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Abstract. Let S be a set of n points in Rd, and let r be a parameter
with 1 6 r 6 n. A rectilinear r-partition for S is a collection Ψ(S) :=
{(S1, b1), . . . , (St, bt)}, such that the sets Si form a partition of S, each bi
is the bounding box of Si, and n/2r 6 |Si| 6 2n/r for all 1 6 i 6 t. The
(rectilinear) stabbing number of Ψ(S) is the maximum number of bounding
boxes in Ψ(S) that are intersected by an axis-parallel hyperplane h.
We study the problem of finding an optimal rectilinear r-partition—a
rectilinear partition with minimum stabbing number—for a given set S.
We obtain the following results.

– Computing an optimal partition is np-hard already in R2.
– There are point sets such that any partition with disjoint bounding

boxes has stabbing number Ω(r1−1/d), while the optimal partition
has stabbing number 2.

– An exact algorithm to compute optimal partitions, running in polyno-
mial time if r is a constant, and a faster 2-approximation algorithm.

– An experimental investigation of various heuristics for computing
rectilinear r-partitions in R2.

1 Introduction

Motivation. Range searching is one of the most fundamental problems in compu-
tational geometry. In its basic form it can be stated as follows: preprocess a set S
of objects in Rd into a data structure such that the objects intersecting a query
range can be reported (or counted) efficiently. The range-searching problem has
many variants, depending for example on the type of objects (points, or some
other type of objects), on the dimension of the underlying space (two- or higher
dimensional), and on the type of query range (boxes, simplices, etc.)—see the
survey of Agarwal and Erickson [1] for an overview.
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A range-searching data structure that is popular in practice is the bounding-
volume hierarchy, or bvh for short. This is a tree in which each object from
S is stored in a leaf, and each internal node stores a bounding volume of the
objects in its subtree. Often the bounding volume is a bounding box : the smallest
axis-aligned box containing the objects in the subtree. When a bvh is stored in
external memory, one usually uses a B-tree [5, Chapter 18] as underlying tree
structure; the resulting structure (with bounding boxes as bounding volumes) is
then called an R-tree. R-trees are one of the most widely used external-memory
data structures for spatial data, and they have been studied extensively—see
for example the book by Manolopoulos et al. [11]. In this paper we study a
fundamental problem related to the construction of R-trees, as explained next.

One common strategy to construct R-trees is the top-down construction.
Top-down construction algorithms partition S into a number of subsets Si, and
then recursively construct a subtree Ti for each Si. Thus the number of subsets
corresponds to the degree of the R-tree. When a range query with a range Q is
performed, one has to recursively search in the subtrees Ti for which the bounding
box of Si (denoted bi) intersects Q. If bi ⊂ Q, then all objects stored in Ti lie
inside Q; if, however, bi intersects ∂Q (the boundary of Q) then we do not know
if the objects stored in Ti intersect Q. Thus the overhead of the search algorithm
is determined by the bounding boxes intersecting ∂Q. If Q is a box, as is often
the case, then the number of bounding boxes bi intersecting ∂Q is bounded, up
to a factor 2d, by the maximum number of bounding boxes intersecting any
axis-parallel plane. Thus we want to partition S into subsets so as to minimize
the number of bounding boxes intersecting any axis-parallel plane.

Further background and problem statement. Let S be a set of n points in Rd, and
let r be a parameter with 1 6 r 6 n. A rectilinear r-partition for S is a collection
Ψ(S) := {(S1, b1), . . . , (St, bt)} such that the sets Si form a partition of S, each
bi is the bounding box of Si, and n/2r 6 |Si| 6 2n/r for all 1 6 i 6 t. Note that
even though the subsets Si form a (disjoint) partition of S, the bounding boxes bi
need not be disjoint. The stabbing number of an axis-parallel hyperplane h with
respect to Ψ(S) is the number of boxes bi whose relative interior intersects h, and
the (rectilinear) stabbing number of Ψ(S) is the maximum stabbing number of any
axis-parallel plane h. Observe that our rectilinear r-partitions are the axis-parallel
counterpart of the (fine) simplicial partitions introduced by Matoušek [12].

It has been shown that there are point sets S for which any rectilinear r-
partition has stabbing number Ω(r1−1/d) [12]; an example is the case when the
points in S form a grid of size n1/d × · · · × n1/d. Moreover, any set S admits
a rectilinear r-partition with stabbing number O(r1−1/d); such a rectilinear r-
partition can be obtained by a construction similar to a kd-tree [6]. Thus from a
worst-case and asymptotic point of view the problem of computing rectilinear
r-partitions with low stabbing number is solved. However, any specific point set
may admit a rectilinear r-partition with a much lower stabbing number than
Θ(r1−1/d). For instance, if the points from S are all collinear on a diagonal line,
then there is a rectilinear r-partition with stabbing number 1. Note that in this
case the rectangles are axis-parallel segments, and their stabbing number in



one of the directions is 0. The question now arises: given a point set S and a
parameter r, can we compute a rectilinear r-partition that is optimal for the
given input set S, rather than worst-case optimal? In other words, we want to
compute a rectilinear r-partition that has the minimum stabbing number over
all rectilinear r-partitions for S.

Our results. We start by a theoretical investigation of the complexity of the
problem of finding optimal rectilinear r-partitions. In Section 2 we show that
already in R2, finding an optimal rectilinear r-partition is np-hard if r is considered
as a parameter. In Section 3 we then give an exact algorithm for computing
optimal rectilinear r-partitions which runs in polynomial time if r is a constant,
and a 2-approximation with a better running time. We conclude our theoretical
investigations by showing that algorithms only considering partitions with disjoint
bounding boxes cannot have a good approximation ratio: there are point sets
such that any partition with disjoint bounding boxes has stabbing number
Ω(r1−1/d), while the optimal partition has stabbing number 2. We also perform
an experimental investigation of various heuristics for computing rectilinear
r-partitions with small stabbing number in R2. A simple variant of a kd-tree
approach, which we call the windmill kd-tree turns out to give the best results.

2 Finding optimal rectilinear r-partitions is np-hard

The exact problem we consider in this section is as follows.

Optimal Rectilinear r-Partition
Input: A set S of n points in R2 and two parameters r and k.
Output: yes if S admits a rectilinear r-partition w.r.t. r with stabbing number
at most k, no otherwise.

We will show that this problem is already np-complete for fixed values of k.

Theorem 1. Optimal Rectilinear r-Partition is np-complete for k = 5.

To prove the theorem we use a reduction from 3-sat, which is similar to the
proof by Fekete et al. [8] of the np-hardness of minimizing the stabbing number
of a matching on a planar point set. Let U := {x1, . . . , xm} be a set of m boolean
variables, and let C := C1∧· · ·∧Cs be a cnf formula defined over these variables,
where each clause Ci is the disjunction of three variables. The 3-sat problem is
to decide whether such a boolean formula is satisfiable; 3-sat is np-hard [9]. Our
reduction will be such that there is a rectilinear r-partition with stabbing number
k = 5 for the Optimal Rectilinear r-Partition instance if and only if the
3-sat instance is satisfiable. To simplify the reduction we assume that n = 72r
(to make

√
2n/r an integer greater than or equal to 12); however, the reduction

works for any n = α · r for α > 72. We first describe the various gadgets we need
and then explain how to put them together.

The barrier gadget. A barrier gadget is a set G of 25 ·h2 points, where h > 12 and
h2 = 2n/r, arranged in a regular 5h×5h grid. To simplify the construction we fix



h = 12. Thus a barrier gadget is simply a 60× 60 grid placed in a small square.
The idea is essentially that if we partition a barrier gadget and require stabbing
number 5, then both the vertical and the horizontal stabbing numbers will be
5. This will prevent any other bounding boxes from crossing the vertical strip
(and, similarly, the horizontal strip) whose bounding lines contain the vertical
(resp. horizontal) edges of the square containing the barrier gadget. Thus the
barrier gadget can be used to make sure there is no interaction between different
parts of the global construction. Lemma 1 below makes this precise by giving a
bound on the minimum stabbing number of any r-partition of a barrier gadget.
In fact, we are interested in the case where G is a subset of a larger set S. In our
construction we will place any barrier gadget G in such a way that the points in
S \G lie outside the bounding box of G, so when analyzing the stabbing number
of a barrier gadget we will always assume that this is the case.

Let G be a barrier gadget and S ⊃ G be a set of n points. We define Ψ(S ↓ G),
the restriction to G of a rectilinear r-partition Ψ(S) = {(S1, b1), . . . , (St, bt)}, as

Ψ(S ↓ G) := {(Si ∩G, bi) : 1 6 i 6 t and Si ∩G 6= ∅}.

In other words, the boxes in Ψ(S ↓ G) are the boxes from Ψ(S) whose associated
point set contains at least one point from the barrier. The following lemma, which
is proved in the appendix, gives a bound on the vertical and horizontal stabbing
number of a rectilinear partition of a barrier gadget, where the vertical (horizontal)
stabbing number is defined as the maximum number of boxes intersected by any
vertical (horizontal) line.

Lemma 1. A barrier gadget G can be covered by a set of 25 boxes with stabbing
number 5. Moreover, for any rectilinear r-partition Ψ(S) of stabbing number 5,
the restriction Ψ(S ↓ G) has vertical as well as horizontal stabbing number 5.

The variable gadget. Fig. 1 shows the variable gadget. The three subsets in
the left part of the construction, and the three subsets in the right part, each
contain n/2r = 36 points. Because of the barrier gadgets, the points from one
subset cannot be combined with other points and must be put together into one
rectangle in the partition. The six subsets in the middle part of the construction
each contain 4n/r = 288 points. To make sure the stabbing number does not
exceed 5, these subsets can basically be grouped in two different ways. One
grouping corresponds to setting the variable to true, the other grouping to false—
see Fig. 1. Note that the gadget defines two vertical slabs. If the variable is set to
true then the left slab has stabbing number 2 and the right slab has stabbing
number 4, otherwise the opposite is the case.

The clause gadget. A clause gadget consists of three subsets of 4n/r = 288
points, arranged as shown in Fig. 2(a), and placed in the left or right slab of the
corresponding variables: a positive literal is placed in the left slab, a negative
lateral in the right slab. If the stabbing number of the slab is already 4, which
is the case when the literal evaluates to false, then the subset of 4n/r points in
the clause gadget must be grouped into two “vertical” rectangles. Hence, not all
literals in a clause can evaluate to false if the stabbing number is to be at most 5.
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Fig. 1. The variable gadget. (a) True setting. (b) False setting.

The global structure. The global construction is shown in Fig. 2(b). There are
variable gadgets, clause gadgets, and barrier gadgets. The variable gadgets are
placed diagonally and the clause gadgets are placed below the variables. We also
place barriers separating the clause gadgets from each other. Finally, the gadgets
for occurrences of the same variable in different clauses should be placed such
that they are not stabbed by a common vertical line. This concludes our sketch
of the construction which proves Theorem 1. A formal proof of the theorem can
be found in the appendix.

3 Polynomial time algorithms for constant r

In the previous section we showed that Optimal Rectilinear r-Partition is
np-hard when r is considered part of the input. Now we give a simple algorithm
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Fig. 2. (a) A clause gadget for (xi ∨ xj ∨ xk), and one possible grouping of the points.
(b) The global structure.



to show that the problem in Rd can be solved in polynomial time for fixed r in
dimension d. Our algorithm works as follows.

1. Let C be the set of all boxes defined by at most 2d points in S. Note that
|C| = O(n2d).

2. For each t with r/2 6 t 6 2r, proceed as follows. Consider all O(n2dt) possible
subsets B ⊂ C with |B| = t. Check whether B induces a valid solution, that
is, whether we can assign the points in S to the boxes in B such that (i) each
point is assigned to a box containing it, and (ii) each box is assigned between
n/2r and 2n/r points. How this is done will be explained later.

3. Over all sets B that induce a valid solution, take the set with the smallest
stabbing number. Replace each box in it with the bounding box of the points
assigned to it, and report the partition.

To implement Step 2 we construct a flow network with node set {vsource, vsink} ∪
S ∪B. The source node vsource has an arc of capacity 1 to each point p ∈ S, each
p ∈ S has an arc of capacity 1 to every bj ∈ B that contains p, and each bj ∈ B
has an arc of capacity 2n/r to the sink node vsink. The arcs from the boxes to
the sink also have (besides the upper bound of 2n/r on the flow) a lower bound
of n/2r on the flow. The set B induces a valid rectilinear r-partition if and only
if there is an integer flow of n units from vsource to vsink. Such a flow problem can
be solved in O(min(V 3/2, E1/2)E log(V 2/E + 2) log c) time [2], where V is the
number of vertices in the network, E is the number of arcs, and c is the maximum
capacity of any arc. We have V = O(n), E = O(nr), and c = 2n/r. Since we have
to check O(n4dr) subsets B, the running time is O(n4dr · (nr)3/2 log2(n/r + 2))
and is polynomial (assuming r is a constant). We obtain the following result.

Theorem 2. Let S be a set of n points in Rd, and r a constant. Then we
can compute a rectilinear r-partition with optimal stabbing number in time
O(n4dr+3/2 log2 n)

We can significantly improve the running time if we are satisfied with a 2-
approximation. The trick is to place a collection Hi of 3r hyperplanes orthogonal
to the xi-axis (the ith-axis) such that there are at most n/3r points from S
in between any two consecutive hyperplanes in Hi. Instead of finding O(n2d)
boxes in the first step of the algorithm, we now find O(r2d) boxes defined by the
hyperplanes in H := H1 ∪ · · · ∪Hd. Then we have |C| = O(r2d). We apply the
Step 2 of the algorithm and find for r/2 6 t 6 2r all the O(r2dt) subsets B ⊂ C.
We check for each subset whether it is a valid solution, and take the best valid
solution. Lemma 2 in the appendix shows this gives a 2-approximation.

Theorem 3. Let S be a set of n points, and r a constant. Then we can com-
pute a rectilinear r-partition with stabbing number at most 2 · opt, where opt
is the minimum stabbing number of any rectilinear partition for S, in time
O(n3/2 log2 n).

4 Arbitrary versus disjoint rectilinear r-partitions

Since computing optimal rectilinear r-partitions is np-hard, one should look
at approximation algorithms. It may be easier to develop an approximation



clusters

Fig. 3. Every rectilinear r-partition with disjoint bounding boxes has stabbing number
Ω(
√
r) while there exists a partition with stabbing number 2.

algorithm considering only rectilinear r-partitions with disjoint bounding boxes.
The next theorem shows that in R2 such an approach will not give a good
approximation ratio. The same argument holds for Rd. (see the appendix)

Theorem 4. Assume that 32 6 r 6 4 ·
√
n. Then there is a set S of n points

in R2 whose optimal rectilinear r-partition has stabbing number 2, while any
rectilinear r-partition with disjoint bounding boxes has stabbing number Ω(

√
r).

Proof. Let G be a
√
r/8×

√
r/8 grid in R2. (For simplicity assume that

√
r/8 is

an integer. Since 32 6 r we have
√
r/8 > 2.) We put each grid point in S and

call them black points. We call the lines forming the grid G black lines. Note that
there are r/8 black points. Fig. 3 shows an example with r = 128. Next we refine
the grid using 2(

√
r/8− 1) additional axis-parallel grey lines. At each of the new

grid points that is not fully defined by gray lines—the grey dots in the figure—we
put a tiny cluster of 2n/r points, which we also put in S. If the cluster lies on
one or more black lines, then all points from the cluster lie in the intersection of
those lines, as shown in Fig. 3.

So far we used (2r/8 − 2 ·
√
r/8) · 2n/r + r/8 points. Since r 6 4 ·

√
n, the

number of points which we used so far is less than n. The remaining points can be
placed far enough from the construction (not influencing the coming argument.)
Next, we rotate the whole construction slightly so that no two points have the
same coordinate in any dimension. This rotated set is our final point set S.

To obtain a rectilinear r-partition with stabbing number 2, we make each of
the clusters into a separate subset Si, and put the black points into one separate
subset; the latter is allowed since r/8 6 2n/r. (If r/8 < n/2r we can use some of
the remaining points or the points of gray dots to fill up the subset.)

If the clusters are small enough, then the rotation we have applied to the point
set guarantees that no axis-parallel line can intersect two clusters at the same
time. Any line intersects at most one of the clusters and the rectangle containing
the black points, and the stabbing number of this rectilinear r-partition is 2.

We claim that any disjoint rectilinear r-partition for S has stabbing number
Ω(

√
r/8). To see this, observe that no subset Si in a disjoint rectilinear r-partition

can contain two black points. Indeed, the bounding box of any two black points
contains at least one full cluster and, hence, together with the black points would
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Fig. 4. The different types of input sets.

be too many points. We conclude that each black point is assigned to a different
bounding box. Let B be the collection of these bounding boxes. Now duplicate
each of the black lines, and move the two duplicates of each black line slightly
apart. This makes a set H of O(

√
r/8) axis-parallel lines such that each bounding

box in B intersects at least one line from H.
Then the total number of intersections between the boxes in B and the lines

in H is Ω(r), implying that there is a line in H with stabbing number Ω(
√
r/8). 2

5 Experimental results

In the previous sections we studied the complexity of finding an optimal rectilinear
r-partition of a given point set. For arbitrary r the problem is np-hard, and for
constant r the exact algorithm was polynomial but still very slow. Hence, we now
turn our attention to heuristics. In the initial experiments on which we report
below, the focus is on comparing the various heuristics and investigating the
stabbing numbers they achieve as a function of r, for fixed n.

Data sets. We tested our heuristics on four types of point sets–see Fig. 4. The
Uniform data set picks the points uniformly at random from the unit square. For
the Dense data set we take a Uniform data set and square all y-coordinates, so
the density increases near the bottom. For the Line Clusters data set we first
generated a few line segments, whose endpoints are chosen uniformly at random
in the unit square. To generate a point in P , we pick one of the line segments
randomly, select a position along the line segment at random and add some
Gaussian noise. The Point Clusters data set is similar, except that it clusters
around points instead of line segments. All sample sets contain n = 50, 000 points
and the reported stabbing numbers are averages over 20 samples.

Next we describe our heuristics. Let P denote the set of points in R2 for which
we want to find a rectilinear r-partition with low stabbing number.

The windmill kd-tree. A natural heuristic is to use a kd-tree [6]: partition the
point set P recursively into equal-sized subsets, alternatingly using vertical and
horizontal splitting lines, until the number of points in each region drops below
2n/r. For each region R of the kd-tree subdivision, put the pair (R ∩ P, bR) into
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Fig. 6. Comparison of the kd-tree and the windmill kd-tree.

the rectilinear r-partition, where bR is the bounding box of R ∩ P . Note that
this method runs in O(log n) time, and gives a stabbing number O(

√
r), which is

worst-case optimal. The windmill kd-tree is a version of kd-tree in which for two
of the four nodes of depth 2 the splitting line has the same orientation as the
splitting line at their parents. This is done in such a way that the subdivision
induced by the nodes at level 2 has stabbing number 3 rather than 4–see Fig. 5.
It turns out that the windmill kd-tree is always at least as good as the regular
kd-tree, and often performs significantly better. The results for the Random
Data set are shown in Fig. 6 for r ranging from 100 to 2,500 with step size 100.
The figure shows that, depending on the value of r, the stabbing number of the
kd-tree and the windmill kd-tree are either the same, or the windmill has 25%
lower stabbing number. The switch between these two cases occurs exactly at
the values of r where the depth switches from even to odd (or vice versa), which
is as expected when looking at Fig. 5. In the remainder we only compare the
windmill kd-tree to the other methods, and ignore the regular kd-tree.

The greedy method. We first compute a set B of candidate boxes such that
n/2r 6 |bi ∩ P | 6 2n/r for each box bi ∈ B. Each box bi ∈ B has a certain cost
associated to it. We then take the cheapest box bi ∈ B, put the pair (bi, P ∩ bi)
into the rectilinear r-partition, and remove the points in bi from P . Finally,
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Fig. 7. A Hilbert curve and its use to generate a rectilinear r-partition.

boxes that now contain too few points are discarded, the costs of the remaining
boxes are updated, and the process is repeated. The method ends when the
number of points drops below 2n/r; these points are then put into a single box
(which we allow to contain less than n/2r points if needed).

This method can be implemented in various ways, depending on how the set
B and the cost of a box are defined. In our implementation we took m vertical
lines with (roughly) n/(m− 1) points in between any two consecutive lines, and
m horizontal lines in a similar manner. B then consists of all O(m4) boxes that
can be constructed by taking two vertical and two horizontal lines from these
lines. In our experiments we used m = 50, because this was the largest value that
gave reasonable computation times. The cost of a box bi is defined as follows. We
say that a point p ∈ P is in conflict with bi if p 6∈ bi and the horizontal or the
vertical line through p intersects bi. Let Ci be the set of points in conflict with bi.
Then the cost of bi is |Ci|/|bi ∩ P |. The idea is that we prefer boxes containing
many points and in conflict with few points.

The Hilbert curve. A commonly used approach to construct R-trees is to use a
space-filling curve such as a Hilbert curve [10]—see Fig. 7(a). We can also use
a Hilbert curve to compute a rectilinear r-partition: first, sort the given points
according to their position on the Hilbert curve, and then generate the subsets in
the rectilinear r-partition by taking consecutive subsets along the Hilbert curve.
Since the lowest stabbing number is usually achieved by using as few rectangles
as possible, we do this in a greedy manner: put the first 2n/r points in the first
subset, the next 2n/r rectangles in the second subset, and so on—see Fig. 7(b).

K-Means. The final method we tested was to compute r clusters using K-means—
in particular, we used K-Means++ [3]—and then take the clusters as the subsets
in the rectilinear r-partition. Some of the resulting clusters may contain too many
or too few points. We solved this by shifting points into neighboring clusters.

5.1 Results of the comparisons

Figs. 8.a-d shows the results of our experiments. The clear conclusion is that the
windmill kd-tree outperforms all other methods on all data sets. The Hilbert-
curve approach always comes in second, except for the Dense data set. Note
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Fig. 8. The results of the comparison of methods on (a)uniform (b)dense (c)line clusters
(d)point cluster point sets

that the windmill and the greedy method give the same results for the Uniform
data set and the Dense data set—which is easily explained, since the rectilinear
r-partition computed by these methods only depends on the ranks (their position
in the sorted order) of the coordinates, and not on their actual values—while the
other two methods perform worse on the Dense data set: apparently they do not
adapt well to changing density. The windmill and the Hilbert-curve method not
only gave the best results, they were also the fastest. Indeed, both methods could
easily deal with large data sets. (On inputs with n = 10, 000, 000 and r = 500
they only took a few minutes.)

6 Conclusion

We studied the problem of finding optimal rectilinear r-partitions of point sets. On
the theoretical side, we proved that the problem is np-hard when r is part of the
input, although can be solved in polynomial time for constant r. The algorithm
for constant r is still unpractically slow, however, so it would be interesting to
come up with faster exact algorithms (or perhaps a practically efficient PTAS).



We also tested a few heuristics and concluded that our so-called windmill
kd-tree is the best method. This immediately leads to the question whether the
windmill approach could also lead to R-trees that are practically efficient. This is,
in fact, unclear. What we have tried to optimize is the maximum stabbing number
of any axis-parallel line. When querying with a rectangular region, however, we
are interested in the number of regions intersected by the boundary of the region.
First of all, the boundary does not consist of full lines, but of line segments that
in practice are possibly small compared to the data set. Secondly, the boundary
of the rectangle consists of horizontal and vertical segments. Now, what the
windmill does (as compared to a regular kd-tree) is to balance the horizontal
and vertical stabbing number, so that the maximum is minimized. The sum of
the horizontal and vertical stabbing number in the subdivision does not change,
however. So it might be that the windmill approach is good to minimize the
worst-case query time for long and skinny queries. This would require further
investigation. It would also be interesting to find rectilinear r-partitions whose
(maximum or average) stabbing number is optimal with respect to a given set of
query boxes, or try to minimize the full partition tree, instead of just one level of
partition tree, even it seems to be more challenging.
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A Omitted proofs

Recall that a barrier gadget is a 5h× 5h grid for h =
√

2n/r = 12. A convenient way
to think about the construction of the gadget is to take a tiny square, partition it into
5× 5 subsquares, and placing 2n/r = 144 points in each of the subsquares. To place
144 points in each cell, we can put 5× 11 extra vertical and horizontal lines in barrier
gadget such that each subsquare is divided to 144 subcells and then put a point in each
of these subcells. See Figure 9 for an illustration.
Lemma 1 A barrier gadget G can be covered by a set of 25 boxes with stabbing
number 5. Moreover, for any rectilinear r-partition Ψ(S) of stabbing number 5, the
restriction Ψ(S ↓ G) has vertical as well as horizontal stabbing number 5.

Proof. The first part of the lemma is easy: since we can put up to h2 6 2n/r points
in a box, we can cover all the points from G using 25 square boxes each containing a
subgrid of h2 points.

To prove the second part of the lemma, consider a rectilinear r-partition Ψ(S)
of stabbing number 5. Consider the set B containing the boxes in Ψ(S ↓ G). Each
box bi ∈ B contains at least one point from G, and together they contain at least
25 · h2 points from G. Let LV be a set of 5(h− 1) + 6 vertical lines and LH be a set of
5(h− 1) + 6 horizontal lines that make the grid for the barrier gadget. The horizontal
and vertical lines together separate all the points in G—see Fig. 9. Let L = LV ∪ LH .
Define λ(bi) to be the number of lines from L that intersect bi, and define

λ*(bi) :=
λ(bi)

|Si ∩G|
.

For example, if bi is a box whose associated set Si ∩ G is a h × h subgrid, then
λ(bi) = 2h− 2 and λ*(bi) = (2h− 2)/h2.

It is not difficult to verify that (2h− 2)/h2 is the minimum possible cost of any box
bi ∈ B. Indeed, consider an a× b box bi. Then |Si ∩G| 6 a · b. Let us consider the case
when |Si ∩G| = a · b which gives the maximum value for all the a× b boxes. We have
λ(bi) = a+ b− 2 and the minimum value for λ(bi) is when we choose a and b such that
|b − a| 6 1. Thus for a a × b box, when |b − a| 6 1 we have the maximum value for
λ*(bi). If we consider all the boxes bi in which |b− a| 6 1, for larger values of a and b
the value of λ*(bi) would be smaller. This is because by increasing a and b the growth
of h2 is more than 2h− 2. Then the minimum value is when we have the largest box.

Fig. 9. One of the subsquares of the barrier gadget with 144 points in it.



Thus the total cost of all boxes is∑
bi∈B

λ(bi) =
∑
bi∈B

{
λ*(bi) · |Si ∩G|

}
>

2h− 2

h2
·
∑
bi

|Si∩G| >
2h− 2

h2
·25·h2 = 50h−5.

Define λ(`), for a line ` ∈ L, as the number of boxes in Ψ(S ↓ G) that intersect `.
Observe that ∑

`∈L

λ(`) =
∑
bi∈B

λ(bi).

Now assume for a contradiction that, say, the vertical stabbing number of Ψ(S ↓ G) is
4 or less. Then∑

`∈LH

λ(`) =
∑
`∈L

λ(`)−
∑
`∈LV

λ(`) > 50h− 5− 4 · |LV | = 30h− 9,

This implies that
∑

`∈LH
λ(`) > 30h − 9, and for h > 12 this implies that the

average number of boxes intersected by each horizontal line is greater than 5, and the
lemma holds. 2

Theorem 1 Optimal Rectilinear r-Partition is np-complete for k = 5.
Proof. We can verify in polynomial time whether for a given set of boxes B we can make
a rectilinear r-partition with stabbing number of 5 or not, so Optimal Rectilinear
r-Partition is in np.

To prove that Optimal Rectilinear r-Partition is np-hard, take an instance
of 3-sat with a set C of m clauses defined over the variables x1, . . . , xn. Apply the
reduction described above (in the main text) to obtain a set of n points forming an
instance of Optimal Rectilinear r-Partition. As we described above we can set the
values of k and r so that the relations for making a barrier gadget holds.

Suppose S has a rectilinear r-partition with stabbing number 5. Based on the
construction this is only possible if for each clause gadget, at least 4 sets of n/r points
(one set of 4n/r points) have paired horizontally. When this set of points is placed in
the right slab of a variable we set its value to false and when it is placed in the left
slab of a variable we set its value to true. Since in each clause there exists 4 sets of n/r
points which are paired horizontally. We conclude in each clause there is a variable (or
its negation) which is true. Thus, C is satisfiable.

Now consider a truth assignment to the variables that satisfies C. A rectilinear
r-partition for S with stabbing number of 5 can be obtained as follows. For each barrier
gadget it has already been shown that how we can make a rectilinear r-partition with
stabbing number 5. Based on the values of variables we make the rectilinear r-partition
partitions for every variable gadget as shown in Figure 1. For each variable gadget,
we pair the sets of points in its slab with stabbing number 2 horizontally and its slab
with slabbing number 4 vertically. Since every clause has a true variable, and based on
the descriptions for variable and barrier gadgets the vertical and horizontal stabbing
numbers of the rectilinear r-partition made is 5. 2

Lemma 2. The modified version of the algorithm in Section 3 reports a rectilinear
r-partition with stabbing number at most twice the optimal stabbing number.

Proof. Let Ψ := {(S1, b1), . . . , (St, bt)} be an optimal rectilinear r-partition for S, and
let opt denote the stabbing number of Ψ . Expand every bj in all directions until each
facet of bj is contained in a hyperplane from H. Let bj denote the expanded box, and



let Ψ := {(S1, b1), . . . , (St, bt)}. The set {b1, . . . , bt} is one of the subsets B considered
in Step 2, and it induces a valid solution. Hence, the stabbing number of the reported
partition is at most the stabbing number of Ψ .

Now consider any axis-parallel hyperplane h. Assume without loss of generality that
h is orthogonal to the x1-axis and that h lies in between hyperplanes hi, hi+1 ∈ H. Let
bj be a box intersecting h. Note that bj must intersect hi or hi+1 (or both), otherwise
bj contains too few points. Hence, the h intersects at most 2 · opt boxes bj . 2

Theorem 5. Let d be a constant, and assume d ·2d+2 6 r 6 2dd/2 ·
√
n. Then there is a

set S of n points in Rd whose optimal rectilinear r-partition has stabbing number 2, while
any rectilinear r-partition with disjoint bounding boxes has stabbing number Ω(r1−1/d).

Proof. Let G be a (r/2dd)1/d × . . .× (r/2dd)1/d grid in Rd. (We assume for simplicity
that (r/2dd)1/d is an integer; note that since d · 2d+2 6 r we have (r/2dd)1/d > 2.) We
put each grid point in S. We call these points black points, and we call the hyperplanes
forming the grid G black hyperplanes. Note that there are r/2dd black points. Fig. 3
shows an example for d = 2 with r = 128. Next we refine the grid using d((r/2dd)1/d−1)
additional axis-parallel grey hyperplanes. At each of the new grid points that is not fully
defined by gray hyperplanes—the grey dots in the figure—we put a tiny cluster of 2n/r
points, which we also put in S. If the cluster lies on one or more black hyperplanes,
then all points from the cluster lie in the intersection of those hyperplanes.

So far we used

((2((r/2dd)1/d − 1))d − ((r/2dd)1/d − 1)d − ((r/2dd)1/d)) · 2n/r

points; in gray dots. Since we have r 6 2dd/2 ·
√
n it is easy to show that this number is

less than (r/2− 1) · 2n/r. Moreover (r/2dd) (the number of black points) is less than
2n/r. Thus the total number of points we have put so far is less than n. The remaining
points can be placed far enough from the construction, not influencing the coming
argument.) Next, we rotate the whole construction slightly around a line not parallel
to axis lines, so that no two points have the same coordinate in any dimension. This
rotated set is our final point set S.

To obtain a rectilinear r-partition with stabbing number 2, we make each of the
clusters into a separate subset Si, and we put the black points into one separate subset;
the latter is allowed since r/d2 6 2n/r. (If r < n/2r we can use some of the remaining
points or the points of gray dots to fill up the subset.) If the clusters are small enough,
then the rotation we have applied to the point set guarantees that no axis-parallel
hyperplane can intersect two clusters at the same time. Hence, the stabbing number of
this rectilinear r-partition is 2.

We claim that any disjoint rectilinear r-partition for S has stabbing number
Ω(r1−1/d). To see this, observe that no subset Si in a disjoint rectilinear r-partition can
contain two black points. Indeed, the bounding box of any two black points contains
at least one full cluster and, hence, together with the black points would be too many
points. We conclude that each black point is assigned to a different bounding box. Let B
be the collection of these bounding boxes. Now consider a set H of O(r1/d) axis-parallel
hyperplanes such that each bounding box in B intersects at least one hyperplane from
H. (Such a set can be found by duplicating each of the black hyperplanes, and moving
the two duplicates of each black hyperplane slightly apart.) Then the total number of
intersections between the boxes in B and the hyperplanes in H is r, which implies that
there is a hyperplane in H with stabbing number Ω(r1−1/d).


