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Abstract Transcriptional regulation remains one of the
most intriguing and challenging subjects in biomedical
research. The catalysis of transcription is a clear example
of multiple proteins interacting to orchestrate a biological
process, offering a starting point for the study of
biological systems. Transcriptional regulation is viewed
as one of the principal mechanisms governing the spatial
and temporal distribution of gene expression, thus the
field of transcriptional regulation provides a natural stage
for quantitative studies of multiple gene systems. Build-
ing on the body of focused experimental studies and new
genomics-driven data, computational biologists are mak-
ing significant strides in accelerating our understanding of
the transcriptional regulatory process in metazoan cells.
Recent advances in the computational analysis of the
interplay between factors have been fueled by well-
defined computational methods for the modeling of the
binding of individual transcription factors. We present
here an overview of advances in the analysis of regulatory
systems and the fundamental methods that underlie the
recent developments.

Introduction

At the foundation of metazoan cell biology is the
precisely regulated process of transcription, which gen-
erates an enormous variety of RNA molecules and
consequently a great diversity in protein forms. During
the stages of development, spatial and temporal control of
transcription is essential for differentiation, which results

in diverse cell types with specialized functions. In order to
maintain tight control of this process, a diverse array of
biochemical mechanisms has evolved, which target the
initiation, splicing, and localization of RNA within cells.
The initiation of transcription, as the first step of the
process, has received significant attention from both
experimental and computational biologists. Many of the
biochemical mechanisms underlying transcription initia-
tion have been identified and characterized, including
chromatin-mediated gene accessibility, the regulated
recruitment of the RNA polymerase machinery by
transcription factors (TFs), and the targeting of the
initiation of transcription to specific nucleotides within
each gene (Fig. 1). Research within computational
biology has addressed these three areas with varying
degrees of success.

Within the scope of this review, it is not possible to
cover the enormous breadth of experimental research that
has shaped the computational approaches. Where possible
the experimental literature will be highlighted in order to
provide descriptive examples of discoveries, ideas, and
the new methods that will shape the flow of data in the
future. For overviews of the experimental work, we
recommend a review compendium (e.g. the “Chromo-
somes and expression mechanisms” issue of Current
Opinion in Genetics and Development), as well as
specific topical reviews addressing topics such as: the
general machinery (basal) utilized by most genes (Lemon
and Tjian 2000), the importance of protein interactions
(Wolberger 1999), the modular structure of regulatory
regions (Blackwood and Kadonaga 1998; Davidson
2001), the evolution of regulatory controls (Tautz
2000), and the central role of chromatin structure (Cremer
et al. 2000; Cremer and Cremer 2001). It should be noted
that this review is restricted to transcription mediated by
RNA polymerase II (pol-II), which is responsible for the
transcription of essentially all protein-coding genes.

At the intersection of computation and biology, it is
often difficult for scientists to communicate, due to the
complexity and inconsistency of the vocabulary. For the
purposes of this report, we will attempt to restrict the
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transcription-specific vocabulary to a small set of terms
describing the biochemistry summarized in Fig. 1 (see
Table 1).

Computational advances in the study of transcription
have ranged widely, but can be grouped loosely into three
overlapping categories: identification of properties asso-
ciated with regulatory sequences (including the properties
of conservation observed in the comparative analysis of
orthologous gene sequences), construction and analysis of
quantitative models for the binding to DNA of individual

TFs, and the identification of combinations of transcrip-
tion factor binding sites (TFBSs) likely to be associated
with regulatory processes.

We provide a brief overview of the past advances, as
well as highlighting the new directions that are likely to
shape the near future in these areas.

It is noteworthy, however, that the bulk of the
computational methods in all three areas are based on
descriptions of regulatory regions rather than on an
understanding of the fundamental molecular mechanisms

Fig. 1 Overview of the regu-
lated transcription of a gene. As
illustrated, groups of transcrip-
tion factors (TFs) bind to sets of
transcription factor binding sites
(TFBSs) within or adjoining
genes to activate, amplify, or
repress gene expression. Within
the figure are examples of nu-
merous regulatory regions, in-
cluding regions proximal to the
promoter, distal regions both
upstream and downstream of
the transcription start site (TSS).
The interaction between TFs
and the basal transcriptional
machinery is partially mediated
by co-activating proteins. For
working definitions of many of
the terms refer to Table 1
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(Claverie 2000). This is not surprising in the light of the
complexities of the workings of eukaryotic transcriptional
regulation and the lack of understanding thereof. Despite
important discoveries about the transcriptional control
apparatus in eukaryotes, our knowledge about the details
of the regulation of individual genes remains dramatically
incomplete (Lemon and Tjian 2000). As chromatin
structure presents the most important and arguably the
most difficult problem in the computational analysis of
transcriptional regulation (Kadonaga 1998), we will
highlight some of the constraints which have hindered
advancements, and the emerging data which may allow
researchers to bridge the chasm between descriptive
bioinformatics and hypothesis-driven computational biol-
ogy.

Fundamentals

On the most basic level, the mechanism of transcriptional
gene regulation is orchestrated by TFs binding to specific
segments of DNA. The individual TFs interact with target
sites in the DNA to activate, amplify, or repress gene
expression. Each TF (or set of closely related TFs) has
characteristic binding properties, including the pattern
and width of its DNA-binding sites, and the energy with
which the target sequences are bound (Stormo and Fields
1998). Computational approaches for the discovery,
description, and modeling of the individual binding sites
have been well defined by a series of significant studies.

Motif models for the binding
of described transcription factors

Individual TFs are known to bind functionally to
sequences with diverse sequence characteristics. The set
of experimentally identified TFBSs for any given TF can
usually be aligned to identify a few strict sequence
requirements (presumably direct contact points between
the TFs and DNA) and a range of “preferences.” Given
sufficient binding site examples, numerous studies have
demonstrated that quantitative matrix-based approaches

can be highly effective in generating accurate models.
This subject has been extensively reviewed (Werner
1999; Stormo 2000; Ohler and Niemann 2001), and we
will restrict our comments to a few highlights.

From the body of literature, there are several key terms
to recognize. A set of known binding sites can be aligned
and the frequency of individual nucleotides at each
position counted to generate a count matrix. Figure 2a
shows a count matrix for the NF-kB TF. Here we describe
a standard approach to the construction of motifs, in
which the individual nucleotide positions are considered
to be independent (Stormo 2000). The assumption of
statistical independence of the positions is reflected in
multiplicative quantities associated with the individual
positions. In order to work with additive values from each
column, it is preferable to convert count matrices to a
logarithmic scale for computational analysis. Many
research groups use subtle variations of the conversion
function based on the number of representative binding
sites that contributed to the frequency matrix. The
resulting log-converted matrix has a variety of names;
most commonly it is called a position weight matrix
(PWM, Fickett 1996a; Fig. 2b). Recently, several studies
of TFs for which large collections of binding sites are
available have suggested that subtle improvements in
predictive performance can be achieved by modeling
higher-order interactions between positions (Udalova et
al. 2002; Bulyk et al. 2002; Roulet et al. 2002; Benos et
al. 2002). For visualization of the binding targets of
individual TFs, a convenient sequence logo (Schneider
and Stephens 1990) format has been developed (Fig. 2c).
A sequence logo builds on Shannon’s theory of informa-
tion (Shannon 1948) to convert a frequency matrix to an
information content matrix, in which each position of the
binding profile has a maximum information content of
2 bits.

There are three key observations we would like to
highlight from the vast body of literature on the
construction of binding profiles. First, Stormo and Fields
elegantly demonstrated the link between information
theory-based models and thermodynamic binding energy
to suggest that, in the best cases, PWMs produce scores
correlated with the binding energies of TFs (Stormo and

Table 1 Restricted vocabulary

Term Definition

Chromatin association of histone proteins with DNA
Core promoter region where the RNA polymerase initiates transcription
Distal location of regulatory elements outside the promoter
Position weight matrix (PWM) tool for the quantitative characterization of sequence-based properties of transcription

factor binding sites
Proximal promoter region adjacent to the core promoter, approx. –200 to +100 relative to the transcription start site
Regulatory module short (30–500 bp) region of DNA containing combinations of functional TFBS
Regulatory region general term referring to one or more regulatory modules
Transcription factor (TF) protein capable of activating, amplifying, or repressing gene expression; present in

complex with DNA
Transcription factor binding site (TFBS) short (6–20 bp) DNA segment which can be bound by a TF (often referred to as element

or cis-acting site)
Transcription start site (TSS) position where transcription is likely to be initiated
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Fields 1998). Second, Tronche et al. (1997) showed that
the majority of potential HNF-1 binding sites predicted by
a PWM model were indeed bound by the protein in vitro.
Finally, Fickett demonstrated that a binding model for
Mef2 predicted binding sites on the order of once every
5,000 basepairs (bp) in the human genome (Fickett
1996a). Given the limited subset of genes responsive to
Mef2 and the average gene size, this prediction rate
indicates there is a poor correlation between in silico
predictions and sites with function in vivo. Despite these
limitations, it can be advantageous to identify potential
TFBSs that regulate a gene of interest. Databases of

compiled motif models and sequence analysis tools are
available to screen genomic sequences for potential
TFBSs (see Table 2).

Motif discovery

Sufficient experimental data for the construction of robust
matrix models are only available for a small subset of
TFs. [For example, 108 non-redundant models for TFs of
multicellular eukaryotes are available within the ConSite
matrix collection (B. Lenhard, A. Sandelin, L. Mendoza,
N. Jareborg and W.W. Wasserman, unpublished).] As
these data are laborious to obtain, many future advances
are likely to come from ab initio motif finding. Motif
discovery has been approached from a variety of
perspectives (Ohler and Niemann 2001), which are based
on the compilation of sets of sequences known to share
characteristic regulatory control mechanisms. Such sets
may be composed of regulatory regions of co-regulated
genes identified by large-scale expression analysis (e.g.
microarrays) or orthologous regulatory regions for a
single gene from multiple species. In both cases, the
discovery of the motif is based on the expectation that the
patterns characteristic of the TFBS will be over-repre-
sented in the sequence collection compared with a
reference background of non-coding sequence.

Numerous groups have developed exhaustive algo-
rithms based on the calculation of the statistical signif-
icance for all oligomer frequencies and reporting
overrepresented oligomers (Brazma et al. 1998; van
Helden et al. 1998; Bussemaker et al. 2000). There are
three general limitations with oligo-based approaches: (1)
computational time for the analysis of long patterns is
prohibitive, (2) the output is a list of oligomers, whereas
matrices are more descriptive [current research is ad-
dressing the extension of the algorithm described in
Bussemaker et al. (2000) to matrices (Hao Li, personal
communication)], and (3) TFs often tolerate considerable
variation in their binding sites which can reduce the
sensitivity of oligo-based analysis [see Ohler and Nie-
mann (2001) for a discussion]. Another set of successful
approaches, which circumvents these problems, is based
on the extraction of matrix-binding models by performing
local multiple sequence alignments of candidate sites.
Examples are expectation maximization (EM) methods
(Lawrence and Reilly 1990; Bailey and Elkan 1995) and
Gibbs sampling (Lawrence et al. 1993). Several recent
refinements of the Gibbs sampling algorithm have been
developed: correction for biased local sequence charac-
teristics (Workman and Stormo 2000), detection of
multiple patterns (GuhaThakurta and Stormo 2001), and
analysis of discontinuous or heterogeneous patterns of
information content to more accurately model TFBSs
(Wasserman et al. 2000). A new generation of approaches
is emerging, based upon the observation that many
structurally related TFs bind to similar target sequences
(Xing et al. 2003; A. Sandelin and W.W. Wasserman,
unpublished).

Fig. 2a–c Representations of NF-kB binding sites. a Count matrix
for NF-kB resulting from an alignment of 38 experimentally
verified functional binding sites (B. Lenhard, A. Sandelin, L.
Mendoza, N. Jareborg and W.W. Wasserman, unpublished). b
Position weight matrix (PWM). The PWM elements are the
logarithms (base 2) of the frequency counts divided by expected
counts. A corrective term is added to the counts that reflects the
finite sample size (in this example 38) and avoids logarithms of
zero (“pseudocounts”, cf. Fickett 1996a). c Visualization of the
count matrix in the form of a sequence logo, showing conservation
as well as variation. The height of a stack of letters at each position
represents the information content at that position, and the relative
sizes of the letters are proportional to the nucleotide frequencies at
that position of the alignment
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Motif discovery has been extremely successful in
conjunction with microarray analysis of expression for
yeast (Roth et al. 1998), but motif discovery in human
regulatory sequences has been problematic. In yeast,
regulatory regions are typically contained in compact
segments spanning 200–500 bp upstream of functional
open reading frames, while the regulatory sequences of
multicellular eukaryotes are located within regions that
span tens of kilobases (Simpson et al. 1997). This
enormous size of regions potentially containing regulato-
ry elements in conjunction with the low binding speci-
ficity of TFs (resulting in a “weak” pattern) results in a
large number of false predictions in the analysis of genes
from metazoan species. However, the search space can be
dramatically reduced by selecting predicted patterns
likely to have sequence-specific functions by a process
termed “phylogenetic footprinting” to identify regions
preferentially conserved over evolution [reviewed in
Fickett and Wasserman (2000); see also Levy et al.
(2001)]. In particular, human–rodent comparisons have
proven a valuable resource for the identification of
functional regulatory elements (Wasserman et al. 2000;
Levy and Hannenhalli 2002). Figure 3 illustrates the
patterns of conservation for the human and hamster

cholesterol 7a-hydroxylase (CYP7A1) genes. A recent
technique uses a combination of conservation measures
and criteria such as the statistical significance of individ-
ual sites and clustering of TFBSs (Levy and Hannenhalli
2002).

Phylogenetic footprinting can be applied to gene-
specific sets of orthologous sequences for a diverse set of
species to identify functional binding elements. This has
been widely used with the abundant microbial genomes
(McCue et al. 2001; Tan et al. 2001; McGuire et al. 2000;
Rajewsky et al. 2002a; McCue et al. 2002; reviewed in
Stormo and Tan 2002). This idea has also been success-
fully developed for eukaryotes with an exhaustive method
(Blanchette et al. 2000). [See Blanchette and Tompa
(2002) for a recent pattern discovery method that
incorporates information about phylogenetic relationships
among the input sequences.] The analysis of multiple
orthologous gene sequences is of growing importance and
interest. The impact of comparative sequence analysis is
demonstrated by a study of the interleukin locus (Loots et
al. 2000), in which a coordinating regulatory region for
the interleukin 4, 5 and 13 genes was found by
comparison of 1 Mb of non-coding human and mouse
sequences.

Table 2 Suggested Internet resources

Program URL

Introductory sites and tutorials
ITP online: Introduction to molecular biology http://online.itp.ucsb.edu/online/infobio01/stormo/
ITP online: DNA–protein interactions http://online.itp.ucsb.edu/online/infobio01/stormo4/

Sequence data sources
EPD http://www.epd.isb-sib.ch/
S/MARt DB http://Transfac.gbf.de/SMARtDB/
NIH Comparative Vertebrate Genome
Sequencing Project

http://www.nisc.nih.gov/open_page.html?projects/zooseq.html

Promoter finding/CpG islands
Berkeley TSS site http://www.fruitfly.org/seq_tools/promoter.html
PromoterInspector http://www.genomatix.de/software_services/software/PromoterInspector/

PromoterInspector.html
FirstEF http://rulai.cshl.org/tools/FirstEF/

Motif scans of sequences
Transfac/ModelInspector http://transfac.gbf.de/programs/modelinspector/modelinspector.html
Tess http://www.cbil.upenn.edu/tess/
ConSite http://www.phylofoot.org

Motif discovery
Integrated expression/motif analysis htpp;//www.esat.kuleuven.ac.be/~dna/BioI/Software.html
AlignACE http://arep.med.harvard.edu/mrnadata/mrnasoft.html
Gibbs sampler http://bayesweb.wadsworth.org/gibbs/gibbs.html
Co-Bind http://Ural.wustl.edu/~dg/

Modules
TransRegio http://www.phylofoot.org.html
CISTER http://sullivan.bu.edu/~mfrith/cister.shtml
FastM http://www.gsf.de/biodv/fastm.html

Phylogenetic footprinting

VISTA/AVID http://www-gsd.lbl.gov/VISTA
BALSA http://bayesweb.wadsworth.org/cgi-bin/bayes_align12.pl
PIPMaker http://bio.cse.psu.edu/pipmaker/
FootPrinter http://abstract.cs.washington.edu/~blanchem/FootPrinterWeb/FootPrinterInput.pl
LAGAN http://lagan.stanford.edu

160



Future directions

As the individual algorithms have reached a level of
maturity, integrated analysis systems are emerging which
combine multiple techniques (e.g. Thijs et al. 2002a,
2002b; Loots et al. 2002; B. Lenhard, A. Sandelin, L.
Mendoza, N. Jareborg and W.W. Wasserman, unpub-
lished). There still are many avenues for continued
algorithmic improvements and the development of novel
techniques. By incorporating phylogenetic footprinting
directly into the modeling process, it may be possible to
build a new generation of motif discovery algorithms.
Alternatively, our growing knowledge of TFs may enable
the improved characterization of binding sites. For
instance, past advances have been made in the discrim-
ination of palindromic sequences characteristic of many
TFBSs (Lawrence and Reilly 1990; McCue et al. 2001)
(e.g. NF-kB in Fig. 2). In addition to the use of sequence
information, growing knowledge of the structural prop-
erties of transcription factors will impact computational
models.

Prediction of regulatory regions

Motif models in isolation are not sufficient for identifi-
cation of functional binding sites within metazoan
genomes. While the TFBS motif models for the binding
of individual TFs can accurately reflect the binding
properties of the protein in vitro, identification of
biologically functional sequences within a genome re-
quires more complex models. Recent advances in bioin-
formatics for the identification of regulatory regions
likely to have a function in vivo have addressed both the
sequence properties of regulatory regions and, most
importantly, cooperation between TFs.

Three recent advances elucidating the characteristic
biochemical properties of regulatory regions are particu-
larly important. First, the demonstration of the coopera-
tive nature of TFs and the presence of multiple binding
sites in locally dense clusters (Arnone and Davidson

1997; Blackwood and Kadonaga 1998; Davidson 2001;
Pearce et al. 1998) has provided fertile ground for
computational studies. Second, the observation that
transcription start sites (TSSs) for a significant portion
of genes are preferentially localized within CpG islands
(Bird 1987; Gardiner-Garden and Frommer 1987) has
belatedly altered computational approaches to the pro-
moter-finding challenge. Finally, the preferential conser-
vation of orthologous regulatory sequences over the
course of evolution is enhancing the specificity of
predictions of many methods (Wasserman et al. 2000).

Core promoters

Diverse approaches with varied results have been applied
to identify the specific segments of genes within which
transcription initiates. These “core” promoter regions
contain sequences upon which pol-II complexes are
assembled and the TSS at which extension is initiated.
Core promoters support the binding and positioning of the
TATA-binding protein (TBP) to a region approximately
30 bp upstream of the start of transcription for many
genes, often called the TATA box. “TATA box” refers to
the nucleotide pattern best defined by AT-rich motif
models for these regions (Bucher 1990; Kraus et al.
1996). The emphasis on the TATA motif in computa-
tional analysis has declined in recent years, as numerous
groups have demonstrated that TBP and the entire basal
complex can be positioned accurately in the absence of
TATA-like sequences (Smale 1997). Other suitable target
sites may be functionally substituted for the �30 region,
such as well-defined initiation regions or downstream
signals. In short, what was once viewed as a “general”
model for core promoters has grown into a continuous
range of promoter models.

The decreased emphasis on the role of TATA-boxes in
the experimental literature is paralleled by a recent re-
definition of the problems associated with the identifica-
tion of promoter sequences. Early computational algo-
rithms emphasized the precise identification of TSSs

Fig. 3 Phylogenetic footprinting. Comparison of the human and
hamster genomic sequences containing the promoter and the first
two exons of the CYP7A1 gene. Non-coding/coding portions of
exons are shown in light/dark gray. Conserved regions are shown

as gray areas between the sequences. The streaked rectangles
depict regions containing documented regulatory elements (Krivan
and Wasserman 2001 and references therein)
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within genomic sequences (reviewed in Pedersen et al.
1999). In a comprehensive review of the core promoter
finding algorithms, Fickett and Hatzigeorgiou (1997)
indicated that the “signal” provided by core promoters is
insufficient to allow accurate TSS prediction based solely
on local sequence features. It was recommended that
future approaches split the efforts into two equally
difficult problems: the identification of regions likely to
contain core promoters and the precise specification of
transcription initiation within such regions. Significant
recent advances have built on this proposed division, as
efforts to identify regions likely to contain core promoters
have improved the specificity of predictions. The first
algorithms, focused on the discrimination of promoter-
containing regions, demonstrated the benefits of the dual
approach, providing the first tools with sufficient spec-
ificity to motivate the analysis of long genomic sequences
(Scherf et al. 2001). While not originally recognized as
such, subsequent analysis demonstrated that the increase
in specificity could almost entirely be attributed to the
detection of CpG islands (Hannenhalli and Levy 2001). A
recently described algorithm produced significantly im-
proved performance by fusing detection of CpG islands
with analysis of splicing signals consistent with the 3'
edges of first exons (Davuluri el al. 2001). Another
recently published method is based on detecting a
combination of a TATA signal and a G-C-rich region
(Down and Hubbard 2002). While the technical details
vary between the algorithms, there are two clear obser-
vations: (1) promoter-containing regions associated with
CpG islands can be predicted with high specificity, and
(2) promoters situated outside CpG islands, potentially
two out of every three promoters, have proven resilient to
detection algorithms. With regard to (2), considerable
improvement of specificity for sequences not character-
ized by high G-C content may be gained from novel
methods that explicitly use information about exon
positions derived from transcript sequences (Liu and
States 2002).

Modeling of regulatory modules

Although both experimental and computational work has
long emphasized the importance of individual TFBSs, a
new paradigm has been taking root for the interpretation
of regulatory regions as clusters of TFBSs. While this
view has existed in the biological literature for a long
period, an important review clearly presented the case for
emphasizing clusters in both experimental and computa-
tional analyses (Arnone and Davidson 1997). The
burgeoning of many recent advances in the detection of
regulatory regions is based on this paradigm shift
(Michelson 2002; Halfon and Michelson 2002).

The analysis of combinations of TFBSs has taken two
forms: (1) rule-based architectures and (2) detection of
segments within genomic sequences containing overrep-
resentations of potential binding sites. The rule-based
architectures build on from studies of composite response

elements (Pearce et al. 1998), in which adjoining or
overlapping binding sites are known to functionally
interact with specific, defined spacing requirements.
Composite site computational models for two adjoining
TFBSs were applied to combinations of Mef2 and MyoD
binding sites (Fickett 1996b) and more recently to the
analysis of binding sites of members of the E2F family of
TFs in cell cycle genes (Kel et al. 2001). A recent study
examined a broad set of possible pairings based on
annotated sites in proximity (Hannenhalli and Levy
2002). A system for the analysis of such regulatory
modules has been developed for the rule-based detection
of pairs of specific TFBSs (Klingenhoff et al. 1999).

Restriction to pairs of binding sites fails to reflect the
more general clusters of binding sites identified in
laboratory studies (Arnone and Davidson 1997). For most
cases in biology, the data are insufficient to establish rigid
rules for the architectures of regulatory regions. In one
exceptional case, extensive rule-based modeling was used
to detect retroviral LTR sequences (Frech et al. 1997).
The success in this case was most likely enhanced by the
strict spatial constraints imposed upon LTR sequences by
the packaging requirements of the virus and the direct
evolutionary links between the target sequences. For more
general cases in which regulatory sequences may have
evolved independently, rule-based approaches are diffi-
cult to develop, at least in part due to sparse data. Several
projects have used a large set of binding profiles (both
matrix and string-based models) to identify statistically
significant clusters of binding sites (Crowley et al. 1997;
Wagner 1999). In order to identify regions with a tissue-
specific biological function, an algorithm was developed
that tackles the problem using explicit information about
(1) individual TFBSs and (2) their clustering in tissue-
specific modules. The method was applied to muscle-
specific regulatory regions (Wasserman and Fickett
1998), and, in combination with phylogenetic footprint-
ing, to liver-specific genes (Krivan and Wasserman
2001). In the latter case, only those predictions are
reported which fall within regions of significant conser-
vation between human and rodent sequence, reducing the
number of false positive predictions. New approaches to
the clustered sites problem have been reported (Frith et al.
2001, 2002; Berman et al. 2002; Halfon et al. 2002;
Rajewsky et al. 2002b) which offer flexibility in analyz-
ing regulatory regions that may contain multiple binding
sites for the same or different TFs.

Despite these developments, none of the module
analysis methods addresses the biochemical reality of
transcriptional regulation. In order to gain greater insights
into the biochemical mechanisms that drive transcription,
we will need increasing amounts of data produced by
detailed analysis of regulatory sequences for more genes.
With this knowledge, future models can be expected to
use more flexible combinations of binding sites with
increased attention to spacing and nearest neighbor
constraints. “Phylogenetic footprinting” has primarily
been utilized as a tool to increase the specificity of
predictions (Loots et al. 2002; B. Lenhard, A. Sandelin, L.
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Mendoza, N. Jareborg and W.W. Wasserman, unpub-
lished), but future efforts should benefit from incorporat-
ing conservation analysis into the modeling process at
earlier stages.

The validation of computational methods is an impor-
tant point that has to be addressed in order to assess the
value of in silico predictions. One possibility is the
validation of methods based on existing biological
knowledge about utilized test data sets. However, this is
not unproblematic, since experiment-based annotations
are likely to be dramatically incomplete (Loots et al.
2002). Therefore, the validation by computational means
is often indispensable (Crowley et al. 1997; Wasserman et
al. 2000). More reliable and informative, but also
laborious and expensive, are de novo studies addressing
the in vivo validation of computational predictions
(Berman et al. 2002; Markstein et al. 2002; Halfon et
al. 2002). Ultimately, the measurement of performance of
any predictive method should be carefully evaluated to
determine whether unrealistic bias is present.

Regulated access: chromatin and transcription

One of the trivia highlights of cellular biology is that the
length of human DNA if stretched out end-to-end comes
to approximately 1 m. The size of eukaryotic nuclei is on
the order of 1 mm, indicating that DNA is highly
compacted in order to fit into the nucleus. The compac-
tion is principally performed through the association of
histone proteins with DNA in a complex known as
chromatin. The fundamental role of chromatin in the
transcriptional regulatory process (Wu and Grunstein
2000; Kornberg and Lorch 1999; Kadonaga 1998; Wolffe
and Guschin 2000) and the consequent need for the
incorporation of higher-dimensional DNA structure in-
formation into computational models of transcriptional
regulation have long been recognized. Little is known
about the chromatin structure of specific regions of DNA
beyond the local nucleosome level (Polach and Widom
1996) and consequently there is no widely accepted
model for the spatial arrangement of nucleosomes. A
large number of critical biochemical questions remain to
be answered. The positioning of nucleosomes within
regulatory regions is not widely understood (Polach and
Widom 1995, 1996; Shim et al. 1998) and little is known
as to how TFs gain access to DNA-binding sites in the
presence of chromatin (Anderson and Widom 2000). A
profound understanding of chromatin structure and its
dynamics (McNally et al. 2000), which needs to be
incorporated into computational models of gene regula-
tion, is missing at the present time.

Given our lack of understanding of the biochemical
processes of chromatin-mediated regulation, opportunities
for the creation of meaningful computational approaches
have been sparse. Nevertheless, numerous researchers
have attempted to produce descriptive and predictive
tools for the analysis of chromatin. Efforts have been
made to model the physical properties of DNA based on

local sequence composition (Ohler et al. 2001). Levitsky
et al. (2001) developed a computational method for
scoring “nucleosome forming potential.” Higher concen-
trations of segments with elevated “nucleosome forming
potential” were detected in promoter regions. This was
interpreted as an indication that nucleosome positioning is
an important factor in the regulation of gene expression.
Several groups have attempted to build predictive models
for “scaffold/matrix-attached regions” (S/MAR elements,
reviewed in Bode et al. 2000). S/MARs are proposed to be
regulatory elements that associate with components of the
nuclear matrix and thereby affect both chromatin orga-
nization and gene expression. A recent attempt to predict
S/MARs in large genomic sequences is described in
Frisch et al. (2002).

Research addressing the spatial organization of the
nucleus into discrete pockets (Cremer and Cremer 2001;
Jackson 1997), has led to intriguing computational
contributions. As opposed to cytoplasmic structures,
nuclear pockets are not delineated by membranes (Dundr
and Misteli 2001), suggesting that other forces must be in
effect to preserve their integrity. One hypothesis is that
this structural regulation of nuclear architecture is medi-
ated by a set of proteins that create and maintain the
pockets. Recent computational modeling supports a
passive (indirect) mechanism (Cremer et al. 2000).
Complementing experimental data, the computational
model suggests that the transcription of genes can
maintain accessible regions, while intervening segments
of non-transcribed chromosomes are compacted.

One avenue for the analysis of chromatin organization
addresses the colocalization of genes with similar
expression characteristics. Recent studies have identified
significant correlation between the expression patterns of
adjacent genes for genes with selective breadth of
expression in yeast (Kruglyak and Tang 2000; Cohen et
al. 2000), worms (Roy et al. 2002), and flies (Spellman
and Rubin 2002; Boutanaev et al. 2002). For humans,
similar results have been observed for genes expressed in
the cardiovascular system (Dempsey et al. 2001) and
highly expressed genes (Caron et al. 2001). For the later, a
second study correcting for tandem gene duplications and
excluding data from cancerous tissues suggested that the
observed clusters were linked by breadth rather than
magnitude of expression (Lercher et al. 2002). From the
body of studies, there is sufficient motivation to develop
computational approaches for the analysis of regulatory
regions based on an expectation of correlated expression
for genes in close proximity.

Ultimately, a large source of reliable data must be
compiled for the development of mature models of
chromatin and its dynamical role in the process of
transcriptional regulation. At the sequence level there are
promising results emerging for accessibility data derived
from microarray-based chromatin immunoprecipitation
studies in yeast (Ren et al. 2000; Iyer et al. 2001). Perhaps
of equal importance in ultimately addressing the struc-
tural properties of chromatin, data about the spatial
organization of chromatin within the nucleus are begin-
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ning to emerge (Skalnikova et al 2000; Boyle et al. 2001).
Knowledge gathered from the implementation of these
new approaches is vital for the elucidation of chromatin-
mediated effects and will constitute an integral part of
future computational approaches to the modeling of in
vivo gene regulation. Recent advances in genomics
suggest a brighter future and may provide opportunities
for computational approaches to contribute to the scien-
tific discovery process in the earliest stages.

In silico analysis of transcriptional regulation

By combining improved methods for the analysis of
regulatory modules (see Fig. 4) and nuclear organization
with enhanced resources for comparative genome se-
quence analysis, it is possible to advance our understand-
ing of the transcriptional programs played out in the
nucleus of metazoan cells. Computational biologists
should seek opportunities to contribute to the formation
of improved models of transcriptional regulation. To
build a foundation for advances extending beyond the
level of primary sequence analysis, computational biol-
ogists must identify future requirements for genome-scale
experimental data. In deciphering this next generation of
novel data, computational biologists will contribute to our
understanding of the molecular mechanisms of transcrip-
tional regulation.
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