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Abstract. A regular edge labeling (REL) of an irreducible triangula-
tion G uniquely defines a rectangular dual of G. Rectangular duals find
applications in various areas: as floor plans of electronic chips, in architec-
tural designs, as rectangular cartograms, or as treemaps. An irreducible
triangulation can have many RELs and hence many rectangular duals.
Depending on the specific application different duals might be desirable.
In this paper we consider optimization problems on RELs and show how
to find optimal or near-optimal RELs for various quality criteria. Along
the way we give upper and lower bounds on the number of RELs.

1 Introduction

A rectangular partition of a rectangle R is a partition of R into a set R of non-
overlapping rectangles such that no four rectangles in R meet at one common
point. A rectangular dual of a plane graph G is a rectangular partition R, such
that (i) there is a one-to-one correspondence between the rectangles in R and
the nodes in G; (ii) two rectangles in R share a common boundary if and only if
the corresponding nodes in G are connected. Rectangular duals find applications
in various areas: as floor plans of electronic chips or in architectural designs, as
rectangular cartograms, or as treemaps.

Not every plane graph has a rectangular dual. A plane graph G has a rect-
angular dual R with four rectangles on the boundary of R if G is an irreducible
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Fig. 1. A subdivision and its augmented dual graph G, a regular edge labeling of G,
and a corresponding rectangular dual.
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triangulation: (i) G is triangulated and the exterior face is a quadrangle; (ii) G
has no separating triangles (a 3-cycle with vertices both inside and outside the
cycle) [6, 19]. A plane triangulated graph G has a rectangular dual if and only
if we can augment G with four external vertices such that the augmented graph
is an irreducible triangulation.

The equivalence classes of the rectangular duals of an irreducible triangula-
tion G correspond one-to-one to the regular edge labelings (RELs) of G. An REL
of an irreducible triangulation G is a partition of the interior edges of G into two
subsets of red and blue directed edges such that: (i) around each inner vertex in
clockwise order we have four contiguous sets of incoming blue edges, outgoing
red edges, outgoing blue edges, and incoming red edges; (ii) the left exterior ver-
tex has only blue outgoing edges, the top exterior vertex has only red incoming
edges, the right exterior vertex has only blue incoming edges, and the bottom
exterior vertex has only red outgoing edges (see Fig. 1, red edges are dashed).
Kant and He [17] show how to find a regular edge labeling and construct the
corresponding rectangular dual in linear time. Regular edge labelings are also
studied by Fusy [15] who calls them transversal pairs of bipolar orientations.

An irreducible triangulation can have many RELs and hence many rectangu-
lar duals. Depending on the specific application different duals might be desir-
able. For example, sliceable duals—which can be obtained by recursively slicing
a rectangle by horizontal and vertical lines—are popular in VLSI design. Not ev-
ery irreducible triangulation has a sliceable dual. A full characterization of those
graphs that do is lacking, but Yeap and Sarrafzadeh [24] prove that irreducible
triangulations without separating 4-cycles have a sliceable dual. Area-universal
duals have the nice property that any assignment of areas to rectangles can be
realized by a combinatorially equivalent rectangular dual. Again, not every irre-
ducible triangulation has an area-universal dual, but Eppstein et al. [12] show
how to find such a dual if it exists.

We are particularly interested in the application of rectangular duals to rect-
angular cartograms. A rectangular cartogram is a thematic map where every
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Fig. 2. Two different rectangular duals of the dual graph of a map of Europe. Luxem-
bourg and Moldavia have been removed and “sea regions” have been added to ensure
that the dual graph is an irreducible triangulation.
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region is depicted as a rectangle. The area of the rectangles corresponds to a
geographic variable, such as population or GDP. In the context of rectangular
cartograms it is desirable that the direction of adjacency between the rectangles
of the dual follows the spatial relation of the regions of the underlying map as
closely as possible. Consider the two rectangular duals of the dual graph of a map
of Europe shown in Fig. 2. The left dual will lead to a recognizable cartogram,
whereas the right dual (with France east of Germany and Hungary north of
Austria) is useless as basis for a cartogram. Both rectangular duals stem from
the same graph G and correspond to two different valid RELs of G.

Previous work on finding RELs that lead to cartograms with geographically
suitable adjacency directions has focused on finding RELs that satisfy user-
specified constraints on a subset of the edges of the input graph. Eppstein and
Mumford [11] show how to find RELs that satisfy user-specified orientation con-
straints, if such labelings exist for the given set of constraints. Van Kreveld and
Speckmann [23] search through a user-specified subset of the RELs. Every label-
ing in this subset is considered acceptable with respect to adjacency directions.
In contrast, we consider quality measures that take all edges of G into account
and do not concentrate on a fixed, user-specified subset.

Results and organization. In this paper we consider optimization problems
on RELs and show how to find optimal or near-optimal RELs for various quality
criteria. Along the way we give upper and lower bounds on the number of RELs.

Let G be an irreducible triangulation with n vertices. Fusy [15] proves that
the RELs of G form a distributive lattice. Hence, as we show in Section 2, one
can use reverse search to enumerate all RELs of G and so find optimal RELs for
any given quality measure. G can have exponentially many RELs; simple upper
and lower bounds are 8n and 2n−O(

√
n). Since the running time and hence the

feasibility of our enumeration algorithm depends on the number of RELs, we next
give much tighter bounds. In Section 3 we show that G has less than O(4.6807n)
RELs and that there are irreducible triangulations with Ω(3.0426n) RELs. Our
upper bound relies on Shearer’s entropy lemma [10]. Björklund et al. [7] recently
used this lemma to obtain (2− ε)n algorithms for the TSP problem. In contrast
to our application of the lemma, they count vertex sets with certain properties
and crucially rely on bounded maximum degree.

In Section 4 we show how to find optimal or near-optimal RELs for rectan-
gular cartogram construction. This step of the construction pipeline has been
performed essentially manually in previous work and can now finally be fully
automated. We consider two quality criteria: (i) the relative position of the rect-
angles and (ii) the cartographic error of the resulting cartogram. For smaller
maps (the provinces of the Netherlands) enumeration of all RELs is feasible and
we hence can find optimal solutions. For larger maps (the countries of Europe
or the contiguous states of the US) enumeration is infeasible. Fortunately the
diameter of the distributive lattice of RELs is comparatively small and hence
simulated annealing performs well. We present extensive experimental results
that show that our method can find RELs which result in visually pleasing and
recognizable cartograms with small cartographic error.
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2 Useful facts and reverse search

In this section we first collect some useful facts and definitions from previous
work and then show how to use reverse search to enumerate RELs.

left alternating

right alternating

Regular Edge Labelings. Fusy [15] gives the following facts. A
regular edge coloring is an REL, with the directions of the edges
omitted. A regular edge coloring uniquely determines an REL. An
alternating 4-cycle is an undirected 4-cycle in which the colors of
the edges alternate between red and blue. There are two kinds of
alternating 4-cycles, depending on the color of the interior edges
incident to the cycle. If these are the same color as the next clock-
wise cycle edge the cycle is right alternating, otherwise it is left
alternating. The set of RELs of a fixed irreducible triangulation
form a distributive lattice. The flip operation consists of switching
the edge colors inside a right alternating 4-cycle, turning it into a left alternating
4-cycle. An REL with no right alternating 4-cycle is called minimal, it is at the
bottom of the distributive lattice. An REL induces no monochromatic triangles.
Perron-Frobenius theory. We need the following matrix theory for our lower
bound in Section 3.2. For details refer to textbooks on matrices [16, 20]. We
assume from now on thatA is a nonnegative n×nmatrix. A matrix is nonnegative
if all its elements are nonnegative. The matrix A is irreducible if for each (i, j)
there is a k > 0 such that (Ak)ij > 0. Consider the directed graph with adjacency
matrix A, where we interpret every non-zero element as an adjacency. The matrix
A is irreducible if and only if the associated graph is strongly connected. The
matrix A is primitive if there is a k > 0 such that all elements of Ak are positive.
An irreducible matrix with a positive diagonal entry is primitive.

Theorem 1 ([16, 20]). Let A be a primitive non-negative matrix with maximal
eigenvalue λ.

(a) λ is positive and the unique eigenvalue of largest absolute value. λ has a
positive eigenvector and is the only eigenvalue with nonnegative eigenvector.

(b) Let fA(x) = minxi 6=0
(Ax)i

xi
and gA(x) = maxxi 6=0

(Ax)i

xi
. Then fA(x) ≤ λ for

all nonnegative non-zero vectors x, and gA(x) ≥ λ for all positive vectors x.
If fA(x0) = λ then x0 is an eigenvector of A corresponding to λ.

(c) Let x be a nonnegative non-zero vector. Then Atx/‖Atx‖ converges to an ei-
genvector with eigenvalue λ. Thus, limt→∞ fA(Atx) = limt→∞ gA(Atx) = λ.

Reverse search, proposed by Avis and Fukuda [5], is a general method for
enumerating structures that match two criteria: (i) there must be a concept of
“neighboring” structures such that the structures form a graph; (ii) there must
be a local search operation that moves through this graph in a deterministic way
and ends up at a local optimum. The local search defines a forest on the graph, of
which each tree is rooted at a local optimum. If the local optima are known and
we have a way of enumerating all neighbors of a structure, then we can traverse
these trees by starting at a local optimum and testing for each neighbor if the
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local search ends up at our current structure when applied to that neighbor. If
it does, we traverse the edge and recurse.

RELs fit the criteria for reverse search: the distributive lattice is the underly-
ing graph structure and the flip operation is the local search that ends up at the
minimal labeling. We need to ensure only that the local search is deterministic.
We do so by imposing an ordering on the 4-cycles of the input graph. Then, if an
REL has multiple right alternating 4-cycles, we choose the first one according to
this ordering. One possible ordering is to sort the vertices lexicographically by
their x- and y-coordinates, use this ordering to sort the edges lexicographically
by their lower and higher endpoint, and finally use this order on the edges to
sort the cycles lexicographically by their lowest edge and the non-adjacent edge.

Avis and Fukuda give an implementation of their algorithm if the graph is
given by an adjacency oracle. For this we need an upper bound δ on the number
of neighbors a labeling can have: δ is the number of 4-cycles in the input graph.
The oracle returns the k-th neighbor of a labeling, or ⊥ if that neighbor does
not exist. Using our ordering on the 4-cycles of the input graph, we let the oracle
return the resulting labeling after flipping the colors of all edges inside the k-th
4-cycle, or ⊥ if this 4-cycle is not alternating.

The enumeration takes O(δt(oracle)Λ + t(local search)δΛ) time, where Λ is
the number of RELs. We have δ = O(n2), since a 4-cycle is defined by two edges.
The oracle takes linear time, as it might have to switch the color of linearly many
edges, and the local search takes quadratic time, as it might have to evaluate all
4-cycles to find the first right-alternating one, for a total of O(n4Λ).

3 Counting regular edge labelings

Here we prove that every irreducible triangulation with n vertices has less than
O(4.6807n) RELs and that there are irreducible triangulations with Ω(3.0426n)
RELs. Before we present our bounds, we review some additional related work.

Counting all RELs of all n-vertex irreducible triangulations yields the number
of combinatorially different rectangular partitions with n rectangles which is in
Ω(11.56n) [4] and less or equal to 13.5n−1 [14]. If we consider partitions to
be identical when the incidence structure between rectangles and maximal line
segments is the same, then the number of different partitions is in Θ(8n/n4) [2].
RELs are related to bipolar orientations—orientations of the edges from a source
to a sink—but there is no direct relation between their numbers. Felsner and
Zickfeld [13] show that the number of bipolar orientations of a planar graph is in
O(3.97n) and that there are planar graphs with Ω(2.91n) bipolar orientations.
Many other interesting substructures have been counted in planar graphs (see [3,
8, 9]), but the upper bounds we obtained by adapting the techniques used for
these structures to RELs were far from the bounds that we present.

3.1 Upper bound

Let G = (V,E) be an irreducible triangulation on n vertices. Since an REL is
uniquely determined by a regular edge coloring and G has less than 3n edges, we
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obtain a simple upper bound of 8n on the number of RELs of G. In the following
we refine this bound using Shearer’s entropy lemma.

Lemma 1 (Shearer’s entropy lemma [10]). Let S be a finite set and let
A1, . . . , Am be subsets of S such that every element of S is contained in at least
k of the A1, . . . , Am. Let F be a collection of subsets of S and let Fi = {F ∩Ai :
F ∈ F} for 1 ≤ i ≤ m. Then we have |F|k ≤

∏m
i=1 |Fi|.

Theorem 2. The number of regular edge labelings of an irreducible triangula-
tion is in O(4.6807n).

Proof (sketch). Let G = (V,E) be an irreducible triangulation on n vertices. Let
S be E with the four edges on the exterior face excluded. For a REL L of G let
E(L) be the set of blue edges in L. Let F := {E(L) | L is a REL of G}. Since
E(L) determines L, the number of RELs is |F|.

For the vertices vi of G, 1 ≤ i ≤ n, let Ai be the set of edges in S of the
triangles adjacent to vi. Every edge e ∈ S is in four of the sets Ai, namely in the
four sets corresponding to the vertices of the two triangles with e as edge. Let
Fi be the set of intersections of the set Ai with the sets E(L), i.e., Fi contains
all possible ways to choose blue edges around vi consistent with a REL. By
Lemma 1 the number of RELs is bounded by

∏n
i=1 |Fi|1/4.

It is easy to see that |Fi| ≤ 25
(
di

4

)
, where di is the degree of vi. Therefore, the

number of RELs of G is bounded by
(
32n

∏n
i=1

(
di

4

))1/4, which by convexity (and

using a bound of 6 on the average degree) is upper-bounded by
(
32n
(
6
4

)n)1/4 =
480n/4 < 4.6807n. ut

3.2 Lower bound

Our lower bound construction for the number of RELs uses triangulated grids.
We refer to the number of rows of a triangulated grid as its height h and to the
number of columns as its width w. We add four vertices to the outside of the
grid to turn it into an irreducible triangulation. The total number of vertices of
the augmented grid is n = hw + 4.

A simple lower bound stems from the following coloring: color all horizontal
edges blue and all vertical edges red. Then all diagonals can be colored inde-
pendently blue or red. This gives a lower bound of 2n−O(

√
n) for h = w (see

Fig. 7 in the appendix). We prove a stronger bound by coloring only the edges
of every h′th row blue and by not coloring the edges of columns. We color the
parts between the blue rows independently. We assume for now that h = h′+ 1.
Larger values of h do not change the analysis, but do improve the lower bound.

Our bounds require the analysis of large matrices, so part of the proof is
by computer. We first describe all steps for h′ = 1, i.e., the edges of all rows
are blue. In this case, we can do all calculations by hand. Then we show how
to generalize the method for larger values of h′. We color the triangulated grid
from left to right. The edges of the first and last column will need to be colored
red, since a REL has no monochromatic triangles. Assume we have colored the
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triangulated grid up to the ith column. We call the edges of the ith column and
the diagonals connecting to this column from the left the ith extended column.
How we can color the (i+ 1)st extended column depends on the colors of the ith
extended column (assuming we have no restriction from the right).

If h′ = 1, the previous column can be either red
or blue. The color of the previous diagonal does not
influence our choices for this column. If the previous
column is red, we can make this column red too and
choose either color for the diagonal. We can also make
this column blue, but then the diagonal needs to be red
to satisfy the constraints around the top vertex of this column. Likewise, if the
previous column was blue, our diagonal needs to be red to satisfy the constraints
around the bottom vertex of the previous column (see figure).

From
To

R

B

R B

2 1

1 1

We represent these coloring options as a transition matrix
M , using the column colors as state. With M we can compute
the number of colorings up to the ith extended column, by
starting in the red state and repeatedly multiplying it with M .
The resulting vector gives us the number of colorings ending
in a red or a blue edge. Since M has only positive elements, it is primitive. By
Theorem 1(c) the ratio between the number of labelings ending in a red column
up to the ith extended column and up to the (i+1)th extended column converges
towards the largest eigenvalue of M . This eigenvalue is φ+ 1 > 2.61803. So for
any ε > 0, we obtain more than (φ + 1 − ε)w labelings for sufficiently large w.
Since we add two vertices to add a single column, this yields a lower bound of
(φ+ 1− ε)(n−4)/2 for sufficiently large w. If we now increase h, we need to add h
vertices to add h−1 columns, i.e., we get a lower bound of (φ+1−ε)(n−4)(h−1)/h,
which for sufficiently large h and w is larger than 2.61803n.

Next we consider h′ > 1. We need to extend the states with information
about the vertices, specifically how many color-switches there should be in the
next extended column. Note that this information, together with the color of the
bottom column edge incident to this vertex, already fixes the color of the top
edge. So all we need for the state is the color of the bottom edge of the column
and the color switches for each vertex, moving upwards. Some states that can
be described in this way cannot in fact be part of an REL. We call such states
infeasible. A state is feasible if it can be reached from the initial all-red state (i.e.,
all vertical edges of the column are red) and if the all-red state can be reached
from it. Thus a state is feasible if and only if it is in the strongly connected
component of the all-red state. We remove all infeasible states and only consider
the reduced matrix. For h′ = 2 the states, transition matrix, infeasible states
and reduced transition matrix are presented in the appendix.

The reduced matrix is primitive: it is irreducible by construction, and there
is always at least one transition from the all-red state to the all-red state (by col-
oring all diagonals and horizontal edges between the two columns blue). When
constructing a regular edge coloring, we start with the all-red column and color
the columns one by one. By Theorem 1(c) the number of regular edge colorings



8 Kevin Buchin, Bettina Speckmann, and Sander Verdonschot

increases with each new column by a factor that converges to the largest eigen-
value of the transition matrix. Therefore, a strict lower bound on this eigenvalue
λh′ of this matrix gives us a strict lower bound for the growth rate per column
(ignoring a constant number of initial columns).

We obtain a strict lower bound on λh′ in the following way. We take a non-
negative non-zero state vector x, multiply it with the transition matrix, and
determine the minimum growth rate (for the non-zero elements). If the vector
is not an eigenvector of A (i.e., the growth rate is not the same for all non-zero
states) then the minimum growth rate is a strict lower bound on λh′ by The-
orem 1(b). As vector x we choose x0A

100, where A is the reduced transition
matrix and x0 is the vector with a 1 for the all-red state and 0 otherwise. Since
in all the cases that we consider the vector x is positive, we also obtain an upper
bound on λh′ by the maximum growth rate.

As for the case h′ = 1, we now use several copies of h′ rows beneath each
other to obtain a triangulated grid with w = h. The growth rate per vertex in
this way approaches λ1/h′

h′ . As strict lower bound on λ
1/h′

h′ we obtain 2.61803,
2.80921, 2.90453, 2.96067, 2.99746, 3.0233, and 3.04263 for h′ = 1, 2, 3, 4, 5, 6, 7.
Note that the lower bounds are rounded down, and that our upper bounds on
λ

1/h′

h′ equal the (unrounded) lower bounds up to at least 10 significant digits.1

Theorem 3. The number of regular edge labelings of the triangulated grid is in
Ω(3.04263n).

4 Optimizing RELs for rectangular cartograms

In this section, we describe how to find good RELs for rectangular cartogram
construction and present experimental results. We follow the iterative linear
programming method presented in [22] to build a cartogram from an REL.
Quality criteria. We consider two quality criteria: (i) the relative position of
the rectangles and (ii) the cartographic error of the resulting cartogram.

To make a rectangular cartogram as recognizable as possible, it is impor-
tant that the directions of adjacency between the rectangles of the cartogram
follow the spatial relation of the regions of the underlying map as closely as
possible. An REL specifies the relative directions between adjacent rectangles.
We use two quality measures to quantify how well an REL matches the spatial
relations between regions in the input map. The first method is based on region
centroids [21]. It considers the direction between the centroids of two regions as
the “true” direction of adjacency and expresses the quality of a labeling in terms
of the deviation from this direction, measured as the smallest angle between the
two directions (see Fig. 3 left). The centroid measure tends to perform quite
well, although it can lead to counter-intuitive results in some cases. Hence we
consider also a second measure which is based on the bounding boxes of the re-
gions. The bounding box separation distance (bb sep dist) measures the distance
1 Our code for generating the transition matrices and estimating the eigenvalues is at
http://www.win.tue.nl/~speckman/demos/LowerBoundREL.zip
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Fig. 3. The angle deviation and bounding box separation distance measures.

these bounding boxes would need to be moved to separate them in the direction
indicated by the edge label (see Fig. 3 right). We consider both the average and
the maximum error over all edges of a labeling, as well as a binary version of the
measures: determine the “correct” color and direction for each edge and count
the number of edges that are labeled correctly.

Another important quality criterion for cartograms is the cartographic error
which is defined as |Ac − As|/As, where Ac is the area of the region in the
cartogram and As is the specified area of that region, given by the geographic
variable to be shown. As before, we consider both the maximum and average
cartographic error over all regions of the cartogram.

We strive to construct cartograms of low cartographic error and high recog-
nizability, hence we consider various ways to combine the two quality criteria.
One possibility is to take weighted averages, another to bound the maximum
cartographic error at 5%, while minimizing the maximum angle deviation or
bounding box separation distance, which we call a bounded measure.
Enumeration. The augmented dual graph of the provinces of the Netherlands
has only 408 RELs which can be enumerated in less than a second. Nevertheless
the map is large enough to show interesting trends. Fig. 4 shows cartograms
produced by enumerating all labelings and taking the best one according to var-
ious quality measures. The first data set shows total population on January 1st
2009, the second total livestock in 2009. Both were obtained from the Centraal
Bureau voor de Statistiek. The color of a region corresponds to its cartographic
error, with red indicating that the region is too small and blue indicating that
it is too big. The saturation corresponds to the magnitude of the error, a white
region has a cartographic error of at most 5%, while a fully saturated region
has a cartographic error of over 30%. The figure clearly shows that combining
recognizability measures with cartographic error leads to the best results.
Simulated Annealing. For larger maps—the countries of Europe or the con-
tiguous states of the US—enumeration is infeasible (both have over four billion
labelings). Fortunately the diameter of the lattice of RELs is comparatively small
(115 for Europe and 278 for the US) and hence simulated annealing [18] per-
forms well. We use a typical static cooling schedule and the original acceptance
probability [1] for our experiments. Specifically, given two labelings with quali-
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average angle dev maximum angle dev binary angle dev bounded angle dev average carto error

average bb sep dist maximum bb sep dist binary bb sep dist bounded bb sep dist maximum carto error

Total population:

Total livestock:

average angle dev maximum angle dev binary angle dev bounded angle dev average carto error

average bb sep dist maximum bb sep dist binary bb sep dist bounded bb sep dist maximum carto error

Fig. 4. Population and livestock cartograms of the provinces of the Netherlands.

ties q1 and q2, the probability that our algorithm moves to the worse labeling is
e|q1−q2|/T , where T is the current temperature. We let the temperature decrease
exponentially as T = 0.002t, where t is the current time, varying from 0 ini-
tially to 1 at the end of the process. The base factor of 0.002 can be increased to
produce more random behaviour, or decreased to produce more greedy behavior.

Fig. 5 shows some results of our implementation2. Note that we produce
only cartograms with correct adjacencies. The top two figures show the total
population of the countries of Europe on January 1st 2008, with the populations
of Luxembourg and Moldova added to Belgium and Ukraine, respectively. The
left cartogram was generated by bounding the maximum cartographic error on
5% and optimizing the average angle deviation, which results in an average

2 Data from Eurostat http://epp.eurostat.ec.europa.eu/portal/page/portal/

eurostat/home, the CIA World Factbook https://www.cia.gov/library/

publications/the-world-factbook/index.html, and the the US Census Bureau
http://www.census.gov/
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Fig. 5. Top row: two population cartograms of Europe. Bottom row: highway lengths
of Europe and population of the US. All with correct adjacencies.

cartographic error of 0.004 and a maximum cartographic error of 0.023. The
right cartogram was generated by solely optimizing the average cartographic
error. Note that most of the relative positions are suitable while the cartogram
still obtains a maximum cartographic error of 0.000.

The two cartograms in the bottom row are produced with the same maps
and data sets as the cartograms made by Speckmann et al. [22] which were based
on user-specified RELs. The left cartogram shows the total highway length in
Europe. It was generated by optimizing a weighted average of the maximum car-
tographic error with weight 0.7 and the average bb sep distance with weight 0.3.
It has an average cartographic error of 0.001 and a maximum error of 0.003. This
is a significant improvement over the results of Speckmann et al. who achieved
0.022 average and 0.166 maximum cartographic error. The last cartogram shows
the total population of the US and was generated by optimizing only the average
bb sep distance. It has 0.102 average and 0.597 maximum cartographic error,
which is comparable to the results of Speckmann et al. of 0.086 average and
0.873 maximum cartographic error. We can conclude that our fully automated
method to find optimal RELs for cartogram construction performs at least as
well as semi-manual methods and frequently leads to better cartograms.
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A Omitted proofs and illustrations

Theorem 2 The number of regular edge labelings of an irreducible triangulation
is in O(4.6807n).

Proof. Let G = (V,E) be an irreducible triangulation on n vertices. Let S be E
with the four edges on the exterior face excluded. For a regular edge labeling L
of G let E(L) be the set of blue edges in L. Let

F := {E(L) | L is a REL of G}.

Since E(L) determines L, the number of RELs is |F|.
For the vertices vi of G, 1 ≤ i ≤ n, let Ai be the set of edges in S of the

triangles adjacent to vi (see Fig. 6). Every edge e ∈ S is in four of the sets Ai,
namely in the four sets corresponding to the vertices of the two triangles with e
as edge. Let Fi be the set of intersections of the set Ai with the sets E(L), i.e.,
Fi contains all possible ways to choose blue edges around vi consistent with an
REL. By Lemma 1 the number of RELs is bounded by

∏n
i=1 |Fi|1/4.

For a vertex vi on the outer face there is only one way to choose the colors
for the edges in Ai, since the adjacent edges must all have the same color. Since
a REL has no monochromatic triangle, the remaining edges in Ai must be of
the other color. Now let vi be a vertex that is not on the outer face. We first
bound the number of ways in which the edges adjacent to vi can be colored. We
color these edges starting with an arbitrary one and going clockwise. For the
first edge, we have at most 2 choices and moving clockwise, we need to switch
colors exactly four times by the local conditions on regular edge colorings.

Hence the number of choices for the edges adjacent to vi is bounded by 2
(
di

4

)
,

where di is the degree of vi. After coloring the adjacent edges, every triangle in
Ai already has two colored edges. We have no choice for the third edge if these
two edges have the same color. Thus, we only have a choice for the (at most)
four places where we switched colors.

Therefore, the number of regular edge labelings ΛG of G is bounded by

n∏
i=1

(
25

(
di

4

))1/4

=

(
32n

n∏
i=1

(
di

4

))1/4

.

vi

Ai ∩ E(L)

vi

Ai

e

Fig. 6. A vertex vi with the corresponding set of edges Ai, a locally consistent choice
of blue edges, and an edge e with the four vertices that include e in their Ai.
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The function log
(
d
4

)
is concave, therefore by Jensen’s inequality

∑n
i=1 log

(
di

4

)
≤

n log
(∑n

i=1 di/n
4

)
. Now, the average degree is bounded by 6 and consequently∏n

i=1

(
di

4

)
≤
(
6
4

)n
= 15n. This yields the bound ΛG ≤ 480n/4 < 4.6807n. ut

Simple exponential lower bound.

Fig. 7. The diagonals of the triangulated grid can be colored arbitrarily if all horizonal
edges are blue and all vertical edges red.

Grids of height 2. The states for h′ = 2 are given in Fig. 8.

R1 R2R0 B0 B1 B2


1 4 1 1 2 5
0 5 2 2 1 4
0 2 2 1 1 1
0 2 2 2 2 1
0 1 2 1 2 2
0 0 0 0 0 1




5 2 2 1
2 2 1 1
2 2 2 2
1 2 1 2



Fig. 8. The states for the case of two rows, the corresponding transition matrix and
reduced transition matrix.

A state is feasible if it can be reached from the initial all-red state (R1 in the case
of h′ = 2) and if the all-red state can be reached from it. From the transition
matrix for h′ = 2 given in Fig. 8, we can see that the first state, R0, has no
incoming transitions from other states and the last state, B2, has no outgoing
transitions to other states. Therefore these states are both infeasible and are
removed from the set of states.


