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Abstract

We study the power assignment problem in radio networks, where each radio station can
transmit in one of two possible power levels, corresponding to two ranges – short and long. We
show that this problem is NP-hard, and present a polynomial-time assignment algorithm, such
that the number of transmitters that are assigned long range by the algorithm is at most (11/6)
times the number of transmitters that are assigned long range by an optimal algorithm.

1 Introduction

Assigning power levels (corresponding to transmission ranges) to the transmitters of a radio net-
work, so that the total power consumption is as low as possible, is often an extremely important
issue. Let P be a set of n points in the plane, representing n transmitters-receivers (or transmitters
for short). We need to assign transmission ranges to the transmitters in P, so that (i) the result-
ing communication graph is strongly connected; that is, the graph over P in which there exists a
directed edge from p to q if and only if q lies within the transmission range rp assigned to p, should
contain a directed path from any transmitter p ∈ P to any other transmitter q ∈ P, and (ii) the
total power consumption (i.e., the cost of the assignment of ranges) is minimized, where the total
power consumption is a function of the form

∑

p∈P rc
p, and c > 0 is a constant typically between 2

and 5.
This version of the power assignment problem is known to be NP-hard; Kirousis et al. [10] first

proved this for 3-dimensional point sets and Clementi et al. [8] then proved this also for planar point
sets. Kirousis et al. also present a 2-approximation algorithm, based on the minimum spanning
tree of P, which is the best approximation known.

In practice, it is usually impossible to assign arbitrary power levels (ranges) to the transmitters
of a radio network. Instead one can only choose from a constant number of preset power levels,
corresponding to a constant number of ranges. In this paper we consider the power assignment
problem in radio networks, where each transmitter can transmit in one of two given power levels –
low or high, corresponding to two possible ranges – short (r1) and long (r2). Since the cost of an
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assignment of power levels to the transmitters is a function of the form n1r
c
1 + (n − n1)r

c
2, where

n1 is the number of transmitters that are assigned range r1 and c ≥ 1 is some constant, the cost of
an assignment is determined solely by the number of transmitters that are assigned range r2.

In Sect. 4 we prove that the power assignment problem with two power levels is NP-hard when

r2 >
√

3
2r1, by constructing a reduction from planar cubic vertex cover. More precisely, we show

this for the special case where the initial components graph (see below) is a star.
Let m be the number of transmitters that are assigned range r2 in an optimal assignment

OPT . In Sect. 2 we describe a polynomial-time algorithm that assigns range r2 to at most (11/6)m
transmitters, or in other words, this algorithm computes an (11/6)-approximation (with respect to
the number of transmitters that are assigned long range).

An immediate corollary of this result is that for any ranges r1, r2 and for any c, we can compute
an assignment whose cost is at most (11/6) times the cost of an optimal assignment. Usually though
the cost of our assignment is much less than this, as is shown in Sect. 2.1. In this section we analyze
the common case where r1 = 1 and r2 = d. Our algorithm computes in this case an assignment
whose cost is at most 11dc

6dc+5 times the cost of an optimal assignment. Plugging for example d = 2
we get a 44/29 ≈ 1.52 approximation, if c = 2, and a 22/17 ≈ 1.29 approximation, if c = 1.

A by-product of our range assignment algorithm is an algorithm for assigning ranges in the spe-
cial case where the initial components graph is a tree. That is, consider the connected components
of the communication graph that is obtained after assigning short range to all transmitters in P.
We draw an edge between two components C1 and C2 if and only if there exists transmitters p1 ∈ C1

and p2 ∈ C2, such that the distance between them is at most r2. Now if this graph happens to be
a tree then the algorithm described in Sect. 3 assigns long range to at most (4/3)m transmitters,
where m is the number of transmitters assigned long range by an optimal algorithm.

More related work. Other variants of the power assignment problem have been studied. One
such variant is the symmetric power assignment problem, where the corresponding communication
graph is undirected and there exists an edge between two transmitters p and q if and only if both
transmitters were assigned ranges greater than (or equal to) the distance between them; see [2, 3, 4].
Clementi et al. [6] consider the problem of assigning ranges to a set of transmitters on a common
line, so that for any two transmitters p and q there exists a path from p to q of at most h hops in
the corresponding (directed) communication graph. The case where h = n− 1 was also considered
by [10]. An important related problem is the minimum-energy broadcast tree problem: Assign
ranges to the transmitters so that a designated source transmitter can broadcast messages to all
other transmitters; see, e.g., [5, 7, 11, 12, 14, 15, 16].

2 An (11/6)-Approximation

Let P be a set of n points in the plane representing n transmitters-receivers (or transmitters for
short), and assume that each transmitter can transmit in one of two possible power levels – low or
high, corresponding to short range (r1) or long range (r2). Further assume that if all transmitters
in P are assigned long range, then the resulting communication graph is strongly connected. In
this section we describe a polynomial-time algorithm for assigning ranges to the transmitters in P,
such that the number of transmitters that are assigned long range is at most (11/6)m, where m is
the number of transmitters that are assigned long range by OPT .

Let G be the (undirected) graph of components. G is defined as follows. Assign to each
transmitter in P short range and draw an edge between two transmitters p and q if |p, q| ≤ r1,
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where |p, q| denotes the Euclidean distance between p and q. We think of each of the connected
components in this graph as a subset of P. These subsets are the nodes of the graph G; we shall
call them components. We draw an edge between two components C1 and C2 of G if there exist
transmitters p ∈ C1 and q ∈ C2, such that |p, q| ≤ r2. See Fig. 1.

Figure 1: The components graph G.

Notice that we can easily obtain a 2-approximation. Simply compute a minimum spanning tree
of G, and, for each edge (C1, C2) of the tree, assign long range to two transmitters p ∈ C1 and
q ∈ C2, such that |p, q| ≤ r2.

Our range assignment algorithm consists of two stages. In the first stage we repeatedly find a
cycle in G and reduce it to a single component by assigning long range to one transmitter in each
of the components in the cycle. The second stage begins when there are no more cycles in G, i.e.,
when G is a tree. In this stage we assign long range to some more transmitters in order to complete
our task.

We now describe the first stage in detail. While there is a cycle in G do the following. Let
C1, C2, . . . , Cl, C1 be any cycle of size l ≥ 3. Assign long range to any transmitter in C1 that can
reach a transmitter in C2, assign long range to any transmitter in C2 that can reach a transmitter
in C3, etc. All together we assign long range to l transmitters. Notice that after doing so any
two transmitters in the union C = C1 ∪ · · · ∪ Cl can talk with each other possibly through other
transmitters in C. Thus these l components reduce to a single component C and the number of
components decreases by l − 1. We update the graph G by replacing C1, . . . , Cl with the single
component C. After doing so we forget that some of the transmitters in C have already been
assigned long range, and update the edges in G accordingly, see Fig. 2.

At this point there are no cycles left in G, in other words G is a tree. In the next section we
present a range assignment algorithm for the case where the components graph is a tree. This
algorithm assigns long range to at most 4

3mtree of the transmitters, where mtree is the number of
transmitters that are assigned long range by an optimal algorithm for this case. Thus in the second
stage we apply the algorithm of the next section to G to complete the range assignment task. We
now show that the overall number of transmitters that were assigned long range is bounded by
11
6 m.

Theorem 2.1 The range assignment algorithm (described above) computes an (11/6)-approximation
in polynomial time.
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Figure 2: Reducing the cycle C1, C2, C3, C4, C1 to the single component C.

Proof: Recall that in the first stage a loop is executed, such that, in each iteration a cycle
in G of length at least three is found and replaced by a single component. Let i be the number
of cycles that were found during the execution of the loop. We assume that all these cycles are of
length exactly three, since this is the worse case for our analysis.

Let k be the initial number of components in G, i.e., right at the beginning of the first stage.
Then m, the number of transmitters assigned long range by OPT , is at least k, since in each initial
component at least one of the transmitters must be assigned long range. During the first stage the
algorithm assigns long range to at most 3i transmitters, and the number of components in G at
the end of the first stage is k − 2i.

At this point G is a tree and we distinguish between two cases.
Case 1: i > k/2 − m/3. In this case, instead of performing the second stage, we proceed in
the most trivial way (for the purpose of the analysis only) and assign long range to 2(k − 2i − 1)
transmitters. That is, for each edge in G connecting between two components C1 and C2, we assign
long range to any transmitter in C1 that can reach a transmitter in C2 and vise versa. The total
number of transmitters that were assigned long range is thus bounded by

3i + 2(k − 2i − 1) ≤ 2k − i ≤ 2k − (
k

2
−

m

3
) =

3k

2
+

m

3
≤

11

6
m .

Case 2: i ≤ k/2−m/3. In this case we perform the second stage as described in Sect. 3 and assign
long range to at most (4/3)mtree transmitters, where mtree is the number of long range assignments
needed to solve the tree G. But clearly mtree ≤ m, so the number of transmitters assigned long
range in the second stage is at most (4/3)m. The total number of transmitter that were assigned
long range is thus bounded by

3i +
4m

3
≤ 3(

k

2
−

m

3
) +

4m

3
=

3k

2
+

m

3
≤

11

6
m .

Since in both cases we were able to bound the total number of long range assignments by (11/6)m,
we conclude that our range assignment algorithm computes an (11/6)-approximation. �

Recall that the cost of an assignment is n1r
c
1+(n−n1)r

c
2 , where n1 is the number of transmitters

that are assigned range r1 and c ≥ 1 is some constant typically between 2 and 5. An immediate
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corollary of Theorem 2.1 is that for any ranges r1, r2 and for any c, we can compute an assignment
whose cost is at most (11/6) times the cost of an optimal assignment. Usually though the cost of
our assignment is much less than this, as is shown below.

2.1 The Cost for Ranges 1 and d

Theorem 2.2 If r1 = 1 and r2 = d, then one can compute a range assignment whose cost is at
most 11dc

6dc+5 times the cost of an optimal assignment. For d = 2 we get a (44/29)-approximation, if
c = 2, and a (22/17)-approximation, if c = 1.

Proof: The cost of an optimal algorithm is dc ·m+1 · (n−m) = n+(dc−1)m, where m is the
number of transmitters assigned long range. We apply both our algorithm and the naive algorithm
which assigns range d to all the transmitters. Put a = n/m. We distinguish between two cases.
Case 1: a ≤ 11/6. In this case we use the naive algorithm whose cost is dcn. The ratio between
the cost of the naive algorithm and the cost of an optimal algorithm is

dcn

n + (dc − 1)m
≤

dcn

n + (dc − 1)(6/11)n
=

dc

(6/11)dc + (5/11)
.

Case 2: a ≥ 11/6. In this case we run our algorithm whose cost is

dc · (11/6)m + 1 · (n − (11/6)m) = n + (11/6)(dc − 1)m .

The ratio between the costs is

n + (11/6)(dc − 1)m

n + (dc − 1)m
=

a + (11/6)(dc − 1)

a + (dc − 1)
≤

(11/6)dc

dc + 5/6
=

dc

(6/11)dc + (5/11)
.

In both cases we got a dc

(6/11)dc+(5/11) -approximation on the cost. Thus for d = 2 we get a

(44/29)-approximation, if c = 2, and a (22/17)-approximation, if c = 1. �

3 A (4/3)-Approximation for a Tree of Components

In this subsection we present a (4/3)-approximation algorithm for the case where the components
graph G is cycle free, i.e., where G is a tree. In particular G may be the graph that is obtained at
the end of the first stage of the general algorithm above.

We first pick an arbitrary component in G to be the root of G. Given a component C in G, we
can now refer to its children components and to its parent component in the regular meaning.

For each component C we need to assign long range to some of the transmitters in C, so that for
each child C ′ of C at least one of the transmitters in C assigned long range can reach (a transmitter
in) C ′, and also at least one of these transmitters can reach the parent of C. A neighbor (i.e., one
of the children or the parent) C ′ of C is satisfied if at least one of the transmitters in C that can
reach it when assigned long range is assigned long range.

Initially all neighbors of C are unsatisfied. Our goal is to assign long range to a small number
of transmitters in C so that all neighbors of C are satisfied. One can view this problem as a set
cover problem: For each transmitter p in C let Cp be the subset of the neighbors of C that can be
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reached from p by assigning long range to p. It is easy to verify that the size of Cp is at most 5
(since no two components in Cp can be neighbors in G). Thus we could apply known results for
k-set cover to achieve our goal; however, this would lead to a weaker result than the one that we
obtain below.

We start with the leaf components. The case of a leaf component C is very simple; we assign
long range to any transmitter in C that can reach the parent of C (when it is assigned long range).
After considering all leaf components, we consider the internal components, where an internal
component may be considered only if all its children have already been considered.

Let C be the internal component that is about to be considered. Let χC be the number of
children of C. Clearly for each child C ′ of C, we must assign long range to at least one of the
transmitters in C ′ that can reach C (after it is assigned long range). Let m′

C be the number of
long range assignments (to transmitters in C) needed to satisfy all children of C. Then mC , the
number of long range assignments (to transmitters in C) assigned by OPT, is either m′

C , if the m′
C

transmitters satisfying the children of C can be chosen so that one of them also satisfies the parent
of C, or mC = m′

C +1, otherwise. The following inequalities are immediate:
∑

C mC = m, where m
is the overall number of long range assignments assigned by OPT, and

∑

C χC = k− 1 < m, where
k is the number of components in G. We will assign long range to at most 1

3χC + mC transmitters
in C. Summing over all components in G we obtain

∑

C

(
1

3
χC + mC) ≤

1

3
m + m =

4

3
m .

For each transmitter p in C, let dp (the degree of p) be the number of unsatisfied children of C
that would be satisfied if p were assigned long range. Notice that dp refers only to the children of
C and not to its parent. After assigning long range to a transmitter q in C we update the degrees
dp of all transmitters p in C (in particular dq becomes 0).

We are now ready to describe our algorithm for assigning long range to transmitters in C. If
χC ≤ 2, then we “solve” C optimally, that is, we find a minimum subset of transmitters in C that
can reach all children of C and can also reach its parent (when assigned long range). We can do
this since in this case mC ≤ 3.

Otherwise, as long as the number of unsatisfied children is at least 3 and there exists a trans-
mitter of degree at least 3, we assign long range to any such transmitter q and update the degrees of
all transmitters in C accordingly. By assigning long range to q we satisfy at least 3 of the children
of C. Since for each of these 3 children, OPT assigns long range to one of their transmitters so
that it can reach C, we charge the assignment to q to these 3 assignments of OPT. Thus in this
loop we have used at most 1

3(χC − x) long range assignments to transmitters in C, where x ≥ 0 is
the number of remaining unsatisfied children of C.

At this point either x ≤ 2, or x ≥ 3 and all transmitters in C have degree at most 2. In
the former case we “solve” the remaining subproblem optimally (assigning long range to at most
3 ≤ mC transmitters in C). We have used in total at most mC + 1

3χC long range assignments.
In the latter case, where we are left with at least 3 unsatisfied children and transmitters of

degree at most 2, we first assign long range to any transmitter in C that can reach C’s parent
(when assigned long range), and update the degrees of the transmitters in C. We charge this
assignment to the at least 3 remaining unsatisfied children of C. Next we “solve” the remaining
subproblem optimally using the optimal solution to 2-set cover [9]. Again we have used in total at
most mC + 1

3χC long range assignments.
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Theorem 3.1 If the components graph G is a tree, one can compute a range assignment that is a
(4/3)-approximation in polynomial time.

4 NP-Hardness

Let r1 and r2 be any two ranges, such that r2 >
√

3
2r1. In this section we show that the problem

of finding an optimal range assignment for a given set P of points in the plane (representing
transmitters-receivers) is NP-Hard. One can think of the problem as follows: Assign short range
(r1) to each of the transmitters in P. The goal now is to find a smallest subset P ′ ⊆ P of
transmitters, such that, after assigning long range (r2) to each of the transmitters in P ′, one
obtains a strongly connected graph.

Consider the components graph G that is obtained when each transmitter in P is assigned short
range (see Sect. 2 for a precise definition of G). We show that even the special case where G is
a star, i.e., G consists of one central component C that is connected to k orbit components (see
Fig. 3) is NP-hard. In this case, the problem is to find a smallest subset of transmitters in C that
satisfies all orbit components (when each of the transmitters in the subset is assigned long range).
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Figure 3: A star graph of components.

We describe a reduction from minimum vertex cover in planar cubic graphs. Let PCG = (V,E)
be a planar cubic graph (i.e., each of the nodes in PCG has degree at most 3). A vertex cover
for PCG is a subset U of V , such that, for each edge (v1, v2) ∈ E, either v1 ∈ U or v2 ∈ U . The
problem of finding a vertex cover of minimum size in planar cubic graphs is known to be NP-Hard
[1, 9].

Valiant [13] showed that any planar cubic graph PCG = (V,E) can be embedded in a rectan-
gular grid of size O(|V |2) as follows. Each node v ∈ V corresponds to some grid vertex, and each
edge (v1, v2) ∈ E corresponds to a rectilinear path formed of grid edges, whose endpoints are the
grid vertices corresponding to v1 and v2. Moreover the interiors of any two such paths are disjoint.

We now convert the embedded graph PCG′ = (V ′, E′) into a star components graph G, see
Fig. 4. We assume that the distance between adjacent grid vertices is 3r2. Each edge e′ ∈ E′ is
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Figure 4: Converting the embedded graph PCG′ to a star graph of components.

converted into an orbit component of G, and the set V ′ is converted into the central component of
G. We convert e′ = (v′1, v

′
2) ∈ E′ into an orbit component by placing transmitters on the path e′

as follows. Place transmitters along the path e′ beginning at the point on e′ at distance r2 from
v′1 and ending at the point on e′ at distance r2 from v′2, such that the distance between any two
consecutive transmitters is at most r1.

v’1

v’2

Figure 5: Connecting between v′1 and v′2.

We convert the set V ′ into the central component by placing transmitters as follows. For each
edge e′ = (v′1, v

′
2) ∈ E′ we place transmitters at v′1 and at v′2 and along one of the two dashed paths

between them (see Fig. 5), so that the distance between any two consecutive transmitters is at most

r1. The requirement r2 >
√

3
2r1 ensures that if we are careful then none of the transmitters along
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the portion of the dashed path connecting v′1 (alternatively, v′2) to the center of the appropriate
adjacent grid cell is within distance r1 of a transmitter belonging to an orbit component. (Notice
that we may assume that PCG is connected, since otherwise we could find a minimum vertex cover
for each of its connected components and their union would be a minimum vertex cover for PCG.)

It is easy to verify that we obtained a star components graph G. That is (i) a transmitter in
an orbit component C ′ that is assigned long range can either not reach any other component, or
can only reach the central component (as is the case for the extreme transmitters in C ′), and (ii)
for each orbit component C ′ obtained from the edge e′ = (v′1, v

′
2) there exists a transmitter in the

central component that can reach C ′, when assigned long range. The transmitters at v′1 and at v′2
are such transmitters.

Moreover, for any transmitter p in the central component, there exists a vertex v′ that dominates
it, in the sense that if both p and v′ are assigned long range, then any orbit component that can
be reached from p can also be reached from v′. Therefore when solving the range assignment
problem, we may restrict ourselves to vertices v′ in the central component. Also the total number
of transmitters that were used in the construction is polynomial in n. Finally, an optimal solution
for the range assignment problem corresponds to a minimum vertex cover for the graph PCG.

Theorem 4.1 Let r1 and r2 be any two ranges, such that r2 >
√

3
2r1. Then the problem of finding

an optimal range assignment (where r1 and r2 are the two possible ranges) for a given set P of
points in the plane is NP-Hard.
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[14] P.-J. Wan, G. Cǎlinescu, X.-Y. Li, and O. Frieder. Minimum-Energy Broadcast Routing in
Static Ad Hoc Wireless Networks. ACM Wireless Networks 8:607–617, 2002.

[15] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the Construction of Energy-Efficient
Broadcast and Multicast Trees in Wireless Networks. IEEE INFOCOM, 585–594, 2000.

[16] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Algorithms for Energy-Efficient Multicas-
ting in Static Ad Hoc Wireless Networks. ACM Mobile Networks and Applications (MONET)
6(3):251–263, 2001.

10


