Figure 6, the spanning ratio of the half-θ6-graph
is at least 1 + 1/2 + |wm| =

√
3 · (
√

3/2) + |wm| =
(
√

3 · cosα + sinα) · |uw| (since the point in the upper
left corner of Tuw can be moved arbitrarily close to the
corner). This is a lower bound for any routing scheme,
and proves our statement on routing from u to w.

For routing from w to u, consider instances 2a
and 2b in Figure 6. Any deterministic 1-local routing
scheme only has information about direct neighbors,



hence cannot distinguish between the two instances
when routing out of w. So a deterministic algorithm
must route to the same neighbor of w in both instances,
and either choice of neighbor leads to a non-optimal
route in one of the two instances. The smallest loss
occurs when the choice is towards the closest corner
of Tuw (making instance 2a the hard instance), which
gives a lower bound of (1/2 − |wm|) + 1 + 1 = 5/2 −
|wm| = (5/

√
3 · cosα− sinα) · |uw| (since the points in

the corners of Tuw can be moved arbitrarily close to the
corners while keeping their relative positions). In fact,
this is precisely where the separation occurs between the
spanning ratio of 2 and the competitive routing ratio.
Note that by extending instances 2a and 2b of Figure 6
to have Ω(k) points close to the corners such that u is
not in the k-neighborhood of w, the lower bound holds
for any deterministic k-local routing scheme.

Routing scheme. We let s denote the current
vertex, and t the fixed destination. The routing scheme
needs to determine which edge (s, v) to follow next.
We say we are currently routing positively (negatively)
when t is in a positive (negative) cone of s. For
ease of description, we assume w.l.o.g. that t is in
cone C0 of s when routing positively, and in cone C0

of s when routing negatively. When routing positively,
Tst intersects only C0 among the cones of s. When
routing negatively, Tts intersects C0 as well as the two
positive cones C1 and C2 of s. We let X0 = C0 ∩ Tts,
X1 = C1∩Tts, and X2 = C2∩Tts. We let a be the corner
of Tts contained in X1 and b the corner of Tts contained
in X2. These definitions are illustrated in Figure 7.

t

s

C0

Routing positively

t

sa b

C1

C0

C2

X1

X0

X2

Routing negatively

Figure 7: Routing terminology.

The routing scheme will only follow edges (s, v)
where v lies in the canonical equilateral triangle of
s and t. Routing positively is straightforward since
there is exactly one edge (s, v) with v ∈ Tst, by the
construction of the half-θ6-graph. The challenge is to
route negatively. When routing negatively, at least
one edge (s, v) with v ∈ Tts exists, since s and t are
connected by a path in Tts, according to Theorem 3.1.
The core of our routing scheme is how to choose which

edge to follow when there are more than one. Intuitively,
when routing negatively, our scheme tries to select
an edge that makes measurable progress towards the
destination. When no such edge exists, we are forced to
take an edge that does not make measurable progress,
however we are able to then deduce that certain regions
within the canonical triangle are empty. This allows us
to prove that we take such an edge at most once. In
essence, we prove that we can go in the wrong direction
only once. This can be seen in the instances 2a and 2b
in Figure 6 where an adversary forces a routing scheme
to go in the wrong direction once. We provide a formal
description of our routing scheme below.

Our routing algorithm can be in one of four states.
We call the situation when routing positively state A,
and divide the situation when routing negatively into
three states B, C, and D, as follows: By construction
of the half-θ6-graph, there is at most one edge (s, v)
with v ∈ X1 and the same applies to X2 since they are
both positive cones of s. Let state B be the case where
both X1 and X2 contain an edge, state C the case where
exactly one contains an edge, and state D the case where
both are empty. At the start of a routing step, we are
in exactly one of the states A, B, C, or D. Routing in
state A is straightforward. We now describe routing in
states B, C, and D.

In state B, the routing scheme first tries to follow
an edge (s, v) with v ∈ X0. If several such edges exist,
an arbitrary one of these is followed. If no such edge
exists, the routing scheme follows an edge in X1 or X2:
if |as| ≤ |sb|, it follows the single edge (s, v) with v ∈ X1;
if |as| > |sb|, it follows the single edge (s, v) with v ∈ X2.
In short, the routing scheme favors moving towards the
closest corner of Tts when it is not able to move directly
towards t. Note that this choice is made specifically to
ensure we can bound the total distance travelled when
faced with instances similar to 2a and 2b in Figure 6.

In states C and D, the routing scheme first tries
to follow an edge (s, v) with v ∈ X0. If several such
edges exist, it chooses a specific one based on what we
call the projected length on a neighboring cone. Let ~e1
(~e2) be a unit vector in the direction of the ray from s
constituting the border of C0 and C1 (C2). Since ~e1 and
~e2 are linearly independent, the vector ~sv can be written
uniquely as l1 ·~e1+l2 ·~e2. We define the projected length
of the edge (s, v) on the neighboring cone C1 (C2) to be
l1 (l2). Figure 9 illustrates the projected length on C1.

In state C, exactly one of X1 or X2 is empty. If
there exist edges (s, v) with v ∈ X0, the routing scheme
will follow one of these, choosing among them in the
following way: If X1 is empty, it chooses the edge with
largest projected length on C1. Else X2 is empty, and
it chooses the edge with largest projected length on C2.
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Figure 9: Projected length on C1.

In short, the routing scheme favors staying close to the
empty side of Tts. If no edges (s, v) with v ∈ X0 exist,
the routing scheme follows the single edge (s, v) with v
in X1 ∪X2.

In state D, both X1 and X2 are empty, so there
must exist edges (s, v) with v ∈ X0, as s and t are
connected by a path in Tts. If |as| ≥ |sb|, the routing
scheme follows the edge with largest projected length
on C1; if |as| < |sb|, it follows the edge with largest
projected length on C2. In short, when both sides of Tts
are empty, the routing scheme favors staying close to the
largest empty side of Tts.

Upper bound. The proof of the upper bound uses
a potential function φ, defined as follows for each of the
states A, B, C, and D, where a and b are the corners of
Tst (Tts) different from s (t), and x ∈ {a, b} in state C
is the corner contained in the non-empty one of the two
areas X1 and X2.

State A: φ = |sa|+ max(|at|, |tb|)
State B: φ = |ta|+ |ab|+ min(|as|, |sb|)
State C: φ = |ta|+ |sx|
State D: φ = |ta|+ min(|as|, |sb|)

This definition is illustrated in Figure 8, where
barlines designate potential and gray areas are empty.
We will refer to the first term of φ (i.e., |sa| in state A,
|ta| in states B, C, and D) as the vertical part of φ and
to the rest as the horizontal part.

Our aim is to prove that for any routing step,
the reduction in φ is at least as large as the length
of the edge followed. Since φ is always non-negative,
this will imply that no path followed can be longer
than the initial value of φ. As all edges have strictly
positive length, the routing scheme must terminate.
Furthermore, the initial values of φ in state A and
state B are exactly the path lengths appearing in the
calculations leading to the lower bound of instances 1
and 2a/2b, respectively, so the same bounds apply, but
now as upper bounds. The initial values of φ in states C
and D are smaller than the initial value in state B, and
hence can only lead to better routing bounds. This gives
the upper bounds stated in Theorem 4.1.

What remains is to prove the statement that for any
routing step, the reduction in φ is at least as large as the
length of the edge followed. We do this by case analysis
of the possible routing steps. One simple observation
that is repeatedly used in our analysis is summarized in
the fact below.

Fact 4.1. In an equilateral triangle, the side length is
the diameter, i.e. the longest distance defined by any two
points in the triangle.

State A. For a routing step starting in state A, v
is either in a negative or a positive cone of t. The first
situation leads to state A again. The second leads to
state C or D, since the area of Tst between s and v must
be empty by construction of the half-θ6-graph. These
situations are illustrated in Figure 10.

For the case ending in state A, the reduction of the
vertical part of φ is at least as large as |sv| by Fact 4.1.
The horizontal part of φ can only decrease during the
step. Hence the statement holds for this case. The
same type of analysis proves the statement for the case
ending in state C. For the case ending in state D, the
final value of φ can only be smaller than for the case
ending in state C, so again the statement holds.

State B. A routing step starting in state B cannot
lead to state A, as the step stays within Tts, but it may
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lead to states B, C, and D. There are two subcases,
depending on whether edges (s, v) with v ∈ X0 exist or
not. These subcases are illustrated in Figure 11 for the
situations leading to state B.

In the first subcase, the reduction of the vertical
part of φ is at least as large as |sv|, by Fact 4.1. The
horizontal part of φ can only decrease. In the second
subcase, the reduction of the horizontal part of φ is at
least as large as |sv|, by Fact 4.1. The vertical part of φ
can only decrease. In both subcases, the statement is
proven.

If the step instead leads to state C or D (not
illustrated), the value of φ after the step can only be
smaller than above, so the statement also holds there.

State C. A routing step starting in state C cannot
lead to state A, as the step stays within Tts. We first
prove that it cannot lead to state B, either. There are
two subcases, depending on whether edges (s, v) with

v ∈ X0 exist or not. For the subcase where edges (s, v)
with v ∈ X0 do exist, the situation at the start of the
step is illustrated left of the arrow in the left half of
Figure 12. By the construction of the half-θ6-graph, the
existence of the edge (s, v) implies that the horizontally
hatched area must be empty. From this it follows that
the vertically hatched area must also be empty: if not,
the topmost point in it would have an edge to s, while
having larger projected length on the neighboring cone,
contradicting the choice of v in the routing algorithm.

For the subcase where edges (s, v) with v ∈ X0

do not exist, the situation at the start of the step
is illustrated left of the arrow in the right half of
Figure 12. The horizontally hatched area must be
empty by construction of the half-θ6-graph. From this
it follows that the vertically hatched area must also be
empty: if not, the topmost point in it would have an
edge to s, contradicting that edges (s, v) with v ∈ X0
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do not exist.
Thus, in both subcases the routing step can only

lead to state C or D. The situations when ending up in
state C are illustrated right of the arrows of Figure 12.
In the left half of Figure 12, the reduction of the vertical
part of φ is at least as large as |sv| (by Fact 4.1) and the
horizontal part can only decrease. In the right half of
Figure 12, the reduction of the horizontal part of φ is at
least as large as |sv| (by Fact 4.1) and the vertical part
can only decrease. In both situations, the statement
is proven. If the step instead leads to state D (not
illustrated), the value of φ after the step can only be
smaller than when leading to state C, so the statement
also holds there.

State D. A routing step starting in state D (not
illustrated) has exactly the same analysis as the first
subcase of a routing step starting in state C.

Thus, the statement is proven in all cases, which
completes the proof of Theorem 4.1.

5 Concluding Remarks

The full-θ6-graph, introduced by Keil and Gutwin [11],
is similar to the half-θ6-graph except that all 6 cones
are positive cones. Thus, the full-θ6-graph is the union
of two copies of the half-θ6-graph, where one half-θ6-
graph is rotated by π/3 radians. The half-θ6-graph and
the full-θ6-graph both have a spanning ratio of 2, with
simple lower bound examples showing that it is tight
for both graphs. This is surprising since the full-θ6-
graph can have double the number of edges of the half-
θ6-graph. Our results show that although the spanning
ratios are the same, the competitive routing ratios differ.
Since the full-θ6-graph has no negative cones, it has a
competitive routing ratio of 2, which is equal to the
spanning ratio and therefore is optimal.

Note that since the full-θ6-graph consists of two
rotated copies of the half-θ6-graph, one question that
comes to mind is what is the best spanning ratio if
one is to construct a graph as two rotated copies of
the half-θ6-graph? Can one do better than a spanning

ratio of 2? Consider the following construction. Build
two half-θ6-graphs as described in Section 2, but rotate
each cone of the second graph by π/6 radians. By
Theorem 3.1, the spanning ratio for each of these graphs
is
√

3 cosα + sinα, where α is the angle between the
line connecting the vertices in question and the closest
bisector. Since this function is increasing, the spanning
ratio is defined by the maximum possible angle to the
closest bisector, which in this construction is only π/12
radians, giving a spanning ratio of roughly 1.932.

By using more copies, we improve the spanning
ratio even further: if each is rotated by π/(3k) radians,
we get a spanning ratio of

√
3 cosπ/(6k) + sinπ/(6k).

This is better than the known upper bounds for the full
θ3k-graph [11] for k ≤ 4 and better than the Yao3k-
graph [17] for k ≤ 5.
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