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Zusammenfassung 

Evolutionsbaume stellen ein zentrales Thema im Gebiet der Biologie dar. 
Mit der Verfiigbarkeit von grossen Mengen molekularer Sequenzdaten 
werden neue und verbesserte Methoden entwickelt, urn Evolutionsbaume 
zu bestimmen. Die Dissertation untersucht mathematische Modelle aus 
dem Gebiet der Konfliktresolution in Sequenzdaten. 

Die vorliegende Arbeit konzentriert sich auf zwei spezifische Konflikt- 
resolutions-Probleme: das Problem, Inkonsistenzen zwischen Genbau- 
men und Speziesbaumen zu erklaren; und das Problem, Konfliktgraphen, 
die man findet, wenn man Multiple Sequence Alignments (MSAs) bes- 
timmen miichte zu l&en. Beide Probleme sind NP-hart, aber effiziente 
praktische Lijsungen sind gefragt. Wir untersuchen die parameterisierte 
Komplexitat von diesen Problemen, urn effiziente Parameterisierungen 
zu finden, die zu praktischen fixed-parameter-tractable Algorithmen fiih- 
ren. Damit wenden wir die neueste Ergebnisse aus dem Informatikgebiet 
der parameterisierten Komplexitat auf Probleme aus der Computational 
Biology an. 

Diese Dissertation besteht aus drei Hauptteilen. Der erste Teil mo- 
tiviert die vorliegende Forschungarbeit und fiihrt Definitionen und Terme 
aus der Graphentheorie, der klassischen Komplexitatstheorie und der 
parameterisierten Komplexitatstheorie ein, die dann in nachfolgenden 
Kapiteln verwendet werden. Im zweiten Teil studieren wir das Problem 
der Identifikation von Speziesbaumen, d.h., korrekte Evolutionsbaume 
fur eine Menge Spezies, wenn eine Menge von (i.a. unterschiedlichen) 
Genbaumen gegeben ist. 

Wir beginnen mit einer fibersicht von mathematischen Modellen 
fiir unterschiedliche Baume und prasentieren die bekanntesten Meth- 
oden, urn die Evolutionsbaume zu berechnen. Die vorliegende Arbeit 
fasst Modelle zusammen, urn Evolutionsereignisse zu bewerten und, vom 
Duplication-und-Loss Model1 ausgehend, entwickelt neue Modelle. Zwei 
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Probleme, die daraus resultieren sind GENE DUPLICATION and MULTI- 
PLE GENE DUPLICATION. Der kleinste gemeinsame Superbaum (small- 
est common supertree) einer Menge von Genbaumen impliziert eine un- 
tere Schranke fiir die Anzahl von Genduplikationen, die niitig sind, urn 
einen Genbaum mit einem Speziesbaum zu erklsren. Wir zeigen, dass 
das SMALLEST-COMMON-SUPERTREE Problem NT-vollst%ndig und 
W[l]-hart ist, wenn es nach der Anzahl von Inputb%umen parameter- 
isiert wird. Danach untersuchen wir Eigenschaften des GENE DUPLI- 
CATION Problems, die zu einem fixed-parameter-tractable Algorithmus 
fiihren. Urn die Komplexitat des MULTIPLE GENE DUPLICATION Prob- 
lems zu analysieren, haben wir das kombinatorische Spiel BALL AND 
TRAP erfunden, das mit einen Baum der mit Ballen und Fallen bestiickt 
ist, gespielt wird. Das BALL-AND-TRAP Spiel wird dann verwendet 
urn zu zeigen, dass das MULTIPLE-GENE-DUPLICATION Problem NT- 
vollst5ndig und W[l]-hart ist. 

Das Konstruieren von MSAs ist ein fundamentales Problem in Com- 
putational Biology. Die bekanntesten Algorithmen, urn MSAs zu berech- 
nen, produzieren gewijhnlich nicht eine exakte Losung fiir beziiglich 
des zugrunde liegenden Modells, weil das Problem N?-hart ist. Das 
Hauptproblem ist die falsch Plazierung von Gaps. Im dritten Teil von 
dieser Dissertation modellieren wir dieses Problem anhand eines Konflik- 
tgraphen dessen Knoten bzw. Kanten Gaps bwz. Konflikte, reprasentie- 
ren. Das Ziel ist, die minimale Zahl von Gaps zu identifizieren, die 
die Konstruktion eines eindeutigen Evolutionsbaums verhindert. Damit 
haben wir das Problem in das VERTEX-COVER Problem transformiert. 
Fiir das ~-VERTEX-COVER Problem fassen wir bekannte fixed-parame- 
ter-tractable Algorithmen zusammen und entwickeln einen neuen fixed- 
parameter-tractable Algorithmus, urn Konfliktgraphen zu l&en. Die 
Hauptidee dieses Algorithmus ist eine verbesserte Kernelization, welche 
durch neue Reduktionsregeln und eine verbesserte Struktur des Such- 
baumes erreicht wurde. Die Zeitkomplexit% dieses Algorithmus ist 
O(kn+r”k), T M 1.2906, was den bisher besten Algorithmus von Nieder- 
meier and Rossmanith, mit einer Laufzeit von O(kn+r”.IC’), r M 1.2917, 
verbessert . 



Abstract 

Evolutionary trees, trees that reflect the ancestral relationships among 
species, have been a central topic in biology for many years. With the 
availability of large amounts of molecular sequence data, new and im- 
proved methods for estimating evolutionary trees are being developed. 
This dissertation investigates mathematical models in the area of con- 
flict resolution in sequence data. This thesis concentrates on two specific 
conflict resolution problems: the problem of resolving inconsistencies 
between gene trees and species trees; and the problem of resolving con- 
flict graphs encountered when computing Multiple Sequence Alignments 
(MSAs). Both problems are NP-hard, but require efficient solutions in 
practice. We investigate the parameterized computational complexity of 
these problems to find effective parameterizations, which lead to practi- 
cal fixed-parameter-tractable algorithms. Thus, we apply recent results 
of the computer science field parameterized complexity to problems of 
computational biology. 

The thesis consists of three major parts. Part I provides motiva- 
tion for this research and introduces definitions and terms from graph 
theory, classical computational complexity, and parameterized compu- 
tational complexity used in subsequent chapters. In Part II we study 
the problem of identifying the species tree, that is, the evolutionary 
tree, for a set of species, when a set of (usually contradictory) gene 
trees is given. We begin with a survey of mathematical models for 
contradictory trees and present the best known methods for computing 
evolutionary trees. The thesis then surveys and develops models for 
counting evolutionary events based on the duplication-and-loss model. 
Two resulting problems are GENE DUPLICATION and MULTIPLE GENE 
DUPLICATION. The smallest common supertree of a set of gene trees 
implies a lower bound for the number of gene-duplication events nec- 
essary to rectify the gene tree with respect to a species tree. We show 
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that the SMALLEST-COMMON-SUPERTREE problem is NP-complete and 
W[l]-hard when parameterized by the number of input trees. We then 
investigate properties of the GENE DUPLICATION problem, which lead 
to a fixed-parameter-tractable algorithm. To analyze the complexity of 
the MULTIPLE GENE DUPLICATION problem, we invented a combinato- 
rial game called BALL AND TRAP which is played on a tree decorated 
with balls and traps. Using the BALL-AND-TRAP GAME, we show that 
the MULTIPLE-GENE-DUPLICATION problem is N’P-complete and W[l]- 
hard. 

Constructing MSAs is a fundamental problem in computational bi- 
ology. The best known algorithms for computing MSAs usually fail to 
produce an exact solution corresponding to the underlying model due to 
the NT-hardness of this problem. The main problem is the misplace- 
ment of gaps. In Part III of this dissertation, we model this problem by 
means of a conflict graph where the vertices and edges represent gaps 
and conflicts, respectively. The goal is to identify a minimum num- 
ber of gaps which prevents the construction of a unique evolutionary 
tree. Thus, we have transformed the problem into the VERTEX-COVER 
problem. We present a survey of known fixed-parameter-tractable al- 
gorithms for the ~-VERTEX-COVER problem and develop a new fixed- 
parameter-tractable algorithm to resolve conflict graphs. The main idea 
of this algorithm is an improved kernelization accomplished by new re- 
duction rules and an improved structure of the search tree. The time 
complexity of this algorithm is O(lcn + r”lc), T M 1.2906, improving on 
the previous best algorithm by Niedermeier and Rossmanith, which runs 
in O(kn + rk . lc’), T M 1.2917. 
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Chapter 1 

Introduction 

1.1 Motivation 

Evolutionary trees, trees that reflect the ancestral relationships among 
species, have been a central topic in biology for many years. With 
the availability of large amounts of sequence data (nowadays DNA and 
amino acid sequence data), which provide a rich source of information, 
new and improved methods for estimating evolutionary trees are be- 
ing developed. As a result, many interdisciplinary research programs 
have emerged to store, manipulate, analyze, and visualize sequence data 
effectively. 

This dissertation investigates selected mathematical models in the 
general area of conflict resolution in molecular sequence data. Conflicts 
in molecular sequence data arise, for example, due to random events 
amplified by the evolution of species, the wrong interpretation of exper- 
imental data, or the incorrect manipulation and storage of data. 

In this thesis, we concentrate, in particular, on mathematical models 
for two specific conflict resolution problems: 

1. the problem of resolving inconsistencies between gene trees and 
species trees; and 

2. the problem of resolving conflict graphs encountered when com- 
puting multiple sequence alignments. 

As many problems in this area, both investigated problems are N/p-hard 
but require efficient solutions in practise. 
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The most famous approaches to deal with N’P-hard problems are heuris- 
tics [32] and approximation algorithms [43]. Another way to deal with 
NP-hard problems is to study the parameterized complexity for reason- 
able parameterizations of the problems [19]. Thus, this interdisciplinary 
thesis applies recent results of the computer science field parameter%& 
complexcity to problems in computational biology. 

1.2 Problems 

We first study the problem of identifying the correct species tree, that 
is, the correct evolutionary tree for a set of species, when a set of (usu- 
ally contradictory) gene trees is given (cf. Figure 1.1). A gene tree is 
an evolutionary tree built over families of homologous genes. Two genes 
are said to be homologous if they evolved from a common ancestor. The 
inconsistencies among the different gene trees are caused by gene di- 
vergence and are the result of either a speciation event or a duplication 
event. A speciation event takes place in the genome of the least com- 
mon ancestor taxa of the two corresponding genes whereas a duplication 
event occurs during evolution [22, 421. We focus on mathematical mod- 
els explaining the contradictions in the topologies of the gene trees via 
gene-duplication events and subsequent losses, that occur during the 
evolution of a gene family [36, 59, 731. 

The second problem we consider in this dissertation concerns the reso- 
lution of conflict graphs. This problem has important practical applica- 
tions in other areas of computer science, including fault-tolerant LCD 
digit design and traffic-light design. In computational biology, conflict 
resolution occurs when, for example, when constructing Multiple Se- 
quence Alignments (MSA). MSAs can be used for building evolutionary 
trees and for predicting the secondary structure of proteins; both are 
fundamental problems in computational biology. 

The problem of computing MSAs for different biological models is 
N’P-hard [13, 34, 39, 44, 711. The known methods for computing MSAs 
usually fail to produce an exact solution. Often, the computed MSAs do 
not allow building a unique corresponding evolutionary tree (assuming 
the existence of an evolutionary tree corresponding to an MSA). One 
way to deal with this problem is to detect conflicts among sequences 
and then to transform the problem into a conflict graph where the se- 
quences correspond to the vertices and the conflicts to the edges in the 
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What is the correct species tree? 

What is the correct species tree? 

Figure 1.1: Gene trees are evolutionary trees built over families of homol- 
ogous genes (upper figure). Given contradictory gene trees, the question 
is how to resolve the species tree. The species tree is not necessarily one 
of the given gene trees (lower figure). 
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graph. The goal then is to eliminate the minimum number of sequences 
(vertices) such that there is no conflict in the multiple sequence align- 
ment of the remaining sequences. The graph problem to solve here is 
the N’P-complete problem VERTEX COVER [19, 21, 31, 461. 

1.3 Approach and Major Results 

The dissertation consists of four major parts. The first part collects the 
theoretical foundations necessary for the thesis. Part II investigates the 
problem of resolving inconsistencies between gene trees with respect to 
a species tree. Motivated by the MSA problem, Part III studies the res- 
olution of conflict graphs on the example of VERTEX COVER. Part IV 
concludes the dissertation and poses open problems. 

Part I: In Chapter 2, we provide a short introduction to the necessary 
graph theory, and we sketch the basics in classical and parameterized 
complexity theory. In parameterized complexity analysis 1191, the goal is 
to identify useful ranges of a parameter Ic, e.g., for an N’P-hard problem 
and determine if the problem (for instances of size n) can be solved in 
time f(k)ncY for some constant a: independent of the parameter. This 
behavior (fixed-parameter tractability) can be viewed as a generalization 
of ‘P-time. The analog of NT in parameterized terms is the complexity 
class W[l]. 

Part II: Assuming the evolution of a set of organisms is explainable 
by means of an evolutionary tree, we study the problem of resolving the 
correct species tree for a given set of (possibly contradictory) gene trees. 
Chapter 3 gives the biological background for this part. Related work 
to this problem is presented in Chapter 4. Chapter 5 introduces models 
that count evolutionary events to measure the inconsistencies between 
a gene tree and its corresponding species tree. 

Besides a general concept for these kinds of models (Section 5.1), we 
describe the DUPLICATION-AND-LOSS MODEL [36, 38, 731. The GENE- 
DUPLICATION MODEL (Section 5.3) is a restriction of the DUPLICATION- 
AND-LOSS MODEL to gene-duplication events only. Both the DUPLICA- 
TION-AND-LOSS MODEL and the GENE-DUPLICATION MODEL treat gene 
duplications as independent events and compute the minimum number 
of events (duplication and/or losses) necessary to rectify a gene tree with 
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respect to a species tree. In Section 5.4 we introduce the MULTIPLE- 
GENE-DUPLICATION MODEL. Here gene duplications are not necessar- 
ily independent events; the model takes into account the evidence that 
genomes (e.g., Eukaryotic organisms) have been entirely duplicated one 
or more times or individual chromosomes (or parts of it) have been du- 
plicated multiple times [29, 37, 38, 631. 

Resulting from these models, we discuss the problems GENE DUPLI- 
CATION (Chapters 6 and 7) and MULTIPLE GENE DUPLICATION (Chap- 
ter 8). GENE DUPLICATION asks for the species tree which implies the 
smallest number of gene duplications necessary to rectify a set of gene 
trees with respect to the species tree; MULTIPLE GENE DUPLICATION 
asks for the species tree which implies the smallest number of multiple 
gene duplications necessary to rectify a set of gene trees with respect to 
the species tree. 

SMALLEST COMMON SUPERTREE, the problem discussed in Chap- 
ter 6, has an interesting relation to GENE DUPLICATION since it implies 
a lower bound of the number of gene duplications necessary to rectify 
a set of gene trees with an optimal species tree. Given a set of binary 
trees, SMALLEST COMMON SUPERTREE asks for a smallest binary tree 
that is a supertree of the input trees. Though we show that the problem 
is W[l]-hard when parameterized by the number of input trees (Sec- 
tion 6.2), the problem becomes fixed-parameter tractable when a small 
number of duplicated leaves is permitted additionally in the output tree 
(Section 6.2.2,[25]). 

In Chapter 7, we present a fixed-parameter-tractable algorithm for 
the NP-complete problem GENE DUPLICATION when parameterized by 
the number of gene duplications. In contrast to GENE DUPLICATION, 
MULTIPLE GENE DUPLICATION is NP-complete even when the species 
tree is given and restricted to only two input trees (Chapter 8). Here, 
we also prove W[l]-hardness of MULTIPLE GENE DUPLICATION for a 
reasonable parameterization. 

Part III: We first describe the basic ideas of the known fixed-parameter- 
tractable algorithms of ,&VERTEX COVER (Chapter 9). While the best 
algorithm in the literature runs in time O(kn + rlc . lc’), r M 1.29175, 
[58], we present an improved fixed-parameter tractable algorithm with 
a complexity of O(kn + r”lc) and r M 1.2906 (Chapter 10). 

In Chapter 11 we compare an implementation solving VERTEX CO- 
VER, which uses a fixed-parameter-tractable algorithm for &VERTEX 
COVER, with two heuristics for VERTEX COVER. 
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Part IV concludes this thesis with Conclusions and Open Questions. 



Chapter 2 

Preliminaries 

This chapter begins with a presentation of the graph theoretical nota- 
tions used in subsequent chapters. Section 2.2 is a brief introduction to 
classical complexity theory; parameterized complexity theory is intro- 
duced in Section 2.3. By means of two examples, namely the famous 
CLIQUE and VERTEX COVER problems, we point out the likely differ- 
ences between W[l]-hardness and fixed-parameter tractability (Section 
2.3.2). 

2.1 Notation 

A graph G = (V,E) consists of a set of vertices V and a set of edges 
E, where E C (y) is a set of unordered pairs. Usually, we denote 
the number of edges IEl by m and the number of vertices IV1 by n. 
The graph G* = (V”, E*) is called the complementary graph of graph 
G=(V,E)ifV*=VandE*=(y)-E. 

A path p(u, u) in G = (V, E) from vertex 2~ E V to vertex v E V is 
an ordered set p(2~,~) = [u, ~11, ‘us,. . . , ‘uk, v] of vertices of V such that 
(u,v~),(~~,w)~E,and(w~,w~+~)~Efori=l,..., k-l(lc~N)). F’ur- 
thermore, in our context for a path ~(21, v) all the edges (ZL, WI), (u,+, v) E 
E and (‘ui, wi+r) E E (i = 1,. . . , Ic - 1) are pairwise distinct. The length 
]p(u, u)] of a path p(u, w) = [u, ~1, ~2,. . . ,‘uk, IJ] is L+ 1, namely the num- 
ber of edges between u and u in p(u,v). The vi, i = 1,. . . , Ic, are called 
the elements of path p(u, w) (in short, vi E p(zl, w), i = 1,. . . , lc). A path 
p(u,v) in G of length at least 3 with IL = v, u # ~1,. . . , vk, and vi # u~j 
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for i # j is called a cycle in G. 
If (v, w) E E, then we call w and v neighbors (or adjacent vertices). 

The neighborhood of a vertex v is N(v) = {2o](v, w) E E}. For u, v E V, 
we abbreviate N(u) U N(v) by N(u, u). N[v] = N(v) U {w} denotes the 
closed neighborhood of v E V. 

The degree deg(v) of a vertex ‘u E V is defined to be deg(v) = IN(v)). 
Let zr E N. A graph G = (V, E) is called x-regular if deg(v) = z for all 
v E v. 

Let G = (V,E) be a graph and let V’ 2 V. Glv, = (V’,E’), E’ = 
{(u,v)Ju, v E V’ and (u, U) E E}, is called the restriction of G to V’. A 
graph G’ = (V’, E’) is called a subgraph of G = (V, E), if V’ C_ V and 
E’ C E. We denote the subgraph property with G’ C G. 

For a graph G = (V, E) and a vertex u E V we write G-u to denote 
G] v--(~), the graph G without the vertex u. For a set V’ we write G-V’ 
for G]v.-vf. 

A tree T = (V, E) is a connected, acyclic graph. A rooted tree T = (V, E) 
is a tree with a distinguished vertex root(T), called the root of T. For 
each vertex v there is exactly one vertex v’, (v,v’) E E, such that v’ is 
on the (unique) path from v to the root in T. ‘u’ is called the parent of 
v. We denote v’ with parentT(v). All the other vertices w, w # v’ and 
(v, w) E E, are called the children of v in T. Vertices having no children 
are called leaves of T. Every vertex having one or more children is called 
an internal vertex of T. For each vertex v E V, all the vertices belonging 
to the path p(v, root(T)) are ancestors of v. All trees occurring in this 
thesis are rooted trees. We simply call them trees. The size ITI of a tree 
T = (V, E) we define to be ITI = IV(. 

A tree is binary if each internal vertex has at most two children. A 
tree is complete binary if each internal vertex has exactly two children. 
For each v E V in a complete binary tree T we call the two children vl 
and II, of v, the left child and the right child of v. Due to algorithmic 
reasons we use the ordered version of a complete binary tree, although 
in most cases we make no use of the ordering. 

A leaf-labeled tree T = (V, E, L) is a tree with vertex set V, edge set 
E, and a set of labels L, where each leaf IJ E V is labeled by an element 
1 E L, denoted by e(v) = 1. We say T = (V, E, L) is a leaf-labeled tree 
over L, if for each 1 E L there is a leaf v E V such that Z?(v) = Z.Then L 
is called the lea&et of T. 

Let T = (V, E, L), T’ = (V’, E’, L’) be leaf-labeled trees. T’ is a 
subtree of T, T’ <top T, if T’ is contained in T by topological containment 
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that respects ancestry with label isomorphism at the leaves. For a leaf- 
labeled tree T = (V,E,L) and a vertex u E V, T(u) = (V’,E’,L’), 
V’ = {v E V/u is on the path p(v, root(T))} and E’ = {(v, w)lv, w E V’ 
and (v, w) E E}, is the subtree of T induced by u. The leafset of T(u) is 
denoted by LS(u) = L’. 

A leaf-labeled tree T = (V, E, L) is called a p-tree (for phylogenetic 
tree) if there are no two leaves labeled by the same leaf label. Otherwise, 
we call T an rl-tree (or repeated-leaf tree). That is, in rl-trees leaf labels 
may be repeated. Using p-trees, we simplify the notation of a leaf-labeled 
tree T = (V, E, L) over L by identifying the leaf labels and the leaves: 
we define e(v) = v for all leaves v in T. Thus, L c V denotes the set of 
leaves in a p-tree T. 

We call two leaf-labeled p-trees Tl = (VI, El, L1) and T2 = (Vz, E2, Lz 
to be leaf-labeled isomorphic, Tl E Ts, if Tl stop T2 and L1 = L2. 

Suppose we are given a leaf-labeled tree T = (V, E, L) over L and a 
set L’ C L. A least common ancestor Zca(L’) in T is a vertex u, u E V, 
s.t. 

1. L’ C LS(u), and 

2. there is no vertex x in T(u), z # u, with L’ C LS(x) 

Note, that the least common ancestor of a set of leaves is unique when 
a p-tree is given. 

2.2 Classical Computational Complexity 

In this section, we give the necessary definitions of classical computa- 
tional complexity theory. For further background we recommend the 
book Computers and Intractability by Garey and Johnson [31]. We as- 
sume basic knowledge in formal language theory. 

A decision problem II consists of a set Dn of instances and a subset 
Yn c Dn of yes-instances. For any finite set C of symbols, C* denotes 
the set of all finite strings of symbols over C. If 1-: is a subset l C C* 
we say that L is a language over the alphabet C. 

Given an encoding scheme e for a problem II, the connection be- 
tween decision problems and languages is represented by QI, e] = {x E 
C*]C is the alphabet used by e, and z is the encoding under e of an 
instance I E Yn}. Usually we abbreviate C[II, e] by L . 
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A deterministic Turing-machine program M with input alphabet C ac- 
cepts z E C* if and only if A4 halts in the distinguished accepting state 
when applied to input x. The language JCM recognized by the machine 
M is given by CM = {x E C* IA4 accepts x}. We define the time- 
complexity function TM : Z+ + Z+, TM(~) = max{ml there is an 
x E C* with 1x1 = n, such that the computation of A4 on input x 
takes m steps}. A deterministic Turing-machine program M is called 
a polynomial-time deterministic Turing-machine program if there exist 
a polynomial p such that, for all n E Zf, TM(n) 5 p(n). 

We define the class ‘P, the class of polynomial-time algorithms. 
P = {Cl there is a polynomial-time deterministic Turing-machine pro- 
gram M for which L = LM}. To introduce the class NT’, the class 
of all languages recognizable nondeterministically in polynomial time, 
we define for a nondeterministic Turing-machine program M, the time- 
complexity function TM : Z+ + Z+: TM(n) = max({l}U{ml there is an 
x E ,CM, 1x1 = n, such that the time to accept x by M is m}). A non- 
deterministic Turing-machine program M is called a polynomial-time 
nondeterministic Turing-machine program if there exist a polynomial p 
such that TM(n) 5 p(n) for all n > 1. Finally, NP = {Cl there is a 
polynomial-time nondeterministic Turing-machine program M for which 
c = CM). 

A polynomial transformation from a language Lr c CI to a language 
Lz C YEa is a function f : CT + ,Ea that satisfies the following two 
conditions: 

1. There is a polynomial-time deterministic Turing-machine program 
that computes f. 

2. For all x E CT, x E ,Lr if and only if f(x) E Lz. 

A language C is NP-complete, if 

1. ,C E NP, and 

2. for all languages L’ E NT there is a polynomial transformation 
from L’ to L. 

We call L NT-hard, if it satisfies condition 2. 



2.3 Parameterized Computational 
Complexity 13 

2.3 Paramet erized Computational 
Complexity 

The theory of parameterized complexity was introduced by Downey and 
Fellows [15, 16, 17, 18, 191; for a detailed introduction in the area we 
recommend [19]; our surveys about coping with intractability in terms 
of parameterized-complexity theory give a brief introduction [20, 211 
(joined work with Downey and Fellows). 

2.3.1 Definitions 

A parameterized language L: is a subset C C C* x IV. If C is a pa- 
rameterized language and (2, k) E l, then we will refer to z as the 
main part, and to Ic as the parameter. A parameterized language C is 
fixed-parameter tractable if it can be determined in time f(lc)na whether 
(2, Ic) E L, where 1x1 = n, LY is a constant independent of both n and Ic, 
and f is an arbitrary function. The class of fixed-parameter-tractable 
parameterized languages is denoted F’P’T. Note that the class .ZVV is 
unchanged if the definition above is modified by replacing f(k)n” by 
f(k) + 7P.l About half of the naturally parameterized problems cata- 
loged as A@-complete by Garey and Johnson [31] are in KJV [19]. 

Let ,C and .C’ be parameterized languages. We say that C reduces to 
.C’ by a parameterized reduction if there is an algorithm which transfers 
(x, k) into (x’,g(R)) in time f(k)lxI”, where f,g : N + N are arbitrary 
functions and Q is a constant independent of k, so that (2, k) E C if and 
only if (~‘,g(k)) E L’. 

The parameterized analog of the complexity class NP is W[l]. More- 
over, W[l]-hardness is basic evidence that a parameterized problem is 
likely not to be fixed-parameter tractable. The analogy is very strong, 
since the ~-STEP HALTING PROBLEM for nondeterministic Turing- 
machines is complete for W[l] [12]. 

Before we define the class W[l] we need some definitions. Let us consider 
Boolean expressions as Boolean circuits (e.g., a 3-conjunctive normal 

lTo see this useful property we consider a running time of f(k)na. Then there 
exists a function g(k) such that g(k)+na+’ is also a time bound. Let g(k) = f(k)*+‘. 
We show f(k)na 5 g(k) +na+l for all n and k. If n 5 f(k) then g(k) 2 f(k)na. If 
n > f(k) then n”+l 2 f(k)na. - 
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formula is a Boolean circuit consisting of one input (of unbounded fan- 
out) for each variable, a possibly inversion gate for each variable, and if 
built of a large and of small ors with a single output line). More general, 
a decision circuit C is a Boolean circuit with exactly one output line. 
Given x E (0, l}“, an input vector to the n input lines of C, C(x) is 
said to be true if the output line has value 1. Otherwise, it is said to be 
false. 

For a decision circuit we define small gates to be not gates, and gates, 
and or gates with some predetermined bound on fan-in, and large gates 
to be and gates and or gates with unrestricted fan-in. A decision circuit 
is of mixed type if it consists of circuits having small gates and large 
gates. 

A Boolean circuit has fan-out one. The depth of a circuit C is defined 
to be the maximum number of gates (small or large) on any path in C 
from the input variables to the output line. The weft of a circuit C is 
defined to be the maximum number of large gates on any path from 
the input variables to the output line. A family of decision circuits F 
has bounded depth if there is a constant h such that every circuit in the 
family F has depth at most h. F has bounded weft if there is a constant 
t such that every circuit in the family F has weft at most t. A decision 
circuit has a satisfying assignment of weight k if the assignment is true 
and it has exactly k variables set to be true. 

Let F={C1,&,... , Ci, . . . } be a family of decision circuits. Asso- 
ciated with F is a parameterized language .CF = ((Ci, k)(Ci has a weight 
k satisfying assignment}. 

A parameterized language l belongs to the class W[l] if L reduces 
to the parameterized problem fZ~(r,h) for the family F(1, h) of mixed 
type circuits of weft at most 1 and depth at most h, for some constant 
h. 

A parameterized language L is W[l]-complete, if 

1. C E W[l], and 

2. for all parameterized languages f?, .C’ E W[l], ,!Z’ reduces to L by 
a parameterized reduction. 

We’call ,!I W[l]-hard, if it satisfies condition 2. 

What about the practicality of a fixed-parameter-tractable algorithm? 
Of course, considering a running time of O(f(k)na) of an algorithm for 
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a fixed parameter k, the range of k depends strongly on the function f. 
Downey and Fellows introduce the klam value which is the largest Ic such 
that f(k) 5 10” to characterize the practicality of a fixed-parameter- 
tractable algorithm [19]. In the example of ~-VERTEX COVER, (cf. Pro- 
blem 2.1 and Problem 2.3) we present our fixed-parameter-tractable al- 
gorithm which has a klam value of 157 (cf. Chapter 10). 

2.3.2 Two Examples: Clique and Vertex Cover 

In 1972, Karp proved, in one of his seminal papers, that both CLIQUE 
and VERTEX COVER are NP-complete [46]. 

The classical versions 

Problem 2.1. VERTEX COVER 
Instance: A graph G = (V, E), a positive integer k. 
Question: Does G have a k-vertex cover (i.e., does there exist a subset 

V’ C V, (V’I 5 Ic, such that for each (x, y) E E either x or y belongs 
to V’)? 

Problem 2.2. CLIQUE 
Instance: A graph G = (V, E), a positive integer k. 
Question: Does G have a clique of size 1 lc (i.e., does there exist a 

subset V’ C V, IV’/ > Ic, such that (:‘) E V?)? 

In fact, the NP-completeness of CLIQUE is shown via a reduction from 
VERTEX COVER. It turns out that the complexity of the naturally 
parameterized versions of these problems is likely to be different. 

The parameterized versions 

Problem 2.3. ~-VERTEX COVER 
Instance: A graph G = (V, E), a positive integer Ic. 
Parameter: k. 
Question: Does G have a /c-vertex cover (i.e., does there exist a subset 

V’ E V, IV’] 5 5, such that for each (s,y) E E either x or y belongs 
to V’)? 
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Problem 2.4. K-CLIQUE 
Instance: A graph G = (V, E), a positive integer Ic. 
Parameter: le. 
Question: Does G have a clique of size 2 Ic (i.e., does there exist a 

subset V’ c V, IV’1 > Ic, such that (\‘) C V?)? 

While ~-CLIQUE is shown to be W[l]-complete [X3], ~-VERTEX COVER 
is fixed-parameter tractable. This follows directly from this observation. 

Observation 2.1. Given a graph G = (V, E). Then for each v E V 
and each vertex cower VC of G 

v E VC or N(v) G VC. 

Thus, given an input (G, k), the original input graph G has a k-vertex 
cover if (G - w,lc - 1) or (G - N(v),k - IN(v)]) has a solution. Since 
the fixed parameter L reduces in each such step by at least one, we 
can decide in time O(2”IVI) whether G has a vertex cover of size Ic 
[16, 241. The technique used, the method of bounded search trees, is 
described below. For further historical information and an improved 
fixed-parameter-tractable algorithm for ~-VERTEX COVER running in 
time O(klVI + r”k), r m 1.2906, we refer to Part III. 

2.3.3 .FTp7 Techniques 

We describe two important techniques for constructing fixed-parameter- 
tractable algorithms. The first technique, the method of reduction to a 
problem kernel, can be applied not only as a preprocessing step but also 
at each node of a bounded search tree. 

The method of reduction to a problem kernel 

The main idea of this technique is to reduce in polynomial time the 
given problem (5, k) to an equivalent problem where the problem size 
is bounded by a function of JL More precisely, this method reduces a 
problem instance I to an equivalent instance I’, where the size of I’ 
is bounded by some function of the parameter k. The instance I’ is 
exhaustively analyzed, and a solution for I’ can be lifted to a solution 
for I in the case where a solution exists. Often, this technique leads 
to an additive rather than a multiplicative f(k) exponential factor. We 
will illustrate this technique in Chapter 10 using the ~-VERTEX COVER 
example. 
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The method of bounded search trees 

This method was first introduced by Downey and Fellows in [17]. The 
idea here is to maintain a bounded search tree of the different possibilities 
for finding a solution of the problem (z, k). A search tree is a rooted tree 
bounded in the size by a function f(k). To avoid confusion we call the 
vertices of a search tree nodes. The nodes of the search tree are labeled 
by k-solution candidate sets. The search tree does not have to be small 
(i.e., an exponential size is allowed). 

In general, a fixed-parameter-tractable algorithm using the method 
of bounded search trees is described as follows. 

1. Compute a search tree. 

2. Run an efficient algorithm on each branch of the tree. 

If the size of the search tree depends only upon the parameter, then, for 
a fixed k, the search tree becomes constant size and the algorithm is then 
efficient for each fixed k. This method is illustrated with the examples of 
GENE DUPLICATION (Problem 7.1, Chapter 7) and ~-VERTEX COVER 
(Section 10.3). 
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Chapter 3 

Biological Background 

In the past, the main source of information for the reconstruction of 
evolutionary relationships among species was studying the history of a 
character. Characters are independent variables where values are col- 
lections of mutually exclusive character states (e.g., in the binary case: 
“Does a species have wings?“) [42]. It is of prime importance to study 
homologous characters. These are characters that are based on evolu- 
tionary comparable structures [22]. 

As DNA sequences become easier to obtain, the evolution of a gene 
receives more importance. We consider homologous genes of different 
taxa that have an analogous function in their organisms. A set of ho- 
mologous genes is called a gene family. 

To compare gene trees of different gene families for one set of taxa, 
one usually exposes inconsistencies among the different gene trees [8, 36, 
591. We consider inconsistencies caused by gene divergence like specia- 
tion events or duplication events (cf. Figure 3.1). If the common ancestry 
of two homologous genes can be tracked back to a speciation event, then 
they are said to be related by orthology; two such genes are called or- 
thologous. If the ancestry is traced back to a gene-duplication event, 
then they are related by paralogy [29, 421 and the two genes are called 
paralogous (cf. Figure 3.2). Once a gene has been duplicated, each copy 
can evolve independently. Thus, a single species may contain several 
copies of what was a single gene in an ancestor. 

When we talk about gene duplications we only mean the duplicated 
genes which are accepted from their organisms. There is ample evidence 
that gene duplication is the most important mechanism for generat- 
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Gene Duplication 

. ..TATAACCGJ~TTAC(.C;;ACCTTTATACTGCCGTAGCT,,, 

Figure 3.1: An example of a gene duplication on a DNA sequence is 
shown in the upper figure. The gene (red) is replicated and inserted 
in the DNA sequence. In the lower figure an example of a gene loss, 
caused by a mutation is shown. In one of the duplicates of a gene, a 
mutation changed the base A into base C. Thus, the gene can loose its 
functionality. Gene losses can be caused by other evolutionary events 
like insertions or deletions. 

ing new genes and new biochemical processes that have facilitated the 
evolution of complex organisms from primitive ones [51]. A duplicate 
gene may accumulate harmful mutations and become nonfunctional, as 
long as the other duplicate gene is functioning normally. These non- 
functional duplicate genes are called pseudogenes [51]. The existence of 
pseudogenes is much more likely than the possibility that a gene evolves 
into a new gene. In the model considered in this dissertation we do not 
distinguish between gene losses, pseudogenes, and newly evolved genes. 
We simply consider them all as gene losses (cf. Figure 3.1). 

We assume the existence of an evolutionary tree for all the taxa 
we talk about. Furthermore, we make the basic assumption that we 
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have exactly one gene from each contemporary species present in a gene 
tree [36, 38, 591. We postulate gene losses for all the other possible 
homologous. 

- duplication 

m speciation 

AB 1 C D2 3EF 

Figure 3.2: The evolution of a gene family (red). The phylogeny for the 
taxa 1,2, and 3 is the black tree. Orthologous are: A and C, B and D, 
AC and E, and BD and F. Paralogous in 1,2, and 3 are: A and B, C and 
D, and E and F, all caused by the duplication of the ancestor gene X). 

Where does a duplication event happen? A duplication event involves a 
stretch of DNA in the genome of an organism. Thus, a duplication event 
can effect one or more genes at once (cf. Figure 3.3). We talk about a 
multiple gene duplication if a set of genes was duplicated in one event 
creating a set of paralogous genes. 
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gene 1 gene 2 

. ..TATAACCGATTTGTACGCGACCTTTATACTG... 

/ *- 

/ \ 
. ..TATAACC(.AI’ITGTAC(;CGACACCTTACCGA”I”’I’TGTAC(;CC;CTATACTG.., 

gene I ’ gene 2’ gene 1” gene 2 

Figure 3.3: An example of a multiple gene duplication. Note that more 
than one gene is duplicated at once. 



Chapter 4 

Mat hemat ical Models of 
Contradictory Trees 

In this chapter, we give a short overview of the most famous approaches 
in the literature for computing a tree describing common properties of a 
given set of contradictory trees over a leafset L. Three different types of 
methods can be found in the literature: consensus methods, agreement 
methods, and the duplication-loss approach. Consensus trees (Section 
4.1) as well as agreement trees (Section 4.2) preserve mathematical prop- 
erties of trees but have little intuitive justification in a biological sense. 
In mathematical terms, a consensus tree is a leaf-labeled tree, possibly 
an rl-tree. Since this thesis focuses on rooted trees only, we ignore the 
unrooted versions of agreement and consensus trees and refer to the cited 
articles. As an example Figure 4.1 depicts different consensus and agree- 
ment trees for a given set of input trees. The duplication-loss approach 
in detail is discussed in Chapters 5, 6, 7, and 8. 

4.1 Consensus Trees 

A consensus tree T = (V, E, L) is a leaf-labeled tree over leafset L, built 
from a set of binary p-trees (all over leafset L). In this section, we give a 
short overview of the main concepts of consensus trees in the literature. 
The strict consensus tree [54, 70, 721 is a consensus tree containing all 
the internal vertices inducing subtrees whose leafsets agree with a leafset 
of an induced subtree of each of the input trees. Obviously, the strict 
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“rn “)Kn 
AB C D BC D A 

A B C D ABCD B C D 
Figure 4.1: (1) and (2) are two gene trees. (a) is the Adams consensus 
tree (1) and (2); (b) is the strict consensus tree of (1) and (2), and (c) 
the maximum agreement subtree (1) and (2). 

consensus tree is not very informative and therefore various extensions 
exist (cf. Figure 4.1 (b)). 

The most popular consensus tree is the Adams consensus tree [l, 2, 
53, 54, 70, 721. It can be viewed as a refinement of the strict consensus 
tree. The Adams consensus tree T, for a given set of input trees, is built 
starting at root(T). Each child of root(T) is labeled with a nonempty 
set I. I is the intersection of the leafsets of the subtrees induced by 
one child each of the roots of the input trees. The procedure is applied 
for every newly created vertex w for T labeled by a set consisting of 
at least two elements; the input trees are restricted to the leafset of w 
(cf. Figure 4.1 (a)). 

The majority-rule tree [7, 53, 54, 701 and the median consensus tree 
[7, 611 are related concepts. While the latter is based on a distance 
measure between the trees, the majority-rule tree contains exactly the 
leafsets of the by internal vertices induced subtrees that have the prop- 
erty that these leafsets are contained in more than half the input trees. 
Various generalizations of the majority-rule tree exist [5, 61. In general, 
determining binary median trees is A@-hard [55], but for two trees the 
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problem is solvable in polynomial time [lo]. 
In contrast to the strict consensus methods, in the cluster-height 

consensus tree there is a height assigned to each vertex of the set of 
input trees assigned. The height increases or decreases monotonically 
with respect to set inclusion [57, 68, 691. 

The clique consensus tree was first suggested by Swofford [70]. The 
idea is to apply a weighting on frequency or edge weightings on all of the 
clusters of the input trees and find a maximum clique when defining the 
consensus trees. Bryant introduced the maximum edge-weight consensus 
tree [lo]. The tree is defined to be the maximum weighted clique of the 
set of all leafsets of the input trees, each weighted by the sum of the 
edge weights of the corresponding edges in the weighted input tree. It is 
interesting to note that several properties of the maximum weight clique 
methods lead to consensus trees mentioned above, specifically the strict 
consensus tree, the majority-rule tree, or the loose consensus tree [lo]. 

4.2 Agreement Trees 

An agreement tree of a set of trees is built over a subset of the maximum 
leafset containing information common to the given trees. These trees 
do not necessarily contain the full leafset. 

The most famous agreement tree is the maximum agreement subtree 
(MAST). This was introduced by Swofford in 1991 (cf. Figure 4.1(~))[70]. 
The MAXIMUM AGREEMENT SUBTREE problem is stated as follows. 

Problem4.1. MAXIMUM AGREEMENT SUBTREE 
Input: p-trees Tl, . . . . Th over leafset L and a positive integer m. 
Question: Is there a tree T of size ITI 2 m leaves, with T stop Ti for 

i = 1, . ..) k? 

When the input trees are bounded by degree d, the problem is solvable in 
polynomial time. In 1995, Farach, Przytycka, and Thorup have shown 
an O(k31LI + ILId) time algorithm [23]. In 1997, Bryant presented a 
simpler version with the same time complexity [lo]. The algorithm by 
Przytycka has a running time of O(k31Ll+kd) [62]. A generalized version 
of the MAST problem where leaf labels are allowed to be repeated is NP- 
complete for binary trees [25]; the MAST problem for unbounded degree 
is shown to be NP-complete for k 2 3 [3]. For two trees polynomial 
time algorithms were developed independently by Steel and Warnow [65], 
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and Goddard et al. [33]. Furthermore, Hein et al. have shown that 
the MAST problem for three trees with unbounded degree cannot be 
approximated in polynomial time within a ratio of 21°g6 n for any 6 < 1 
(unless P = ~$9) [41]. 



Chapter 5 

Models for Counting 
Evolutionary Events 

Instead of looking for a common consensus or agreement for a set of 
(possibly contradictory) gene trees, Goodman et al. suggested in 1979 
the DUPLICATION-AND-LOSS MODEL [36]. For a given gene tree and 
species tree, the model explains the differences in the topology with the 
minimum number of gene-duplication events and gene losses necessary 
to rectify the gene tree with respect to the species tree [36]. The model 
has been discussed by Page [59], Guigo et al. [38], Mirkin et al. [56], 
Zhang [73], and Ma et al. [52]. 

Before stating the DUPLICATION-AND-LOSS MODEL, we introduce 
a general concept for models that rectify a gene tree with respect to 
a species tree via speciation events and gene-duplication events (Sec- 
tion 5.1). We then describe the DUPLICATION-AND-LOSS MODEL (Sec- 
tion 5.2). Furthermore, we introduce two variants of this model: the 
GENE-DUPLICATION MODEL (Section 5.3) and the MULTIPLE-GENE- 
DUPLICATION MODEL (Section 5.4). The GENE-DUPLICATION MODEL, 
a restriction of the DUPLICATION-AND-LOSS MODEL, is the basis for 
Chapter 6 (published in [25], which is joint work with Fellows, Hallett, 
and Korostensky) and Chapter 7 (published in [SS]). The MULTIPLE- 
GENE-DUPLICATION MODEL, which was suggested in [38] and formal- 
ized in [26] (joint work with Fellows and Hallett), is the basis for Chapter 
8 and [26]. 
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If not noted differently, all trees in the rest of this part are leaf labeled; 
gene trees and species trees are binary leaf-labeled trees. 

5.1 Modeling the History of a Gene Tree 

Let a gene tree G and a species tree S be denoted by G = (VG, EG, LG) 
and S = (Vs, Es, Ls). 

Every model we describe in this chapter (cf. Section 5.2-5.4) uses 
three functions: a location function ZocG,S : VG + Vs, the event function 
eventG,S : VG + {dup, spec}, and a cost function cost. To a given gene 
tree and a given species tree, the cost function assigns a value reflecting 
the number of evolutionary events happening in the history of the gene 
tree with respect to the species tree. ZocG,S is a tree-stable function 
associating each vertex in G with a vertex in S. 

Definition 5.1. Let G = (VG, EG, LG) be a gene tree, S = (Ifs, ES, Ls) 
be a species tree, LG E Ls, and let 2 : VG + VS be a function. We call 1 
tree stable, if for all u, w E VG the following holds. Z(v) = 21 for all w E LG 
and if v is an ancestor of u in G then Z(v) is an ancestor of Z(u) in S. 

Note that, because ZocG,s is tree stable, for LG = LS ZocG,s always maps 
the root of the gene tree to the root of the species tree: locG,s(root(G)) = 
root(S). Furthermore, if ZocG,s(W) = root(S) for a vertex w E VG, then 
zocG,S = root(s) for all ancestors of w in G. 

Finally, eventG,s indicates whether the event in G corresponds to a 
gene-duplication event or a speciation event. More precisely, we define 
eventG,S as follows. 

ForeachuEV~-LG, 

1 

spec if ZocG,s(u’) # ZocG,s(u),for all u’ where u’ is a 
eventG,S(u) = child of u in G. 

dup otherwise 

Thus, each vertex in the gene tree G is associated with either a gene- 
duplication event or with a speciation event; the event is located at a 
vertex in the species tree S. 

As a property of such a model we remark that for a vertex w E VG 
with ZocG,s(w) = u (u E VS), there is no ancestor v of w in G such that 
Zoc~,s(v) = u and eventG,g(v) = spec. 
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1 3 52 461234 561234 56 

Figure 5.1: A gene tree (red tree, left) is depicted representing the evo- 
lutionary tree of the successors of a gene 2. The leaf labels indicate the 
species the gene-family members are located in. The species tree is the 
black tree, shown in the middle figure. The right figure shows the gene 
tree mapped into the species tree. Thus, the evolution of gene x we 
interpret as follows. The gene x was contained in the species w which 
is the ancestor of 1, 2, 3, 4, 5, and 6. w’s latest moment before speciat- 
ing is represented by the root of the species tree. Before the mentioned 
speciation event takes place, gene x is copied inside of w and therefore, 
when speciating, the children of the root of the species tree contain 2 
copies (i.e., zr and xs) each. The evolution of the rest of the gene family 
coincides with the speciation events. 

Intuitively, an internal vertex v of the gene tree indicates a gene-duplica- 
tion event happening before vertex w in the species tree, if v is located 
at w (i.e., ZOCG,S(V) = w) and at least one of v’s children, say v’, is also 
located at w (i.e., there exist a vertex v’ E VG, parentG(d) = w, such 
that ZOCG,S(V’) = v). Thus, the gene existing in the parent of w, that 
represents an ancestor of gene v, has at least two copies in the species 
that is represented by w (cf. Figure 5.1). 

In general, the whole history of the gene tree G = (VG,EG,L) for a 
given species tree S = (VS, ES, L) ( corresponding to speciation events 
and duplication events during the evolution of a gene family) can be 
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viewed by the explanation tree & = (VE, E&, L) which we define next. 
The explanation tree for a given gene tree and a species tree is a tree 
which is leaf-labeled-isomorphic to the gene tree (cf. definition on page 11 
in Chapter 2), representing the evolutionary events of the gene family 
that happened along the evolution of the species tree. An example of 
an explanation tree for a given gene tree and species tree is shown in 
Figure 5.2. 

’ vertex of v, ” “* 

- duplications 

A B C D E F 

Figure 5.2: The lower figure shows an explanation tree for gene tree 
G with respect to species tree S depicted in the upper figure. The 
duplications (red boxes) are vertices in V3, the red vertices of degree 2 
that do not have duplications as parents are vertices in Vz, all the other 
red vertices are elements of VI. 

In order to define the explanation tree & = (Vz, EE, L) we first intro- 
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duce the set V’. Due to technical reasons we introduce two bijective 
functions fi : Vs x VG -+ Cl and fi : Vs x VG + &, with Cl n C2 = 0, 
and I& = l&l = IVs x VG~. Then V* = {zI+u,w with (u,w) E VS x 
VG and fl(u, w) = x> U (~13 U, w with (u, w) E Vs x VG and fz(u, w) = 

Y>. 

We define the vertex set VE C_ V’ U L of the explanation tree & = 
(VE, EE, L). V, is composed of the given leafset L and the following sets 
vl,vi?,v3 c v*. 

l Each internal vertex w E VG with ZocG,S(w) = u is represented as 
the element fi(u, w) E V* in the set VI, if not both of the children 
of w imply a duplication event in S and if wl and wT are also 
located at u: 

VI = {fi(u,w) E V’Iu = ZocG,S(w),w E (VG-L),u E Vs, and not 
(ZocG,S(w$ = hXG,s(W,) = U and eWentG,S(Wl) = eventG,S(U$) = 
dUP) 1. 

l For each vertex ?J E VG - {root(G)} and its parent w = paren&( 
each internal vertex u E Vs in the path p(ZOcG,S(v), ZOCG,S(W)) in 
the species tree, excluding the vertices ZOCG,S(W) and ZOCG,S(W), is 
represented as the element f~(u, w) in Vz: 
vz = U int(v), where 

uW-{rOOt(G)} 

int(v) = {fi(u,w) E V*l3u,w with (u,w) E Vs x VG, 

U # ZocG,S(~),~ # ZocG,S(w), W = purentG(u), and 

‘11 E P(zocG,S(v), zocG,S(w)}. 

l Furthermore, each vertex w E VG, ZOCG,S(W) = u, which is a du- 
plication event in S (i.e., event(w) = dup), is represented as the 
vertex fi(u, w) in V3: 

V3 = {fz(u,w) E V*~~OCG,S(W) = u and event(w) = dup}. 

Note, that for a vertex w E VG with event(w) = dup and Zoc(w) = u it 
is possible, that both ~I(ZL, w) and fi(u, w) are elements of &, namely 
fl (u, w) E Vi and f~(u, w) E V,. 
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We remark, that each vertex w E VG has at least one corresponding 
vertex in V& (i.e., there is a vertex u E Vs with fr(u, w) E V& or 
fz(u, w) E V&). Furthermore, VI, Vz, and V3 are pairwise disjoint. (Ob- 
viously, VI n V3 = 0 and I$ fl V3 = 8. Assume VI n Vs # 0. That is, there 
is an element 2 E VI n Vz, and there are elements u E Vs and w E VG 
with 2 = fr (u, w). Because z E VI we know ZOCG,S(W) = u. But because 
2 E Vz we know ZOCG,S(W) # u. Contradiction.) 

The edges E& of the explanation tree are introduced corresponding to 
the gene tree G. fr-’ and fT1 denote the inverse functions of fr and fi. 

l Let w E L, a E VI UVs, and f;‘(u) = (u, w). Then a = parentE(w) 
if and only if w = purentG(u) and u = parents(w). 

l Let a, b E VI and f;‘(a) = (u,w), f[l(b) = (z,y). Then b = 
paren& if and only if y = purentG(w) and 2 = parents(u). 

l Let a, 6 E V= and f;‘(a) = (u, w), f;‘(b) = (z, y). Then b = 
pure&(u) if and onIy if w = y and z = parents(u). 

l Let a, b E V3 and f;‘(u) = (u, w), f;‘(b) = (z, y). Then b = 
parentE(u) if and only if y = parent(w) and u = x. 

l Let a E VI, b E Vz, and f;‘(a) = (u, w), f;‘(b) = (xc, y). Then 
b = purentE(u) if and only if y = paren& and z = parents(u). 

l Let a E Vz, b E VI, and f,-‘(u) = (u,w), &l(b) = (x,y). Then 
b = purentE(u) if and only if w = y and z = parents(u). 

l Let a E VI, b E V3, and &‘(a) = (u, w), f;‘(b) = (x:, y). Then 
b = purentE(u) if and only if either (y = purentG(w) and u = x) 
or (y = purentG(w) and 2 = parents(u)). 

l Let a E V3, b E VI and &‘(a) = (u,w), f;‘(b) = (x,y). Then 
b = pure+-(u) if and only if y = pure&c(w) and z = pure?+(u). 

l Let a E Vz, b E V3, and f;‘(u) = (u,w), f;‘(b) = (x,y). Then 
b = purentE(u) if and only if w = y and x = parents(u). 

l Let a E V3, b E Vz, and &‘(a) = (u,w), f;‘(b) = (x,y). Then 
b = purentE(u) if and only if y = pare&c(w) and x = parents(u). 
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Lemma 5.1. Let & = (VE, EE, L) be the expcplanution tree for a gene tree 
G, a species tree S, a tree-stable location function ZOCG,~, and the event 
function evenk,g. Then 

I. & = (Vt, E&, L) is a leaf-labeled rooted tree. 

2. G E & (i.e., G is leaf-labeled isomorphic to E). 

Proof. 1. We show 

(a) every vertex in VE except one has exactly one parent in E. 

(b) the elements in L are leaves (i.e., no element in L has a child). 

(c) there is exactly one element a E V, s.t. either 

f;‘(a) = (root(S), root(G)) or 

f;‘(u) = (root(S), root(G)). 

Furthermore a has no parent in E. 

These properties are sufficient to show that & is a tree. Because 
of (a) and (b), & is connected, contains no cycles, and has leaves 
L. Property (c) shows that & is rooted. 

The verifications of the claims above are as follows. 

(a) We first show, that every leaf in V& has exactly one parent 
in E. Let u E L, w = parentG(w), and ZOCG,S(W) = u, then 
eventG,s(w) = spec. (This follows directly from the definition 
of the event function, since leaves of the gene tree are always 
located at leaves of the species trees and internal vertices of 
the gene tree are always located at internal vertices of the 
species tree, and therefore a leaf of the gene tree is never 
located at the same vertex in the species tree as its parent.) 
Therefore, there exists an element a E VI U Vz with fc’(u) = 
(u, w), and, due to the definition of E&, a = parentE (w). 

Since both the species tree and the gene tree are well- 
defined trees, v has exactly one parent in G and in S. There- 
fore, the existence of a E Vr U Vz (with f;‘(u) = (u, w), 
w = purentG(v), and u = parents(v)) is unique. 

Let a be an internal vertex of V& (i.e., a $ L). Furthermore, 
we assume that f;‘(u) # (root(S),root(G)) and f;‘(u) # 
(root(S), root(G)). 
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Let u E Vs, w E VG such that a = fi(u, w) or fs(u, w). Then 
we can assume that w # root(G). (Assume w = root(G). 
Then u # root(S). But this is a contradiction to the definition 
of G and S, since G and S have the same leafset. Therefore 
the root of the gene tree is located at the root of the species 
tree.) 

We now show that a has a parent b in & and that b is 
uniquely determined. 

l Let a E VI with f;‘(u) = (u,w). Then ZOCG,S(W) = u. 
We distinguish the following cases: 

i. u # root(S) and w # root(G). 
W.1.o.g. let u* = parents(u) and w* = purentG(w). 

Then there is an element b E V& such that either 
b = fi(u*,w*), b = fs(u*,w*), or b = fs(u,w*). 
(Assume there is no such element b. That is, w* is 
neither located at u nor at u*: ZOCG,S(W*) # u (i.e., 
euentG,s(w”) # dup) and ZOC~,S(W*) # u*. Further- 
more u* $! p(u, ZOCG,S(W’)). But this is a contradic- 
tion to the property, that the location function is tree 
stable.) 

ii. u = root(S). Then w # root(G). 
w.1.o.g. w* = parentG(w). Then there is an el- 

ement b E V& such that b = fi(u, w*). Element b 
exists, because all the ancestors of w in G are all lo- 
cated at the root in the species trees and therefore 
all of them are duplication events. Thus, b E V3 and 
b = paren$ (a). 

If b = fi(u*,w*), then u* = ZocG,S(w*) (i.e., b E VI. Or 
u* E p(u, ZOCG,S(W*))). But then b E Vz. Therefore in 
this case b = purentE(v). 

If b = fs(u,w*) or b = fs(u*,w*), then b E V3 and 
therefore b = parentE (v). 

We now show that b is uniquely determined. Assume 
there exist a vertex b’ E V&, b’ # b, and b’ = parentE (w). 

- If b’ E VI then there exist x E Vs, y E VG with 
b’ = fi(x,y) and x = pure?+(u), y = pare&G(w). 
But then b’ = b. Contradiction. 

- If b’ E Vz then there exist x E V,, y E VG with b’ = 
fl(x,y) and x = par%(u), Y E P(u,~ocG,s(w*)). 
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But then b’ = b. Contradiction. 

- If b’ E I4 then there exist x E Vs, y E VG with 
b’ = fz(z,y), y = purentG(w) and either 2 = u or 
x = parents(u). But then b’ = b. Contradiction. 

l Let u E V2 with v = fi (u, w). Again, we distinguish the 
following cases: 

i. u # root(S) and w # root(G). 
Let u* = parents(u), w* = purentG (u)), and u’ = 

ZOCG,S(W). Then u* E p(u, u’) and there is an element 
b E VE such that b = fi(u*,w*). If u* = u’ then 
b E VI, else b E V,. 

We show b is uniquely determined. 
Assume there exist a vertex b’ E V&, b’ # b, and 

b’ = purentE(v). But this is a contradiction to the 
definition of species tree and gene tree. 

ii. u = root(S). Then w # root(G). But then a $ Vz. 
Contradiction. 

l Let be v E V3 and v = fi(u,w). 
As before, we distinguish the following cases: 

i. u # root(S) and w # root(G). 
w.1.o.g. w* = parentG(w). Then there is an el- 

ement b E VE such that 6 = fz(u,w*). Element b 
exists, because all the ancestors of w in G are all lo- 
cated at the root in the species trees and therefore 
all of them are duplication events. Thus, b E V3 and 
b = paren&( 
Let u* = parents(u) and w* = purentG(w). Then 
ZOCG,S(W) = u and there is an element b E VE such 
that either b = fi(u*, w*) or b = fi(u, w*). 

ii. u = root(S). Then w # root(G). Since w is located 
at the root of the species tree all the ancestors of w 
in G are located at root(S) as well. Then there exist 
b E V3 with b = fi(u,w*). 

If b = fi(u*,w*) then b E VI U Vs, else if b = fi(u,w*) 
then b E V3. 

We show 6 is uniquely determined. 
Assume there exist a vertex b’ E V&, b’ # b, and b’ = 
purentE (v). 
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- If b’ E VI then there exist z E Vs, y E VG with 
b’ = fi(x, y) and z = parents(u), y = parentG(w). 
But then b’ = b. Contradiction. 

- If b’ E Vz then there exist x E Vs, y E VG with b’ = 
fl(x,y) and x = ParWdu), Y E P(u,~~cG,s(w*)). 
But then b’ = b. Contradiction. 

- If b’ E V3 then there exist z E Vs, y E VG with 
b’ = fi(x,y), y = purentG(w) and either x = u or 
x = parent,(u). But then b’ = b. Contradiction. 

(b) The claim follows directly from the definition of the set of 
edges E&. 

(c) We consider the cases where f;‘(u) = (root(S),root(G)) or 
fF1(u) = (root(S), root(G)). 

Because ~ocG,s(root(G)) = root(S), such an element a al- 
ways exists in VE. Furthermore, because then neither u nor w 
has an ancestor in its corresponding tree, no parent for a in & 
is defined. To see that it is impossible that fi(root(S), root(G)) E 
V, and fs(root(S), root(G)) E V&, we assume fi (root(S), root(G)) E 
Vt. Then fi(root(S),root(G)) E VI. But this means, there 
cannot be a child of root(G) which is located at the root of S, 
the necessary condition for the existence of fi(root(G), root(S)) 
in V&. 

2. Because for each vertex v E VG (ZOCG,S(V), v) is ancestor in & 
of each element in LS(v). That is, LS(v) 2 LS((ZOCG,~(V),V)). 
Therefore G <top S, which proves the claim. 

0 

This section introduced the explanation tree, which is a general concept 
for viewing the history of a gene tree G with respect to a species tree S. 
A cost-model taking into account the event function even&$ and a tree- 
stable location function determines the explanation tree. The following 
sections define three specific models to rectify a set of (contradictory) 
gene trees with respect to a species tree. 

5.2 The Duplication-and-Loss Model 

We describe the DUPLICATION-AND-LOSS MODEL introduced in [36]. 
Let G = (VG, EG, L) be a gene tree and let S = (Vs, Es, L) be a species 
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tree. The location function ZOCG,~ : VG + Vs, is defined by the least- 
common-ancestor mapping, i.e., Zoc G,S(u) = kus(Ls(u)) for all u E I&. 
Obviously, ZOCG,~ is tree stable. The cost function is defined by 

costDL(G, S) = I{+ E VG - L, eWntG,s(U) = dup}I 

+ c (IP(ZOCG,S(W), ZOCG,S(U))~ 

where 

UEVQ -L 
+ IP(~ocG,S(%)i zocG,S(u))I - 2) > 

c (IP(zocG,S(ul), ~ocG,S(u))I + IP(zocG,S(%-), zocG,S(u))l - 2). 
UEVG-L 

defines the number of losses. 
The location function, the least-common-ancestor mapping, implies 

that co&L(G, S) is the minimum number of gene-duplication events 
and gene losses necessary to rectify the gene tree G with the species tree 
S. 

It is not very difficult to verify that for a gene tree G and species tree 
S costDL(G, S) can be computed in linear time [73], since computing the 
least common ancestor is possible in linear time [40, 641. 

Figure 5.3 (a) and (b), page 42, show the explanation trees for 
two gene trees and a species tree under the DUPLICATION-AND-LOSS 
MODEL. The question which is implied by the DUPLICATION-AND-LOSS 
MODEL is stated as follows. 

Problem 5.1. DUPLICATION AND Loss 
Input: Gene trees Gi, . . . , Gk over leafset L. 

Output: A species tree S with minimal cost (i.e., 5 costDL(Gi,S) is 
i=l 

minimized). 

Recently, Ma, Li and Zhang have shown that DUPLICATION AND Loss 
is NP-complete [52]. 

5.3 The Gene-Duplication Model 

The GENE-DUPLICATION MODEL [26, 66, 731 is the same as the DUPLI- 
CATION-AND-LOSS MODEL, but restricted to gene-duplication events 
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only. Gene losses are not considered in this model. Using the same loca- 
tion function as in Section 5.2, the minimum number of gene-duplication 
events necessary to rectify a gene tree G with a species tree S is defined 
by COSkD (G, s) = IDuPsGDI, 

DUPSGD = {u/u E VG - L, eWentG,S(u) = dup}. 

As in the case of the cost function in the DUPLICATION-AND-LOSS 
MODEL, for a gene tree G and a species tree S, costGD(G, S) can be 
computed in linear time. Similar to DUPLICATION AND LOSS we state 
the GENE DUPLICATION problem as follows: 

Problem 5.2. GENE DUPLICATION 
Input: Gene trees Gr , . . . , Gk over leafset L. 

Output: A species tree S with minimal cost, i.e., 5 costGD(Gi,S) is 
i=l 

minimized. 

As for the DUPLICATION AND Loss problem, GENE DUPLICATION was 
also shown to be NP-complete [52]. In Section 6 and Section 7 we 
investigate GENE DUPLICATION in more details. 

5.4 The Multiple-Gene-Duplication Model 

In Section 5.2 and Section 5.3, gene-duplication events are considered to 
be independent events. The MULTIPLE-GENE-DUPLICATION MODEL, 
which we formalized in [26], takes into account that a duplication event 
happening on the nucleotide level, can involve more than one gene at 
once and motivates the definition of a multiple gene duplication. The 
idea of clustering gene-duplication events was suggested by Guigo et 
al. [38]. 

Suppose we are given the gene trees Gr, . . . , Gk and the species tree 
S. Consider a vertex u in S. In any model following the concept sug- 
gested in Section 5.1, each gene tree Gi has some number of vertices d 
(possibly zero) with locG,,s(d) = u and eWentG,,s(d) = dup (1 5 i 5 k). 
Let Dup(u) = {di, dz, . . . , d,} denote this set. We can partition Dup(u) 
into classes with the property that each class has at most one vertex 
from each gene tree Gi and so that these sets are maximal. One such set 
is termed a multiple gene duplication and it counts exactly one to the 
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overall number of multiple gene duplications required to rectify the gene 
trees with respect to the species tree. The multiple-gene-duplication 
score for the vertex u is the total number of such partitions. By “mov- 
ing” gene duplication events in Gi towards the root of S according to a 
set of rules, we can decrease the total number of multiple gene duplica- 
tions required (as illustrated on page 40). We define the cost function 
to be costMG(Gl,... ,Gk,S) = 

c r&x I{+ = Zoc&(u) and event(w) = dup}I . 
UEVS 

Let G = (VG,EG,L) be a gene tree and let S = (Vs, Es, L) be a 
species tree. What does “moving a gene duplication towards the root 
of S” mean? For a vertex u E VG with ever&J(u) = dup we simply 
change the location ZoCG,s(u) of a vertex u to the location of its parent 
v = parentG(u) (i.e., after each move the location function is redefined 
with ZOCG,S(u) := lOCG,S(W)). Now e?JCntG,S(W) = dUp, 

Consider a vertex u E VG such that euentG,s(u) = dup and u # root(G), 
and for all x E VG, where x # u and x is ancestor of u in G, ZoCG,S(x) # 
ZOCG,s(u). Let w = parentG(u). The rules for moving duplication events 
towards the root of a species tree are specified as follows: 

Move 1: If CWCntG,s(u) = dup, we may move the duplication associated 
with u from ZoCG,S(u) to ZOCc,s(W). NOW ZOCG,S(U) = ZO@,s(W). 

Move 2: If CuentG,s(u) = spec, when moving the duplication associated 
with u from ZOCG,s(u) to ZOCG,S(V), we must change CuCntG,s(u) to 
be dup. Now ZOC,$s(u) = ZOCG,s(V). 

Note, that after applying Move 2 the number of duplication events is 
increased by one. Note that both Move 1 and Move 2 preserve the tree 
stability of the new location function. 

Let us reconsider the GENE-DUPLICATION MODEL. For a gene tree G 
and a species tree S, DupsGD(G, S) is the set of vertices in G having 
gene-duplication events in S under the GENE-DUPLICATION MODEL; 
as shown earlier, the number of gene duplications is minimized over 
all possible tree-stable location functions. Furthermore, the locations 
locG,s(d) for the vertices d E Du~sGD(G, S) are the “latest” possibili- 
ties where the events can take place (i.e., the vertices in DupsGD(G, S) 
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Figure 5.3: (a) depicts two gene trees, G1 and Gs, and a proposed species 
tree S. (b) shows that the species tree S has the explanation trees for Gr 
and Gz embedded inside of it according to the standard DUPLICATION 
AND LOSS model. Note that Gr causes one duplication (vertex d) whilst 
Gs causes 3 gene duplications (vertex b and twice vertex e). The score 
according to the DUPLICATION AND LOSS model is 4 duplications and 
15 losses; the score according to the GENE DUPLICATION model and to 
the MULTIPLE-GENE-DUPLICATION model is 4. (c) After moving the 
gene duplication of Gr located at vertex d to the root e of the species 
tree S, two additional gene duplications for Gr need to be postulated. 
Nevertheless, the score according to the MULTIPLE GENE DUPLICATION 
model is now 3 (even though we count 5 duplications). Note that it is 
not beneficial to move the gene duplication from Gz located at c towards 
the root. The two gene duplications located initially at the root from 
Gz cannot move upwards. 
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cannot be located closer to the leaves of S). Certainly, if we do not care 
about the minimum in the number of gene-duplication events, gene- 
duplication events can happen “earlier” in the history of a gene family 
than postulated in the GENE-DUPLICATION MODEL (i.e., a duplication 
event can be located closer to the root of the species tree), and also more 
gene-duplication events may be necessary. 

Observation 5.2. Given the gene trees Gi, Gs, . . . , Gk and a species 
k 

tree S, c coskD(Gi, S) provides an upper bound for the number of 
i=l 

multiple gene duplications. 

Definition 5.2. Given a gene tree G, a species tree S, and the functions 
IocG,s and eventG,s mapping G into S, we say that S receives G, if the 
configuration given by locate and eVentG,g can be reached by a series of 
moves (Move 1 and 2 on page 41 starting from the initial configuration 
obtained by applying the location function IocG,S and the event function 
euentG,s defined in the GENE-DUPLICATION MODEL (cf. Section 5.2). 

Figure 5.3 on page 42 gives a concrete example. 

Finally, we state the MULTIPLE GENE DUPLICATION problem as follows: 

Problem 5.3. MULTIPLE GENE DUPLICATION 
Input: Gene trees Gr, . . . , Gk over leafset L, integer c. 
Question: Does there exist a species tree S and location functions 
locG;,S, 1 5 i 5 k, such that S receives Gi, . . , Gk with at most c 

multiple gene duplications, i.e., costMG(& , . . . , Gk, S) < c? 



Chapter 6 

The Smallest-Common- 
Supertree Problem 

This chapter, as well as Chapter 7, focuses on the GENE DUPLICATION 
problem. We present the problem SMALLEST COMMON SUPERTREE 
which has an interesting relation to GENE DUPLICATION. The smallest 
common supertree of a set of gene trees gives us a lower bound for the 
number of gene-duplication events necessary to rectify the gene trees 
with respect to a species tree. Section 6.1 motivates and introduces the 
problem; Section 6.2 analyzes the parameterized complexity of SMALL- 
EST COMMON SUPERTREE. 

6.1 Smallest Common Supertree - Problem 
Statement and Motivation 

Before introducing Smallest Common Supertree we begin with the fol- 
lowing definition. 

Definition 6.1. A common supertree T = (V, E) of a given set of gene 
trees Gr,. . . , Gk is a binary rl-tree with Gi stop T (i = 1, .., k). A 
vertex v E V is a duplication vertex of T if LS(vl) n LS(v,) # 0. 

We formalize the base problem of this chapter. 
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Problem 6.1. SMALLEST COMMON SUPERTREE 
Input: Gene trees G1, . . . , Gk over leafset L and a positive integer m. 
Question: Does there exist a common supertree T such that ITI 5 m? 

The SMALLEST COMMON SUPERTREE problem is motivated as follows. 
Given gene trees G1, . . . , Gk and a species tree S, all over leafset L, 
then there is an rl-tree S* which is a common supertree of G1, . . . , Gk, 
and S*‘s duplication vertices are a lower bound for the number of gene- 
duplication events necessary to rectify G1, . . . , Gk with respect to S. 

First, we show how to compute S* for a single gene tree G (Algorithm 
Builds*) Then we generalize the algorithm and compute a common 
supertree for a given set of k gene trees (Algorithm BuildAllS*). 

Algorithm BuildS*(gene tree G, species tree S): rl-tree S* 
create a copy S’ of S 
S’ := CreateRl(G, S, S*) 
return 

end BildS*. 

procedure CreateRl(gene tree G, species tree S, rl-tree S*): rl-tree S* 
if locG,s(root(G) = root(S) and eventG,s(root(G)) = dup then 

create a copy T of S 
create a new vertex w 
WI := root(S*); w, := root(T) 
root(S*) := w 
(* S* is now extended by a new root w, which is the parent of *) 
(* the former root of S*; the other child of w is T. *) 
S*(root(S*)l) := CreateRl(G(root(G)l), S, S*(root(S*)l)) 
S*(root(S*),) := CreateRl(G(root(G),), S, S*(root(S*),)) 

else 
if LS(root(G),) C LS(root(S*)l) then 

swap left and right subtree of G 
endif 
S*(root(S*)l) := CreateRl(G(root(G)~),S(root(S)~),S*(root(S*)~)) 
S*(root(S*),) := CreateRl(G(root(G),), S(root(S),),S*(root(S*),)) 

endif 
(* S*(root(S*)i) and S*(root(S*),) have been replaced in S* 
(* by the results computed by the CreateRl-procedure calls. 
return 
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end CreateRl. 

Lemma 6.1. Suppose we are given a gene tree G and a species tree S. 
Let S* be the d-tree built with the Algorithm BildS*. Then 

I. G &, S*. 

2. the number of duplication vertices of S* corresponds exactly to the 
number of gene-duplication events costGD(G, S). 

Proof. 

I. We prove by induction over costGD(G, S). 

Let costGo (G, S) = 0. Then G = S and therefore G <top S. 

Assuming the claim holds for costGD(G, S) 5 i, we show, that it 
also holds for costGD(G, S) = i + 1. Let G be a gene tree and S a 
species tree s.t. costGD(G, S) = i + 1. 

If eWntG,s(rOOt(G)) = dup, then both costGD(G(root(G)l), S) 5 
i and CostGD(G(root(G),), S) 5 i. Furthermore, G(root(G)l) stop 
S*(root(S*)t) and G(root(G),) <top S*(root(S*)r) and therefore 
G <top S*). 

If eventG,s(root(G)) = spec, then either all vertices u E VG with 
eventG,s(u) = dup are in one subtree of the root of G (i.e, either in 
G(root(G)l) or in G(root(G),)) or costGD(G(root(G)~),S) 2 i and 
costGD(G(root(G),),S) < i. In the latter case, G(root(G)l) <top 
S*(root(S*)l) and G(root(G),) stop S*(root(S*),) and therefore 
G Stop S*. If all the vertices u E VG with eventc,s(u) = dup are 
in one subtree of the root of G, let v E VG be the least common 
ancestor of all those vertices u. Then costGD(Gv) = i + 1 and ei- 
ther G(v) itop G(root(G)l) or G(v) <top G(root(G),). W.1.o.g. let 
G(v) Stop G(root(G)l). It is sufficient to show that the tree 
T* := BuildS*(G(v),S(locG,s(v))) contains G(v) as a subtree, 
i.e., G(v) <top T*. If eventG(,),g(v) = spec, then neither the 
left nor the right subtree of root(G(v)) has more then i vertices 
w with ew.ntG(,),s(w) = dup (otherwise we have a contraction 
to the property that v is the least common ancestor in G with 
COStGD(G(V),S) = i + 1). If ethwtG(,),s(v) = dup then neither the 
left nor the right subtree of root(G(v)) has more then i vertices w 
with euentG(,),s(w) = dup. 

2. Since S has no duplication vertex (S is a p-tree), the only candi- 
dates for duplication vertices are those vertices w in S*, which are 
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created when calling Builds* for each duplication event. Clearly, 
the number of newly created vertices is exactly COS&D(G, S), and 
they are all duplication vertices. 

We generalize Algorithm Builds* to Algorithm BuildAllS*, which 
computes an rl-tree S’ for k gene trees G1, . . . , Gk and a species tree S 
such that S* is a common supertree of G1, . . . , Gk and the number of 

duplication vertices of S* is a lower bound for 5 COS~GD(G~, S). In the 
i=l 

recursive call, we extend the species by a new root vertex and let a copy 
of the species tree be the other subtree of the root, if at least one of the 
given gene trees has a gene duplication at the root of S. 

Algorithm BuildAllS*(gene trees G1, . . . Gt , species tree S): 
rl-tree S’ 

create a copy S’ of S 
S” := CreateAllRl(G1,. . . ,GI,,S,S*) 
return 

end BildAllS*. 

procedure CreateAllRl(gene trees G1, . . . , Gk, species tree S, rl-tree S”): 
rl-tree S* 

if there is at least one gene tree G E {Gl, . . . , Gk} with 
Zocc,s(root(G)) = root(S) and eventG,s(root(G)) = dzlp then 

create a copy T of S 
create a new vertex w 
wz := root(S*); w, := root(T) 
root(S*) := w 
(* S* is now extended by a new root w, which is the parent of *) 
(* the former root of S*; the other child of w is T. *I 
for each G E {Gl,. . . , Gk} with ewentG,s(root(G)) = spec do 

if LS(root(G),) C LS(root(S)l) then 
swap left and right subtree of G 

endif 
endf or 
S*(root(S*)l) := CreateAllRl(G1(root(G1)1), Gz(root(Gs)l), . . , 

Gk(root(Gdz), S, S*(roo@*)z)) 
S*(root(S*),) := CreateAllRl(G1(root(G1),), Gx(root(Ga)T), . , . , 

Gdr4G&), S, S*(root(S*),)) 
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else 
for eachGE{Gr,... , Gk} with LS(root(G),) c LS(root(S)i) do 

swap left and right subtree of G 
endfor 
S*(root(S*)l) := CreateRl(Gr(root(Gr)i), G~(~oo~(Gz)L), . . . , 

Gk(root(G&), S(root(S)& S*(root(S*)i)) 
S*(root(S*),) := CreateRl(Gr(root(Gr).),Gs(root(Gz).), . . . , 

Gk(root(G&),S(root(S),),S*(root(S*),)) 
endif 
(* S*(ro~t(S*)~) and S*(root(S*),) are replaced in S* by the 
(* results computed by the CreateAllRl-procedure calls. 
return 

end CreateAllRl. 

Corollary 6.2. Suppose we are given k gene trees G1, . . . , Gk and a 
species tree S. Let 5” be the &tree built with the Algorithm BuildAllS*. 
Then 

1. Gi <top, S’ for i = 1,. . . , k 

2. the number of duplication vertices of S” is a lower bound for the 

number of gene-duplication events 5 costaD(Gi,S). 
i=l 

A solution of the minimization version of SMALLEST COMMON Su- 
PERTREE is called a smallest common supertree. Because of Corol- 
lary 6.2, a smallest common supertree gives a lower bound for the num- 
ber of duplication vertices resulting from the optimal species tree, the 
solution of the minimization version of the problem GENE DUPLICA- 
TION. But this is also a lower bound for the number of gene-duplication 
events necessary to rectify gene trees with respect to a species tree. 

6.2 The Complexity of Smallest Common 
Supertree 

6.2.1 Intractability of Smallest Common Supertree 

We show NJ-completeness of SMALLEST COMMON SUPERTREE (Pro- 
blem 6.1) and W[l]-hardness of SMALLEST COMMON SUPERTREE for 
parameter k (Problem 6.2). The hardness is proven by a reduction from 
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SHORTEST COMMON SUPERSEQUENCE restricted to p-sequences’ (Pro- 
blem6.3and6.4). P-SEQUENCE SHORTEST COMMON SUPERSEQUENCE 
is known to be NP-complete and W[l]-hard when parameterized by the 
number of input sequences (cf. Theorem 6.3 and Theorem 6.4, [25, 271). 

Problem 6.2. SMALLEST COMMON SUPERTREE (parameterized version) 
Input: Gene trees G1, . . . , Gk over leafset L and a positive integer m. 
Parameter: k. 
Question: Does there exist a common supertree T such that ITI 5 m? 

Problem 6.3. P-SEQUENCE SHORTEST COMMON SUPERSEQUENCE 
Input: p-sequences ~1, . . . . xk over alphabet C and a positive integer M 
Question: Does there exist an &sequence x, with 1x1 5 M and zi is 

subsequence of x for i = 1, . . . . Ic? 

Problem 6.4. P-SEQUENCE SHORTEST COMMON SUPERSEQUENCE(~~- 
rameterized version of Problem 6.3) 
Input: p-sequences 21, . . . . xk and a positive integer M 
Parameter: Ic. 
Question: Does there exist an rl-sequence x, with 1x1 5 M and xi is 

subsequence of x for i = 1, . . . . Ic? 

Theorem 6.3. [25, 271 P-SEQUENCE SHORTEST COMMON SUPERSE- 
QUENCE is hard for W[l] parameterized by k and NP-complete. 

Theorem 6.4. SHORTEST COMMON SUPERTREE is hard for W[l] pa- 
rameterized by k and N?-complete 125, 271. 

Proof. We reduce from P-SEQUENCE SHORTEST COMMON SUPERSE- 
QUENCE (parameterized version). As an instance I of P-SEQUENCE 
SHORTEST COMMON SUPERSEQUENCE (parameterized version) we are 
given Ic p-sequences x1,22, . . . , xk over an alphabet C. Let M be a posi- 
tive integer. W.1.o.g. we assume that each symbol of C occurs in at least 
one of the input sequences. Let a sequence xi let be of length ti and 
consist of the symbols xi = xi[l]zi[2]. . .xi[tJ (1 5 i 5 ti). 

lAnalogous to a p-tree, for an alphabet C a p-seqwnceis a sequence where each 
symbol of C occurs at most once. In an rl-sequence symbols may be repeated. 
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Wetransformthe instance I of P-SEQUENCE SHORTEST COMMON Su- 
PERSEQUENCE (parameterized version) into an instance I' of SMALLEST 
COMMON SUPERTREE (parameterized version). Let L = C U ($1, $,} U 

{01,gz,... , go} with $1 +! C, u~jE,1~{1,2},1<j<M. Foreachxi 
we construct a binary leaf-labeled tree Ti represented by the expression 
(((. . . ((F,~:i[l]),zi[2]), . . .),~[t&,$l), 1 5 i 5 lc and I = 1 if i is odd 
and 1 = 2 if i is even (cf. Figure 6.1); here F is a binary leaf-labeled cater- 
pillar tree over the leafset (01, ~2, . . . , OM, $l,} with I’ = 1 if i is even 
and 1’ = 2 if i is odd. Furthermore, for simplicity we denote the caterpil- 
lar tree built over the leafset {u~,oz,. . . , (TM} with F,. Let m = 2M+4. 

(i) xi x,[l]x,[2] xi[ti] (ii) 

(iii) I$ ,,,,,... ./- 

A\ 
01 0, oy 

Figure 6.1: Gadget for proof of Theorem 6.4. In the P-SHORTEST COM- 
MON SUPERSEQUENCE instance each sequence zi (i) is transformed into 
a p-tree Ti (ii). 

Because each zi is a p-sequence, F is a p-tree, and for each i $I # $I!, 
each Ti is a p-tree (1 5 i 5 k) and therefore 1’ is a valid instance for 
SMALLEST COMMON SUPERTREE (parameterized version). 

We show I is a yes-instance if and only if I’ is a yes-instance. 

+ Let z = 2[1]2[2]. . . z[M’], M’ 5 M, be a solution for I. Then 
T = ((. . . (((F,, ($1, fib)), 411), 421), . . , z[M’IL ($1, WI is a solu- 
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+ Let the rl-tree T* be a smallest solution for I’, IT*1 = m’ 5 m. It is 
sufficient to show that there exist a common supertree T, ITI 5 m’, 
of the form ((. . (((F,, ($1, $~)),3$1),$1), . . ,x[M’l), ($1, &I), 

M’ < e < M. Then from T we can construct the sequence 
2[l]J2] . . . z[&‘], which is a common supersequence of all zi, 1 5 
i < lc. 

Because F, is a subtree of each Ti, 1 5 i 5 k, and none of Fr’s 
leaf symbols LS(root(F,)) is element of C, we can assume that T* 
contains F, as a subtree, and U’(w) = {gr, us, . . . ,OM} where u 
is the least common ancestor of {rrr, fls, . . , oM} in T*. Further- 
more, w.1.o.g. T’ contains twice the sibling pair ($1, $2) and the 
least common ancestor of the one pair of $1 and $2 is a child of 
the root of T*, while the least common ancestor of the other pair 
is a child of the parent of w. 

Figure 6.2: Proof of Theorem 6.4, “-+“: Rearranging of T* is possible 
because of the caterpillar structure of the Ti. 

We show that we can rearrange T* to T. We refer to the subtrees 
((. . (2[1],2[2]), . . .),z[M’]) in T and ((. . . (2i[1],~[2]), . . . ),~i[ti]) 
in Ti as the caterpillar parts of T and Ti (1 5 i 5 k). Consider the 
tree X*, which is the tree T’ restricted to the subtree containing all 
the leaves si[l],~i[2], . . . ,zi[ti] (1 5 i 5 k). W.l.o.g., we consider 
the case that X* is not a caterpillar tree (i.e., T* differs from T). 
Then there is an internal vertex v in T*, u # root(T*), s.t. none 
of w’s children wr and 2)s is a leaf and neither wr nor 212 is the 
root of F,. Let 212 be the child of v with T*(wz) not containing 
any leaves in {Q , . . . , 0~). Then for each i, 1 5 i 5 k, because 
{~i[1],%[2]7.. . ,zi[tJ} build the caterpillar part of Ti there is at 
most one leaf of {~[l], Zi[2], . . . , zi[ti]} contained in the subtree 
of T* induced by vs. Therefore, we can reorganize the subtree 
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induced by u2 in T* such that each leaf in T*(vz) is a child from 
the path between 01 and v (cf. Figure 6.2). 

6.2.2 A Tractable Parameterization 

Because of the interesting result we want to mention the following para- 
meterization of SMALLEST COMMON SUPERTREE which is fixed-parame- 
ter tractable. Although SMALLEST COMMON SUPERTREE (parameter- 
ized version) is W[l]-hard, the problem becomes fixed-parameter trac- 
table if we allow a bounded number of leaves T additionally to the size 
of the common supertree; the parameter is (k, r). 

Problem 6.5. BOUNDED SMALLEST COMMON SUPERTREE 
Input: Ic gene trees Gi (1 5 i 5 k) over leafset L, IL1 = n, and a 
positive integer T 
Parameter: (lc, r) 
Question: Does there exist a common supertree T of the Gi of size at 

most n + r? 

Here we can interpret r as representing the number of gene-duplication 
events. 

Theorem 6.5. [25, ,271 BOUNDED SMALLEST COMMON SUPERTREE is 
fixed-parameter tractable. 

Because of the analogy between supertree and supersequence problems 
we state the following two parameterizations of SHORTEST COMMON 
SUPERSEQUENCE which are also both fixed-parameter tractable [25, 271. 

Problem 6.6. BOUNDED DUPLICATION FOR P-SEQUENCES 
Input: k p-sequences xi E C* for i = 1, . . . . k and a positive integer 
T representing the number of duplication events. We assume that 
ICI = n and that each symbol of C occurs in at least one of the input 
sequences. 
Parameter: (k, r) 
Question: Does there exist a common supersequence z of length at most 

n + r? 
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Problem 6.7. BOUNDED DUPLICATION FOR COMPLETE P-SEQUENCES 
Input: Complete 2 p-sequences zi (1 5 i 5 k) over an alphabet C of size 

n, a positive integer T, and a cost function c : c -i z+. 
Parameter: T 

Question: Does there exist a common supersequence z of duplication 
cost 11~11~ 5 r where the duplication cost is defined: 

l141c = Cb(~) - lb(a) 
REC 

n,(z), a E C, denotes the number of occurrences of symbol a in 2. 

2A complete p-sequence over an alphabet C contains every symbols of C exactly 
OIHX!. 



Chapter 7 

A Fixed-Parameter- 
Tractable Algorithm for 
Gene Duplication 

The main result of this chapter is our fixed-parameter-tractable al- 
gorithm for the problem GENE DUPLICATION parameterized by the 
number of gene duplications c (Problem 7.1). The underlying model 
for this problem is the GENE-DUPLICATION MODEL (cf. Section 5.3). A 
preliminary version of this result was published by Stege in [66]. 

Problem 7.1. GENE DUPLICATION (parameterized version) 
Input: Gene trees Gr, . . . , Gk over leafset L, a positive integer c. 
Parameter: c. 
Question: Does there exist a species tree S such that Gr, . . . , Gk can 

be rectified with respect to S with at most c gene-duplication events, 

i.e., itI costGD(Gi, s) 5 c? 

Before we describe a fixed-parameter-tractable algorithm solving Pro- 
blem 7.1, we point out a restriction of the non-parameterized version of 
the N’P-complete problem GENE DUPLICATION (Problem 5.2, page 40), 
where the problem becomes solvable in linear time. We restate GENE 
DUPLICATION in its minimization version. 
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Problem 7.2. GENE DUPLICATION (minimization version) 
Input: Gene trees Gr , . . . , Gk over leafset L. 
Output: A species tree S such that the number of gene-duplication events 
necessary to rectify Gr, . . , GI, with respect to S is minimized (i.e., a 

species tree s.t. $ cost~~(Gi, S) is minimized). 
i=l 

We make the following observation. 

Observation 7.1. Suppose we are given gene trees G1, . . Gk. Let c* = 
k 

yj~( C costGD(Gi, Gj)). Then c* is an upper bound for the number of 
i=l 

gene-duplication events required to rectify the gene trees GI, . . . , Gk with 
an optimal species tree. 

Thus, we can determine a gene tree which is a best possible solution 
for a species tree when we consider the gene trees Gr , . . . , Gk as possi- 
ble solutions only. Furthermore, if a species tree S, which solves Pro- 
blem 7.2, does not agree with one of the gene trees G1,. . . , GI,, then 
k 

C costGD(Gi, S) 2 k, because for each gene tree we need at least one 
i=l 
gene-duplication event for the rectification of the differences with the 
species tree. Therefore, if c* 5 Ic, we know that there is an optimal 
species tree S E {Gr, . . . , Gk} and therefore in this special case S is 
computable in linear time depending on IL1 and k. 

Observation ‘7.2. Suppose we are given gene trees G1, . . . Gk. Let c’ = 

$n( i COStGD(Gi, Gj)). If c* 2 k then k is a lower bound for the 
j=l i=l 
number of gene-duplication events necessary to rectify the gene trees with 
respect to a species tree. 

We now prepare for the algorithm solving Problem 7.1 by introducing 
a generalized version of the GENE-DUPLICATION MODEL, because it 
provides useful properties for solving GENE DUPLICATION. 
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7.1 A Generalization of the Gene-Duplica- 
tion Model 

In this section we introduce the GENE-DUPLICATION MODEL FOR SPLITS. 
The notion of a split is one of the cornerstones of our fixed-parameter- 
tractable algorithm. 

Definition 7.1. Let L be a leafset, IL1 > 1. We call 2, = (Q/Z&) a 
split of L if 

2. D1 # L 

3. Vi # 0, and 

4. 231 f-l v, = 0. 

We call V complete if Vl U V, = L and V, # 0. Otherwise we call V 
incomplete. 

Definition 7.2. Let L be a leafset and let V = (VllV,), V’ = (V~IV~) 
be splits of L with Vl UV, = VL U Vb. Then V = 2)’ if and only if Q = 
Vj or Vl =VL. 

Definition 7.3. Suppose we are given a leafset L and the gene trees 
91 = (v,,,J%,,m... ,h = (Vg,&,,,,Lm) (m 2 1) with Li C L 
(i = l,.. .,m)andUL~=L.IfL~~L~=0foralli,j~{l,..., m}, 
i # j, then we call the 91,. , gm a gene forest over L. Furthermore, for 
a gene forest G consisting of the trees gi, . . . , gm we write VG = Uz”=, V,; 

To simplify the description and the implementation of the algorithm 
we extend the definition of the cost function co&D in the GENE- 
DUPLICATION MODEL and allow a gene forest as an input instance in- 
stead of a gene tree. 

Definition 7.4. Suppose we are given a gene forest G and a species 
tree S. Then costGD(G, S) = IDu~s,,(G,S)I, where 

DupsGD(G, S) = {ulu E VG - L, evenk,s(u) = dup}. 

We next define the cost for a gene forest and a split similarly to the cost 
for a gene forest and a species tree. 
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Definition 7.5. (GENE-DUPLICATION MODEL FOR SPLITS) 
Let G = (I/G, EG, L) be a gene forest consisting of gene trees gi, . . . , gn 
over L. Let further 2, = (V&V,) be a split of L. If V, # 0 then 
cost(G, V) = I Dups(G, V) 1, where 

Dups(G, V) = {v E VGILS(V) n Vl # 0 and LS(v) n V, # 0 and 

((LS(vl) n Vl # 0 and LS(v1) n V, # 0) or (LS(v,) n 2)~ # 0 and 

LSW n VT # 0))). 

Otherwise, 
cost(G,V) = bErngDl cost(G, (Vl, {b})). 

Definition 7.6. For given gene forests Gi, Gz, . . . , Gk over a leafset L 
and a split V over L, we call a species tree Sa optimal depending on 2) 

if 5 costGD(Gi, So) is minimized over all possible species trees S with 
i=l 

Vt c LS(root(S)t) and V, C LS(root(S),). 

The following observations and Lemma 7.6 provide the main ingredients 
for the fixed-parameter-tractable algorithm described in Section 7.2. 

Observation 7.3. Suppose we are given gene forests G1, . . . , Gk over 
a leafset L. Let V = (VtlV,) be a complete split of L. Furthermore, let 
S be an optimal species tree for Gi, . . . , Gk depending on 2). Then for 
eachGE{Gi,...,Gk} 

DuPs(G, 2)) 2 DUPSGD (G, S) 

k 
and C cost(Giy V) is exactly the number of gene-duplication events lo- 

id 
cated at the root of S (cf. Figure ‘7.1). 

Observation 7.4. Suppose we are given gene forests G1, . . , Gk over 
L. Let 2) = (VllV,), V’ = (V~IV~) be complete splits of L. Let S be 
an optimal species tree for G1, . . . ,GI, depending on V and let S’ be the 
optimal species tree for G1,. . . , Gk depending on V’. If Dups(Gi, V) C 
Dups(Gi, V’) for i E (1,. . . k}, then 

2 COStGD(&,S) 5 -& COStGD(Gi,S'). 
i=l i=l 
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Figure 7.1: Gene forests Gr, Gs, and Gs are mapped into a split. The 
marked vertices are the vertices which create a duplication event at the 
root of the tree induced by the split. Since every internal vertex in 
a gene forests corresponds to exactly one event (duplication or specia- 
tion), every species tree depending on the split has the same number of 
duplication events located at the root. 

Definition 7.7. Let Gr , . . . , Gk be gene forests over a leafset L, let D = 

(Q/D,) be a split of L with 5 cost(Gi, ‘D) = 0. Let a, b E L- (D,a UD,), 
i=l 

a # b. Furthermore let Dr = (ID, U {a, b}lDT), I& = (2)~ U {a}1D,U {b}), 
D3 = (23 u {b)lD, u {a>), and V4 = (DllQ. U {a, b}). We call (a, b) a 
conjkt pair if either 

l 5 cost(Gi,Dj) > 0 for j E {1,2,3,4} or 
i=l 

l if the following properties are all fulfilled. 

1. 27, = 0. 



7.1 A Generalization of the Gene-Dunlication Model 59 

2. 5 cost(Gi,Dj) > 0 for j E {2,3,4}. 
i=l 

3. For each gene forest Gi cost(Gi,Dl) = 0. 

4. fj Li = 0 where 
i=l 
Li = {c E L-DJcost(Gi, @~{a, b}l{c}) = 0}, i E (1,. . . ,k}. 

Definition 7.8. Let G1, . . . , GI, be gene forests over a leafset L, let 2) = 
k 

(DljDr) be a split of L with C cost(Gi, D) = 0. If we can supplement 
i=l 

the split D to a complete split D* = (D;lD:) of L, ZJ C D;, 23, C Z?:, 

such that 5 cost(Gi, D*) = 0, then we call D* a completion of 2). 
i=l 

Observation 7.5. Suppose we are given k gene forests G1, . . , Gk ouer 
a leafset L. Let 2) = (QID,) be a split of L with D)I U D, # L. Let 

5 cost(Gi,D) = 0. Furthermore, let the gene forest Gi consist of the 
i=l 
gene treesgi ,... ,gb; (i E {l,... 
(i E {l,... 

, k}). Then for any vertexu = root(gj)s 
, ICI, j E 11,. . . 7Pi)t and s E {l,r)) 

LS(w) n (Dl u Z&) c 23, or LS(w) n (Q u DT) c Q.. 

Lemma 7.6. Suppose we are given two gene forests G and H ouer a 
leafset L. Let 2) = (D@r) be a split of L with ;I)1 U ;I), # L. Suppose, 
furthermore, that cost(G,D) = cost(H,D) = 0. Then either there is 
a conflict pair (a, b), a, b E L - (D, U D,,), or there is a completion 
v* = (V~IV,:) of ID. 

Proof. Let the gene forest G consist of the trees 91,. . . , gp and let 
the gene forest H consist of the trees hl,. . . , h,. Furthermore, let 

hi w&’ = root(gi)l, v$~ = root(gi), (i E (1,. . . ,p}) and u1 = roOt(h 

VT hi = root(hj)r (j E (1,. . . , q}). 

We show that if there is no conflict pair, then D has a completion D*. 
Let a, b E L - (Dl U 2&.). Then for G we distinguish the following cases. 

l There is a tree gi E (91,. . . ,gP} with a, b E LS(w,si) (s E {Z,r}). 

l There are gil,giz with a E LS(root(gi,)), b E LS(root(giz)) (il = iz 
is possible). 
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Furthermore, because there is no conflict pair in L - (V, U DD,) we know 

1. cost(G, 271) = cost(H,V,) = 0, V1 = (V, u {a, b}lVT), 

2. cost(G,V2) = cost(H,Z&) = 0, V2 = (V, u {a}lZ&. u {b}), 

3. cost(G,Vg) = cost(H,Vs) = 0, ID3 = (2)~ U {b}\V, U {a}), or 

4. cost(G,V4) = cost(H,V4) = 0, V4 = (VIIV, u {a, b}). 

We consider all possible cases for any two leaves a, b $! L - (Vl U D,), 
a # b, (symmetric cases are excluded). 

Case 1 If a, b E LS(v,si) (s E {I, r}) we know that cost(G,Vl) = 
cost(H,Vl) = 0 or cost(G,V& = cost(H,V4) = 0. Because of 
Observation 7.5 and because there is no conflict pair for 2, in 
L-(V1UVr),theredonotexisttl,t2,tg~{v~”li~{1,...p},s~ 
{Z,r}}U{v~!Ij E (1,. . . ,q},s’ E {Z,r}}suchthat LS(tl)nLS(t2) # 
0, LS(tl) n LS(t3) # 0, LS(t2) n (23 UV,,) C Vl, and LS(t,) n (27 u 
Q-) 2 VT. 
Therefore, in both cases there is a completion V* of V, namely 
V* = (QU{a, b}uE,* I V,u{Z E L - (V, u V, u {a, b}) 1 Z $ ET}), 

whereEg= 
1 

ZEL-(V~UVrU{a,b})I ifZELS(v,g”)nLS(v?) 

then -3~ E (LS(@‘) U LS(v2)) with x E Q.} if cost(G,Vl) = 

cost(H,Vl) = 0 and otherwise, V* = (Vi U (1 E L - (V, U V, U 

{a,b})IZ$!E,*}IV,U{a,b}UE,*)whereE~= ZEL-(QUV,U 
{ 

{a, b}) I if 1 E LS(wp) n LS(vf!) then 42 E LS(vi”) U LS($) 

with x E Vl 
> 

. 

Case 2 If a E LS(v,S”) (s E {Z,r}) and b E LS($‘) (s’ E (1,~)) then 
similarly 

1. if cost(G,Vl) = cost(H,Vl) = 0 then V* = (Vl U {a, b} U 

E~IV,U{ZEL-(V~UV~U{~,~})~Z$!E~}),~~~~~E,*= 

{ 
1 E L - (Vl U V, U {a, b}) I if 1 E LS(@) n LS(vf?) then 

4x E (LS(v,s’) U LS(v,h:)) with x E VT}, is a completion of 
2). 
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2. if cost(G, Vz) = cost(H,&) = 0 then V* = (VZ U {a} U 

E,*~V,U{ZEL-(V~UV~U{~,~})~Z~E,*}),~~~~~E,”= 

1 
1 E L - (Vl U V,, U {a, b}) I if 1 E LS(w%“) n LS(v:?) then 

Glx E (LS($;) U LS(vy )) with x E V,.}, is a completion of 
V. 

3. cost(G,&) = cost(H,Z&) = 0 then V* = (Vl U {a, b} U 

E,*~V,U{ZEL-(V~UV,U{~,~})~Z~E~}),~~~~~E~= 

{ 
1 E L - (291 U V, U {a, b}) I if 1 E LS(@) n LS(v:!) then 

732 E (LS($‘) U LS(v::)) with x E Vr }, is a completion of 
V. 

4. if cost(G,Vd) = cost(H, ‘Dd) = 0 then 2)’ = (Vl U (1 E L - 
(V~UV,U{a,b})~Z~E,*}~V,U{u,b}UE~),whereEq*= 

{ 
I E L - (Vi U V,U {a, b}) I if 1 E LS(@“) n LS(v:/) then 

GIx E LS(wi’) U LS(vi!) with x E Vl , is a completion of 
V. 

Corollary 7.7. Suppose we are given a leafset L. Let GI, . . . , Gk be 
gene forests with LS(root(Gi)) & L (i E (1,. . . , lc}). Let 2) be an incom- 

plete split of L with 6 (Gi, V) = 0. Then Gl, . . . Gk have a completion 
i=l 

of 2) if and only if each pair of {Gl, . . . , Gk} has a completion of 2). 

Lemma 7.6 and Corollary 7.7 lead to the following theorem. 

Theorem 7.8. Suppose we are given a Zeafset L and gene forests G1, . . . , 
Gk, where LS(root(Gi)) C L (i E (1,. . ,k}). Let 2, = (VllV,) be 
an incomplete split of L where IDI, V, are Zeafsets and Vl,V, # 0. 
Then either there is a completion of V or there is a conjZict pair (a, b), 
a,bEL-(VlUV,). 

7.2 A Fixed-Parameter-Tractable Algorithm 

The outline of the algorithm is described as a recursive bounded search- 
tree algorithm based on Observation 7.3. We compute the leafsets of the 
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left and the right subtree of the root of the species tree first and then 
refine this split to a binary tree recursively. 

Before describing the algorithm in detail, we make the following ob- 
servations concerning the number of input trees/input forests. 

Definition 7.9. Suppose we are given a gene tree G over a leafset L. 
Let 2) be a complete split of L. 

1. We say that G is of type V if and only if 
(LS(root(G)l)ILS(root(G),)) = V. 

2. For the given gene trees Gr , . . . , Gk we define the set 7 := {V/V is 
a complete split of L and 3Gi where Gi is tree of type V} to be 
the set of different types of Gr, . . . , Gk. 

Observation 7.9. Let 2) be a complete split of a Zeafset L and let G 
be a gene tree ower L with (LS(root(G)l)ILS(root(G),)) # 2). Then 
cost(G,V) > 0. 

Observation 7.10. Suppose we are given gene trees Gl, . . . , Gk over 
a leafset L and an integer c > 0. If 17) > c then the question whether 
there exists a complete split V of L with Et, cost(Gi,V) 5 c has the 
answer no. 

Observation 7.11. Let G1,. . . , Gk be gene trees over L and let c be a 
positive integer. If there exists a complete split IS of L where 
I{GilGi is a tree of type V*}I > c and the answer to the question whether 
there exists a complete split 2, of L with Cf=, cost(Gi, V) 5 c is yes, then 
Cf=, (Gi, V’) 5 c and ~~=, (Gi, V) > c for all complete splits 2) # V*. 
Furthermore, I{Gilcost(Gi,V*) > O}l 5 c. 

Corollary 7.12. Let Gl, . . . , Gk be gene trees over a Zeafset L and Zet 
c be a positive integer. If the question whether there exists a complete 
split V with Cfzl(Gi,V) 2 c has the answer yes, then the following 
properties are satisfied. 

2. If~{GilGiisatreeoftypeV}~~cforaZZVE’T,thenk~c2. 

3. I{GiIcost(Gi,V) > O}l 5 c for all 2) CF=l(Gi,V) 5 c 

4. If Ic > c and 4V with I{GilGi is a tree of type V} I > c then there 
is a split V* E 7 with CfE1(Gi,V*) 5 c. 
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Figure 7.2: An example illustrating the fixed-parameter-tractable al- 
gorithm solving GENE DUPLICATION. A species tree for three gene trees 
is computed. Here after the first step only one SearchTreeNode has to 
be kept. A triple (kr , ks, 16s) at a branch of the search tree means that 
gene tree Gr, which is mapped into the split at the child of the branch, 
can be rectified with Icr duplications, gene tree Gs with Its duplications, 
and finally Gs with ks duplications. This figure is continued on page 76. 

We now describe the fixed-parameter-tractable algorithm solving GENE 
DUPLICATION. The algorithm is presented in pseudo code. We start 
with the definitions of the data structures. 

type 
nodeRef = pointer to SearchTreeNode; 
SearchTreeNode = record 

leaf: boolean; 
complete: boolean; 
L: integer; 
Gl,... , Gk: GeneForest; 
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Vi, V,: Leafset; 
L: Leafset; 
c: integer; 
M: set of Leafset; 
childr,... , childk : nodeRef; 

end; 

type 
PairOfLeaves = record 

conflict: boolean; 
p1,~2: Leaf; 

end; 

type 
Split = record 

2)~) V,: Leafset; 
end; 

The main function, geneDuplication, answers for an input of k gene 
trees over a leafset L and an integer c the question, whether there exists a 

k 
species tree S over L s.t. C cost(Gi, S) 5 c. First, the root of the search 

tree is created. Then, following Corollary 7.12, we consider several cases 
depending on the number of gene-tree types and the number of gene 
trees of a given type. The search tree is produced by the two functions 
blueTree and redTree. The function blueTree is responsible for all 
possible splits costing no more than c > k for a certain instance. The 
function redTree recurses on an instance associated with a complete 
split 2) = (VllVT) processing VI before V,. 

function geneDuplication(G1,. . . , Gk: GeneForest; L: Leafset, c, k: 
integer): boolean; 
var 

7: set of Split; 
23, V*: Split; 
ID,, V,: Leafset; 
a: Leaf; 
j, count: integer; 
root, left, right, out: SearchTreeNode; 
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begin 
root.complete := false; 
root.Gl, . . . , root.Gk := Gl,. . . ,Gk; 
ro0t.L := L; 
ro0t.c := c; 
r0ot.k := k; 

/* consider the cases depending on the number of gene-tree types */ 
/* and the number of gene trees of a given type (cf. Corollary 7.12) */ 

7 := (Vl3Gi with Gi is tree of type V}; 

if 171 = 1 then 
/* all trees agree on their type; no branching is necessary to */ 
/* compute a complete split of L, all the Ic input gene trees */ 
/* are unchanged (cf. Observation 7.4) */ 

let V+ E 7; 
root.complete := true; 
ro0t.Q := V’.Vl; 
root.V, := V*.V,; 
root.M := 0; 
root := compute(root); 

else if 171 > c then 
/* any split would cause costs higher than c */ 

return false; 

else 
/* 171 5 c; kernelize in the number of forests */ 

count := 0; 
for each V E 7 do 

if [{GilGi is tree of type V}l > c then 
count++; 
ID+ := v; 

end 
end; 

if count = 1 then 
/* if this split is not chosen, all the trees (> c) of this type */ 
/* would cause costs */ 

rootcomplete := true; 
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root.Dl := l7.Q; 
root.DT := D* 23,; 
root := compute(root); 

/* the number of forests which are not trees is bounded by c */ 

else if count > 1 then 
return false; 

else if k > c then 
/* count = 0 */ 
/* the split of the root of a possible solution is in ‘T */ 

for i = 1 to 171 do 
root.childi := copy(root); 

end; 

j := 0; 
for each D E 7 do 

j++; 
root.childj.complete := true; 
root.childj.Dl := D.Dl; 
root.childj.DT := D.D,; 
root.childj := compute(root.child); 

end; 

else 
/* k 5 c */ 

let a E L; 
root.Dl := {a}; 
root := blueTree(root); 

end 
end; 

for each search-tree leaf left in root with 1eft.c > 0 do 
Vi := left.Vl; 
VT := left.Vr; 
left := redTree(lejI,ID~); 

if left = nil then return false; 

for each search-tree leaf right in left with right.c > 0 do 
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right := redTree(right, DD,); 

if right = nil then return false; 

if 3 a complete search-tree leaf out in right with out.c > 0 
and not(0ut.M # 0 and o&.2), n (n out.M) = 0) then 

return true; 
end 

end 
end; 
return false; 

end geneDuplication; 

Function redTree is called for input instances associated with complete 
splits and proceeds in a manner similar to the function geneDuplica- 
tion. 

function redTree(node: SearchTreeNode, L: Leafset): SearchTreeN- 
ode; 
var 

cnode: SearchTreeNode; 
7: set of Split; 
l2, 2)*: Split; 
Q, 2),: Leafset; 
j, count: integer; 

begin 
if IL1 = 1 then 

return node; 
end; 

cnode := copy(node); 
cnode.complete := false; 
cn0de.L := L; 
cnode.k := the number cn0de.G; that are trees when restricted to L; 

7 := (Vl3cnode.Gi with cnode.Gi is tree and tree of type V}; 

if 171 = 1 then 



68 An FPT Algorithm for Gene Duplication 

/* all trees agree on their type */ 
let V* E 7; 
cnode.complete := true; 
cn0de.Q := V*.Q; 
cnode.Vp := V* .V,; 
cnode := compute(cnode); 

else if 171 > cnode.c then 
cnode.c := -1; 

else 
/* 171 5 c; kernelize in the number of forests */ 

count := 0; 

for each 2) E 7 do 
if I{ cnode.Gil cnode.Gi is tree of type V}I > c then 

count++; 
v* := v; 

end 
end; 

if count = 1 then 
/* if this split is not chosen, all the trees (> c) of this type */ 
/* would cause costs */ 

cnode.complete := true; 
cnode.Vl := V*.Vl; 
cnode.V, := V* .V,; 
cnode := compute(cnode); 

/* the number of forests which are not trees is bounded by c */ 

else if count > 1 then 
return false; 

else if cnode.k > cnode.c then 
j := 0; 
for each 2, E 7 do 

j++; 
childj := copy(cnode); 
childj xomplete := true; 
childj.V1 := V.Vl; 
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childi .VT := V.V,; 
childj := compute(childj); 
cnode.childj := childj; 

end; 

else 
/* cnode.b 5 cnodex */ 

cnode := blueTree(cnode); 
end; 

end; 

for each search-tree leaf left in cnode with 1eft.c 2 0 do 
Vl := 1eft.Q; 
23, := left.V,; 
left := redTree(left,Vl); 
if left = nil then return nil; 

for each search-tree leaf right in left with right.c 2 0 do 
right := redTree(right, VT); 
if right = nil then return nil; 

end 
end; 
return cnode; 

end redTree; 

When function blueTree is called, the number of trees in the set of in- 
put forests is bounded by c and the number of input forests is bounded 
by ;(c” + c). 

function blueTree(node: SearchTreeNode): SearchTreeNode; 
var 

pair. PairOfLeaves; 
ret, child1 , childz, child,, childh: SearchTreeNode; 

begin 
pair := conflictPair(node); 

if pair.concflict then 
child1 := copy(node); 
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child2 := copy(node); 
child, := copy(node); 
child4 := copy(node); 

child1 .Vl := node.Vl U {pair.pl, pair.pz}; 
node.childl := compute(child1); 

child2 .Vl := node.Vl U {pair.pl}; 
child, .VD, := node.VT U {pair.pz}; 
node.childz := compute(childz); 

child, .Vl := n0de.Q U {pair.pn}; 
child3 .V, := node.& U {pair.pl}; 
node.childs := compute(child3); 

childJ.V, := node.V, U {pair.pl, pair.pz}; 
node.childd := compute(child4); 

for each search-tree leaf ret in node with rec.c 2 0 do 
ret := blueTree(rec); 

end; 
return node; 

else 
return Complete(node) ; 

end; 
end blueTree; 

function conflictPair(node: SearchlkeeNode): PairOCeaves; 
var 

done: boolean; 
Ll,... , Lk: Leaf&; 
costl,cost2,cost3,cost4: integer; 
pair: PairOfLeaves; 
childI, child2 ,childs , childd: SearchneeNode; 

begin 
done := false; 
child1 := copy(node); 
child2 := copy(node); 
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child3 := copy(node); 
child4 := copy(node); 

for each pair in node.L do 
if not done then 

child1 .Vl := node.Vl U {pair.pl, pair.pz}; 
child2.Q := n0de.Q U {pair.pl}; 
child2 .VT := node.VT u {pair.pa}; 
childs.Vl := node.Vl U {pair.pa}; 
child, .V, := node.V? U {pair.pl}; 
child43, := node.V, U {pair.pl, pair.pz}; 

node.k 
cost1 := C cost(node.Gi, (child1.Q I child1 .VT)); 

i=l 
node.k 

cost2 := C cost(node.Gi, (child2.V~lchild2.V,)); 
i=l 

node.k 
costs := C cost( node.Gi, (child, .V, I child3 .VT)); 

i=l 
node.k 

cost4 := C cost( node.Gi, (childJ.Vl I child4 .VT)); 
i=l 

ifT3costi=O(i=1,...,4)then 
done := true; 
pairxonflict := true; 

else if 73 COSti = 0 (i = 2,. . . ,4) and child1 .V, = 0 then 
for i := 1,. . . , node.k do 

Li := (1 E LI cost(nodeGi, (child1 .Vl I child1 .VT)) = 0); 
end; 

node.k 
if fi Li = 0 then 

i=l 
pairxonflict := true; 

else 
pair.conflict := false; 

end: 

else 
pair.conflict := false; 

end 
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end; 
return pair; 

end conflictpair; 

Note, that in the case where V, = 0 for a split 2) = (Vi/V,) the set of 
vertices in a gene forest is not uniquely determined when the forest is 
mapped into the split. Therefore, we keep building possible solutions 
under the assumption that a valid result can be found, that is, VD, con- 
tains at least one element of each element in M (if M # 0). 

function compute(node: SearchTIeeNode): SearchTreeNode; 
var 

del, Vl, V,: Leafset; 
2): Split; 

begin 
Vl := node.Vl; 
V, := node.VD,; 
V.Vl := v1; v.v, := v,,; 

if V, # 0 then 
de1 := Dups( node.Gi, V}; 
node.Gi := node.Gi- del; 
node.c := node.c - I dell; 

else /” V, = 0; this is only the case when called from function */ 
/* blueTree; i.e., node.k 5 node.c; */ 

for i := 1,. . . , node.k do 
Li := (1 E Llcost(node.Gi,V) = O}; 

end; 

no8e.k 
if C cost(node.Gi, V) > 0 then 

i=l 
let node.G be an element from node.Gr , . . . , node.Gk 

with cost( node.G, V) > 0; 

if node.G is a tree then 
de1 := {‘V E &,&.G [U(w) n ?A # 0 and (M(W) n 2)~ # 0 or 

LS(w,) n VZ # 0) and tll E Ll E LA’(w)}; 
node.G := node.G- del; 
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node.c := node.c--; 

node.k 
if C cost(node.Gi,D) > 0 and node.c 2 0 then 

i=l 
node := compute(node); 

end; 

else 
/* node.G is a forest consisting of the trees g1 and gs */ 
/* (otherwise cost(node.G, D)= 0) */ 

node.chilc& := copy(node); 
node.child2 := copy(node); 
Ml := the leafset of node.G such that cost(gl,V) > 0; 
de1 := {W E v&,&G ILS(w) n 221 # 0 and (L?(W) n 231 # 0 or 

LS(w,) n 2)~ # 0) and VZ E MIZ E U’(w)}; 
node.chil&.G := node.G - del; 
node.chil& .c :=node.c - 1 dell; 
node.chil& .M := node.M U {Ml}; 

node.k 
if c cost(node.Gi,D) > 0 and node.c 2 0 then 

i=l 
node.chi& := compute(node.childl); 

end; 
Mz := the leafset of node.G such that cost(gz,D) > 0; 
del := {w E V,ILS(w) n 23~1 # 0 and (LS(wl) n D,I # 0 or 

M(w,) n Dl # 0)andVZ E MzZ E M(W)}; 
node.chi1ds.G := node.G - del; 
node.childs .c :=node.c - 1 dell; 
node.chi1cls.M := node.M U {M2}; 

node.k 
if C cost(node.Gi,D) > 0 and node.c > 0 then 

i=l 

nodechild := compute(node.child2); 
end 

end; 

else 
node.k 

/* n Li =0 */ 
i=l 

for i := 1,. . . , nodek do /* Ic 6 i(c” + c) */ 



74 An FPT Algorithm for Gene Duplication 

if there is exactly one tree g in node.Gi with cost(g, D) > 0 then 
de1 := {W E Vno&.Gi ILS(w) n 2)~ # 0 and (LS(wl) n 271 # 0 or 

LS(w,) n Dz # 0) and Vl E (L - Li)l E LS(w)}; 
node.chilc$.M := node.M U {L - Li}; 
node.childi.Gi := node.Gi- del; 
node.chilc&.c := nodee - I dell ; 

k 
if C cost(node.chilcli.Gi,D) > 0 and node.c 2 0 then 

i=l 
node.chil& := compute(node.childi); 

end; 

else 
let 91, gs be the trees in node.Gi with 

cost(gl, D) > 0 and co&!, 23) > 0; 
node.chil& := copy(node); 
node.childi.chilcll := copy(node); 
node.child~.chilc12 := copy(node); 
MI := the leafset of node.G such that cost(gl,D) > 0; 
de1 := {W E &&,G ILS(w) n 2)l # 0 and (LS(wl) n Dz # 0 0r 

LS(w,) n ;n, # 0) and ‘dl E Ml1 E LS(w)}; 
node.chil& .childI .G := node.G - del; 
node.child~.childI.c :=node.c - Idell; 
node.childi.childI.M := node.M U {Ml}; 

if 5 cost(node.chilcli.chilc& .Gi, 2)) > 0 and 
i=l 
node.childi.childl.c 2 0 then 

node.childi.chilclI := compute(node.childi.chilclI); 
end 
Mz := the leafset of node.G such that cost(gz,D) > 0; 
de1 := {V E vnode.G ILS(w) n 271 # 0 and (L!?(q) n 23~ # 0 or 

LS(w,) n ;Dl # 0) and VI E n/r,1 E LS(w)}; 
node.childi.child2.G := node.G - del; 
node.childi.chilc12.c :=node.c - (dell; 
node.childi.childn.M := node.M U {Mz}; 

if 5 cost(node.childi.chilcls.G~,D) > 0 and 
i=l 
node.chilcli.child2.c 2 0 then 
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node.childi.chilc12 := compute(node.chilcli.chilclz); 
end 

end 
end; 
return node; 

end compute; 

function Complete(node: SearchTreeNode): SearchTreeNocle; 

Follows Lemma 7.6. 

end Complete; 

To see that the algorithm described above has a fixed-parameter-tractable 
running time for parameter c, we consider the size of the search tree built. 
In the function geneDuplication the root of the search tree is created. 
Then the instance at the root either is completed without any branching, 
calls the function blueTree, or generates at most c branches, where on 
each branch a complete instance is computed and c is decreased. 

In blueTree, either a conflict pair is computed, or the split is com- 
pleted (cf. Lemma 7.6). In case of the existence of a conflict pair, there 
are at most f(c” + c) branches. At each branch, c is decreased. 

The work to do at each node of the search tree, i.e., to decide whether 
to complete the split or to branch, can clearly be accomplished in poly- 
nomial time. 
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Figure 7.2: continued 



Chapter 8 

On the Multiple-Gene- 
Duplication Problem 

In this chapter we study the complexity of MULTIPLE GENE DUPLICA- 
TION (Problem 5.3). All the results we published in [26] (joint work with 
Fellows and Hallett). The underlying model is the MULTIPLE-GENE- 
DUPLICATION MODEL introduced in Section 5.4. A restricted version of 
MULTIPLE GENE DUPLICATION has the species tree S known. We state 
it as follows: 

Problem 8.1. MULTIPLE GENE DUPLICATION II 
Input: Set of gene trees G1, . . . , Gk, a species tree S, integer c. 
Question: Does there exist functions ~OcG;,S, eVentGi,S (1 5 i 5 /c) such 

that S receives G1, . . . Gk with at most c multiple gene duplications 
(i.e., costMG(G1,. . . ,Gk,S) 5 c)? 

By reduction to and from a combinatorial problem called the BALL- 
AND-TRAP GAME, we show W[l]-hardness and N’P-completeness for 
MULTIPLE GENE DUPLICATION II. We introduce the BALL-AND-TRAP 
GAME in Section 8.1. In Section 8.3 we show W[l]-hardness and NP- 
completeness of two different parameterizations of the BALL-AND-TRAP 
GAME. The intractability of MULTIPLE GENE DUPLICATION II is pre- 
sented in Section 8.4. 
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8.1 The Ball-and-Trap Game 

The BALL-AND-TRAP GAME is played on a rooted tree T = (V,E) 
decorated with a set of traps D and a set of balls B. Let L c V be the 
set of leaves of T. Every ball and trap has a color associated with it; 
this is given by the functions c&j : B -+ [l : k] and CD : D + [l : k], 
respectively. The balls and traps are initially associated with internal 
vertices of T by means of the attaching functions 1~ : B + V - L and 
10 : D + V-L. Each ball b E B of color Cg(b) is labeled with a (possible 
empty) subset & c D of traps. For each ball b every trap d E & is 
of the color CD(d) = cg(b). A ball with a given set of traps may occur 
many times in the tree (i.e., for b, b’ E B & = Ri and cB(b) = cg(b’) but 
lB(b) # lB(b’) is possible). Also, a vertex in the tree can be decorated 
with many different balls and traps. 

A game consists of some number of moves, after which the score is 
calculated. The rules of the game are as follows: 

1. Balls and traps are initially placed at internal vertices of T accorcl- 
ing to 1~3 and 1~. 

2. Balls may not move down the tree (i.e., towards the leaves). They 
may either stay in the same place or move upwards (i.e., towards 
the root) according to the topology of T. In each turn, a ball b on 
a vertex w can be moved to the parent(w). 

3. We say that a trap d E D is dangerous for a ball b E B if d E Rb. 
A ball b sets off a trap if the ball is placed at the vertex of a trap 
dangerous for b. 

4. When a trap d is set ofs by a ball b, it is removed from the game 
and replaced by two new balls b,,,, b,,,! such that 

(a) CB(bnew) = CB(bnem~) = C&b), 

(b) b&mu) = hv(bnew~) = b(d), 

(C) Rb,ew = Rb,evl = & - d and & = Rb - d, and 

(a) & = i&t - d, for all b’ E B. 

The goal of the game is to minimize the score of tree T which is defined 
by 

smaz(w) = C max{s(l, ~1,. . . ,s@, f~)} 
UEV 
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where s(c, w) denotes the number of balls of color c at vertex w in T. 

Problem 8.2. BALL AND TRAP-OPTIMIZATION 
Input: A rooted tree T = (V,E) (L C V is the leafset of T), a set of 

balls B, a set of traps D, two coloring functions cg : B + [I : k] 
and CD : D + [l : k], two initial attaching functions 1~ : B + VT - L, 
10 : D + VT -L, and for each ball b E B a set Rb 2 D where for each 
d E & CD(d) = cB(b). 

A Round: Each round of the game consists of the player moving any 
number of same colored balls up the tree or deciding not to move any 
balls (halting move). 

Output: The location function 1’(B) generated according to the above 
rules which minimizes UFV s,,, (v). 

The input is measured as follows: n denotes the size of T, k denotes 
the number of colors, r denotes the number of traps, and there are at 
most m balls on any vertex of T in the initial configuration. The above 
defined game leads to the following decision variant of the problem: 

Problem 8.3. BALL AND TRAP-DECISION 
Input: A rooted tree T = (V,E) with leafset L C V, a set of balls 

B, a set of traps D, two coloring functions cg : B -+ [l : k] and 
CD : D -+ [l : k], two initial attaching functions 1~ : B 3 VT - L, 
10 : D + VT - L, for each ball b E B a set Rb s D where for each 
d E Rb co(d) = cg (b), and a positive integer t. 

Question: Can the BALL-AND-TRAP GAME be played on T to achieve 
a score of at most t? 

Theorem 8.1. MULTIPLE GENE DUPLICATION II reduces to BALL AND 
TRAP-DECISION. 

Proof. We construct an instance I’ of BALL AND TRAP-DECISION from 
an instance of I of MULTIPLE GENE DUPLICATION II. Let S be the 
species tree S = (Vs, Es, L). Let T = (Vs, Es) with leafset L C Vs. 
Furthermore, let t = c and the number of colors k’ of I’ be equal to 
the number of gene trees k from I. Thus, each color corresponds to one 
of the input gene trees. Apply M(Gi,S) (cf. Section 5.2) for the least- 
common-ancestor mapping Zoc~;,s(u) = Zcas(LS(u)) for all u E V& , 
l<i<k. 
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We create a ball b with cB(b) = i for every vertex u E Vi such that 
ewe?&,s(u) = dup. Let lB(b) = lOQ,s(u). If 10Cci,s(U) # root(S), 
then let 

?hps(u) = {wlv E vi;, w is an ancestor of u, eVeni&,s(W) = spec}. 

For each w E Traps(u) we create a trap d and let ID(d) = lo~,~(w) in 
T and co(d) = i. Place v in Rb. 
We prove that I’ is a yes-instance of BALL AND TRAP-DECISION if 
and only if I is a yes-instance of MULTIPLE GENE DUPLICATION II. 
One need only to verify that the legal moves for a ball in the BALL- 
AND-TRAP GAME correspond to the legal moves for a duplication event 
for MULTIPLE GENE DUPLICATION. 

Clearly, each legal move of a duplication corresponds to a move in 
the BALL-AND-TRAP GAME. But, what if there is more than one ball 
attached to a vertex 2 in the species tree and the balls correspond to 
duplication events such that there is a series ‘1~1, us, . . . , uq E VG; and 
eventc,,s(u,) = dup, ZOCG~,S(U) = x and up is a direct descendant of 
upfl in Gi, for all 1 5 p < q? But then the traps dangerous for these 
balls are all equivalent. q 

Figure 8.1 shows two BALL AND TRAP instances. Figure 8.1(a) is the 
BALL AND TRAP version for the instance shown in Figure 5.3(b) on page 
42. Figure 8.1(b) corresponds to the situation in Figure 5.3(c). 

Figure 8.1: Two instances of the BALL-AND-TRAP GAME. Notice in 
(a) that the red ball located at the vertex which is the least common 
ancestor of the leaves A, B and C contains the red Trap 1. If it is moved 
upwards to the root, which is decorated by the red Trap 1, an additional 
ball will be added to the game (i.e., to the root of the tree) (b). 
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8.2 Parameterizations of the Ball-and-Trap 
Game 

We consider the following parameterizations of BALL AND TRAP. 

Problem 8.4. BALL AND TRAP I 
Input: A rooted tree T = (V,E) with leafset L c V, a set of balls 

B, a set of traps D, two coloring functions cB : B + [l : k] and 
CD : D + [I : k], two initial attaching functions 1~ : B + VT - L, 
10 : D + VT - L, for each ball b E B a set Rb s D where for each 
d E & co(d) = cB (b), and a positive integer t. 

Parameters: k = 2, for each b E B let ]&,I 5 2, the number of traps r. 
Question: Can the BALL-AND-TRAP GAME be played on T to achieve 

a score of at most t? 

Problem 8.5. BALL AND TRAP II 
Input: A rooted tree T = (V,E) with leafset L 2 V, a set of balls 

B, a set of traps D, two coloring functions cB : B + [l : k] and 
cD : D -+ [l : k], two initial attaching functions lg : B -+ VT - L, 
10 : D + VT - L, for each ball b E B a set & C D where for each 
d E & CD(d) = cB (b), and a positive integer t. 

Parameters: k, r, m, t. 
Question: Can the BALL-AND-TRAP GAME be played on T to achieve 

a score of at most t? 

Problem 8.6. BALL AND TRAP III 
Input: A rooted tree T = (V,E) with leafset L C V, a set of balls 

B, a set of traps D, two coloring functions cB : B + [l : k] and 
CD : D + [I : k], two initial attaching functions 1~ : B + VT - L, 
ID : D + VT - L, for each ball b E B a set &, C D where for each 
d E Rb CD(d) = cg(b), and a positive integer t. 

Parameters: k, r. 
Question: Can the BALL-AND-TRAP GAME be played on T to achieve 

a score of at most t? 
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Problem 8.7. BALL AND TRAP IV: 
Input: A binary tree T = (VT,&) with leafset L C V, a set of balls 

B, a set of traps D, two coloring functions cB : B -+ [l : k] and 
CD : D + [l : k], two initial attaching functions 1~ : B -+ VT - L, 
10 : D + VT - L, for each ball b E B a set Rb C D where for each 
d E &, CD(d) = cB(b), and a positive integer t. 

Parameters: k = 2 and the number of traps r. 
Conditions: 

1. I&, 5 2, for all b E B 

2. For a vertex w E VT, let ps(c, w) denote the maximal possible num- 
ber of balls of color c attached to vertex v. Then for all w E VT 
and each color c, s(c, w) 5 ps(c, w) and 

PS(C, w) I PS(C, 4 - s(c, Q) + PS(C, VT) - s(c, VT) 
2 if s(c,vl) = s(c,w~) = 0 and wl,w, $ L 
1 if either s(c, ‘~1) = 0 or s(c, w,) = 0 

+ 1 if s(c, vl) = s(c, w,) = 0 and 
either wl E L or wT E L 

0 otherwise 

3. &, = Rb if lB(b) = lB(b’) and cg(b) = cg(b’). 

4. Rb c Rb! if lo is an ancestor of lB(b’) in T. 

5. No useless traps are allowed (a trap d is useless if no ball b in the 
subtree, where the trap is located, has d E Rb). 

6. If b, b’ E B where the vertex lo is a descendant of the vertex 
lB(b’), then all the traps d E & - .& are placed at vertices on the 
path from b to b’ (inclusive). 

Question: Can the BALL-AND-TRAP GAME be played on T to achieve 
a score of at most t? 

Before we analyze the complexity of BALL AND TRAP I (Problem 8.4) 
and BALL AND TRAP IV (Problem 8.7) we want to mention the following 
two theorems which we published in [26]. These theorems give us hope 
that a reasonable parameterization for the BALL-AND-TRAP GAME can 
be found. This would lead to a fixed-parameter tractable algorithm for 
a parameterization of MULTIPLE GENE DUPLICATION II. 
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Theorem 8.2. [Z’6] For every fixed set of parameter values (k, r, m, t), 
the problem BALL AND TRAP II can be solved in time linear in the size 
of the tree. 

Theorem 8.3. [Z6] BALL AND TRAP III can be solved in time nc where 
c = O((k29m). 

8.3 Intractability of Ball and Trap 

We prove the W[l]-hardness of BALL AND TRAP I and NT-completeness 
of BALL AND TRAP by means of a polynomial-time parameterized re- 
duction from the W[l]-complete problem ~-CLIQUE (cf. Problem 2.4, 
Section 2.3.2). As an intermediate step we prove that the following 
parameterized problem is hard for W[l]. 

Problem 8.8. (r, k)-SMALL UNION 
Input: A family F of distinct subsets of { 1, . , . , n}, positive integers r 
and k. 
Parameter: (r, k) 
Question: Is there a subfamily F’ C 7 with 13’1 1 r such that the union 

of the sets in F’ has cardinality at most k? 

Lemma 8.4. SMALL UNION is NP-complete and hard for W[l] para- 
meterized by k and r. 

Proof. Let (G, k) be an instance of ~-CLIQUE. We transform (G, k) into 

an instance (F, ((i), k)) of (r, k)-S MALL UNION, where F is the family 

of 2-element sets corresponding to the edges E of G, with the vertices 
of G identified with V = (1,. . . ,n}. 

We show that G = (V, E) has a k-clique if and only if 3 has a sub- 
family F’ C F with ].F’] 2 (t) such that ].F 5 k. 

+ Let V’ be a k-clique in G. Then each pair (a, b) E V’ x V’ is an edge in 
G and therefore {a, b} E T. We define F’ = {{a, b}l(a, b) E V’xV’. 
Then ].F’] = (!J) and ] U F’] = k. 

-+ Let F’ c F be a set of ]F’[ 2 (t) elements with I UF] = k. We 
define V’ = U 3’. V’ is a k-clique in G, since for any (a, b) E 
V’ x V’ (a # b). {a, b} E F’ (Otherwise, there exist x, y with 
{a,~}, {b, y} E F’, x,y E V’. Therefore ] UF’] 2 k + 2. Contra- 
diction.) But then {a, b} E F, that is (a, b) E E. 
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Theorem 8.5. 

1. BALL AND TRAP is N’P-complete. 

2. BALL AND TRAP I is W[l]-hard. 

Proof. BALL AND TRAP is well-defined for non-binary trees, and, hence, 
we describe how SMALL UNION can be reduced to BALL AND TRAP I. 
Let (F, (r, k)) be an instance of SMALL UNION. We can assume, by the 
reduction from K-Clique to (r, k)-S mall Union (described above), that F 
consists of 2-element sets. In order to describe the reduction, we must 
describe a tree T with decorations, and the target value t for the game 
on T. 

The tree T is a star of degree n = 1 U 71 (with the root being the 
central vertex). Each leaf of T is associated with an element of T. The 
two colors are red and bZue. There are n red traps ~1,. . . , TV,. Each leaf 
is decorated with a single red ball labeled with the set of traps {TV, TV} 
for the associated (“edge”) set {u, v}. The root is decorated with k + r 
blue balls, each labeled with the empty set of traps. The root is also 
decorated with all the n red traps. We set t = (n - r) + (k + r) = n + k. 
We show if (F, (r, k)) is a yes-instance of SMALL UNION, then the tree 
described above is a yes-instance of BALL AND TRAP I. Initially, the 
score is n + k + r. The only possible move is to move a red ball from a 
leaf to the root. If r balls can be moved up to the root from the leaves, 
with the r balls chosen so that the union of their trap-label sets has 
cardinality k, then the result is a total of k + r red balls at the root 
(where there are k + r blue balls, so the cost of the root in the final score 
remains k + r). Thus the score at the end is t. 

Conversely, if a score of t is achieved by a game g, then necessarily 
at least r red balls must be moved up from the leaves. Let g’ denote the 
truncated game consisting of the first r moves. There are two cases to 
consider: 

Case 1 g’ also achieves a score of at most t, and 

Case 2 the score for the game g’ is greater than t. 

In Case 1, exactly r red balls are moved to the root and consequently 
the score for the root vertex is at most k + r, which implies that the 
union of the trap label sets for the balls moved up has cardinality at 
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most k. This implies that (F, (r, k)) is a yes-instance for the SMALL 
UNION problem. 
In Case 2, there are more than k+r red balls at the root after the moves 
of g’. Since the number of red balls now exceeds the number of blue balls 
at the root, each further move of g is of no advantage in decreasing the 
total score, contradicting that g is a game that achieves a score of at 
most t. 0 

The next theorem shows that BALL AND TRAP remains W[l]-hard even 
if restricted to BALL AND TRAP IV. 

Theorem 8.6. BALL AND TRAP IV is W[l]-hard. 

Proof. We use the following modified construction from the proof of 
Theorem 8.5. Again, we reduce from SMALL UNION. Let (F, (r, k)) be 
an instance of SMALL UNION. As in the proof of Theorem 8.5 we assume, 
by the reduction described above, that F consists of 2-element sets. We 
build a tree T’, a preliminary stage of T. The tree T’ is a tree isomorphic 
to a binary caterpillar tree of ].F[ + n leaves, where n = 1 U F] and one 
child of root(T’) is a leaf. Let u be the internal vertex of T’ where T’(u) 
has exactly 131 leaves. Each leaf of T’(u) corresponds to an element 
of 3. The colors are red and blue. There are n red traps 71,. . . ,rn. 
Each leaf of T’(u) is decorated with a single red ball labeled with the set 
of traps {rU,rU} for the associated edge (u,w) (i.e., the corresponding 
element {u, w} E F). The internal vertices of T’(u) receive neither balls 
nor traps. The n red traps are placed on the n internal nodes of T’, who 
are not elements of the vertex set of T’(u). To construct T we extend 
T’ such that each leaf of T’ becomes an internal vertex of T with two 
children, each of these children having two leaves. That is, T is a binary 
tree over 4(F + n) leaves. Finally, the root of T is decorated with k + r 
blue balls. Figure 8.2 illustrates the construction of T by means of an 
example. Let t = n + k. 
We show that (F’, (r, k)) is a yes-instance of SMALL UNION if and only if 
the tree described above is a yes-instance of BALL AND TRAP IV. 

+ Initially, the score is n + k + r. The red balls are the only possible 
balls to move. Moving up red balls towards U, which is the ver- 
tex inducing the subtree of T having exactly 4lFl balls, does not 
change the score. If r red balls can be moved up to the root of T, 
with the r balls chosen so that the union of their trap-labeled sets 
has cardinality k, then the result is a total of k + r blue balls at 
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Figure 8.2: An example for the construction of a BALL AND TRAP IV 
instance for a (r, k)-SMALL UNION instance. Here n = 4, Ic = 3, and 
r = 3. 

the root, the score at root(T) is k + r, and therefore the score in 
total is t. 

+ analogous to this direction in the proof of Theorem 8.5 on page 84. 

8.4 Intractability of Multiple Gene Dupli- 
cation 

The following theorem proves W[l]-hardness and NP-completeness of 
MULTIPLE GENE DUPLICATION II. 

Theorem 8.7. BALL AND TRAP IV reduces to MULTIPLE GENE Du- 
PLICATION 11 [%I. 

Proof. We construct an instance I' of MULTIPLE GENE DUPLICATION 
II from an instance I of the W[l]-hard problem BALL AND TRAP IV 
(cf. Theorem 8.6). Our reduction builds a species tree S = (V,, E,y,L) 
and gene trees G1 and Gs. I is restricted to two colors; we associate color 
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1 with Gi and color 2 with Gs. We give S the topology of T = (V, E), 
the tree of instance I. That is, Vs = V, Es = E, and L C V is the 
leafset of T identified with a set of leaf labels. 
W.1.o.g. we restrict our attention to balls and traps of only one color 
c. We describe the construction of gene tree G, in two steps. In Step I 
we build the contradictory topology r of G,. That is, r = (V,, E,, L7) 
is a leaf-labeled tree with r c G,. Attached to the vertices of T are 
sets of vertices which help us embed the leaves without influencing the 
differences between G, and S (Step II). 

Step I: We build the contradictory topology r = (VT, E,, L7) such that 
r C G,. For each vertex Y E V one of the following three cases: 

Case 1. w E L. We set free(v) := {U}. 

Case 2. u E V -L and v is decorated by a ball but not by a trap. 

1. Pick a leaf 11 E L from free(q). 
2. Pick a leaf Zs E L from free(q). 
3. Create a new vertex w in 7. 
4. w := parent,( w := parent, 

5. fi := free(v) - {II>, fi := free(w) - {&I,) 
6. For each ball b at o: 

l If there is an element in fi U fs, which is an internal 
vertex in 7, then pick such an internal vertex e E 
fi U fs. Otherwise pick a leaf e E fi U fi, e E L. 

l If e E fi then fi := fi - e, otherwise fs := fi - e. 
0 Create a new vertex w’ in 7-. 
0 w’ := parent,(w),w := parent,(w). 
l Rename w’ by w. 

7. free(w) := fi U fi U {w}. 

Case 3. v E V - L and u is decorated by a trap. 

1. If there exists an internal vertex of r in free(q) and T(q) 
has a ball b with d E &,, then pick such an internal vertex 
el, el E free(w). 

2. If there exists an internal vertex of r in free(w,) and T(v,) 
has a ball b with d E &,, then pick such an internal vertex 
el, el E free(v,). 

Note that at least one element of ei and es is an internal 
vertex of r (cf. Condition 5, Problem 8.7). 
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3. Create a new vertex w in r. 
4. w := parent,( w := parent,( 
5. For each ball b at v do: 

l If there is an element in fi U fi which is an internal 
vertex in r then pick such an internal vertex e E 
fi U fi, otherwise pick a leaf e E fi U fi, e E L. 

l If e E 11 then fi := fi - e, otherwise fi := fi - e. 
0 Create a new vertex w’ in r. 
l w’ = parent,(w), w’ = parent, (w). 

l Rename w’ by w. 
6. free(v) := fi U fi U {w}. 

Case 4. v E V - L and v is not decorated. We set free(v) := 
free(w) Ufree(v,). 

It, is easy to verify that now free(root(T)) = L - L,. 

Step II: For embedding the leaves L - L, in G,, we complete G, 
from 7 by embedding the remaining leaves free(root(T)) in ac- 
cordance to the topology of T. We build the maximal subtrees 
T, = (VT,, ET,, LT, ) of T over the elements of free. For each such 
tree T,, we compute the sibling w of v in S and specify p, the least 
common ancestor of the leaves of LT, in T. Then we subdivide 
edge (p,parent,(p)) in (p,p’) and (p’,parent,(p)) and add T, as 
the sibling of p in T. 

The proof that 1’ is a yes-instance from MULTIPLE GENE DUPLICATION 
II if and only if 1 is a yes-instance from BALL AND TRAP IV follows 
directly from the fact that the moves for a ball correspond to the legal 
moves of a duplication. 0 
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In this part we study the resolution of conflict graphs using the problem 
VERTEX COVER (cf. Problems 2.1 and 2.3). We motivate the problem 
with an application in computational biology, namely the fundamental 
problem of constructing Multiple Sequence Alignments (MSAs). The 
problem is, for a given set of biological sequences (e.g., DNA or pro- 
tein sequences) to determine whether the sequences display sufficient 
similarity to justify the inference of homology (i.e., the existence of a 
common ancestor of the sequences). Therefore the goal is to find a good 
alignment of the sequences. Given a perfect MSA, one can predict the 
evolution of the sequences. 

The known algorithms computing MSAs usually fail to produce an 
exact solution corresponding to the underlying model due to the A@- 
hardness of the problem [13, 34, 39, 44, 711. The main problem, from 
a biological point of view, is the misplacement of gaps (i.e., insertion 
and deletion events during evolution). Therefore we can view the pro- 
blem of computing MSAs as the problem of inserting gaps at the correct 
places [48, 491. Assuming that all the input sequences to the multiple- 
sequence-alignment problem are homologous, there exists an evolution- 
ary tree corresponding to the MSA. We further assume that we can 
construct the tree directly from a (biologically) perfect MSA of the in- 
put sequences (cf. Figure 9.0). 

1. KETAAAKFQRQHMDSSTSSASSSN-YCNQMMKSRNM_SDRC 
2. KES-FERQHIDSSTSSVSSSN-YCNQkZ.,TSmLeQDRC 
3. KESA?+AKFERQHMDPSPSSASSSNpYCNQMNQSDRLTQDRC 
4. -QDWSSFQNKHIDYPETSASNPNAYCDLMMQRRNLNPTKC 
5. -TRYEKFLRQHVDYPKSSAPDSRTYCNQMMQRRGMTSPVC 

1 fi 2 3 4 5 

Figure 9.0: The upper part of this figure depicts an MSA for five amino- 
acid sequences whereas the lower figure depicts its corresponding evo- 
lutionary tree. The sequences correspond to the leaves of the tree, the 
internal nodes represent the ancestry. The gaps are represented as ‘-‘. 
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Once we are given an MSA with misplaced gaps, it is possible that con- 
flicts prevent the tree construction. A gap in a sequence of a computed 
MSA M is defined by its location in the sequence. Two sequences in M 
share a common gap if both sequences have a gap at the same location. 

1. KETAPAKFQRQHMDSSTSSASSSN-YCNQMMKSRNM-SDRC 
2. KESAAAKFERQHIDSSTSSVSSSN-YCNQMMTSRNL-QDRC 
3. KESAAAKFERQHMDPSPSSASSSN-YCNQMMQSDRLTQDRC 
4. -QDWSSFQNKHIDYPETSASNPNAYCDLMMQRRNLNPTKC 
5. -TRYEKFLRQHVDYPKSSAPDSRTYCNQMMQRRGMTSPVC 

g1 g2 g3 

l.KETAAAKFQRQHMDSSTSSASSSN-YCNQIfMKSRNb-SDRC 
2.KESAAAKFERQHIDpSTSSVSSSN-YCNQMMTSRNL-QDRC 
3.KESAAAKFERQHMD-SPSSASSSN-YCNQmQSDRLTQDRC 
4 .-QDWSSFQNKHIDYPETSASNPNAYCDLMMQRRNLNPTKC 
5. -TRYEKFLRQHVDYPKSSAPDSRTYCNQMMQRRGMTSPVC 

g1 g2 83 g4 

Figure 9.1: The MSA from Figure 9.0 contains three different gaps as 
shown in the upper figure: gr is shared by sequences 4 and 5, g2 by 
sequences 1,2, and 3 and gs by sequences 1 and 2. An MSA with four 
different gaps is depicted in the lower figure: gr is shared by sequences 
4 and 5, g2 by sequences 2, and 3, g3 by sequences 1,2, and 3, and g4 by 
sequences 1 and 2. 

Let gr and g2 be two gaps in a given MSA M. We assume gap g1 appears 
in the set of sequences A, and gap g2 appears in the set of sequences 
B. We say gr and g2 have a conflict with respect to MSA M if A g B, 
(M-4 !ZB,ACL (M-B), and (M - A) g (M - B). In other words 
the two gaps overlap in the MSA. 

One way to resolve this problem is to compute the minimum num- 
ber of gaps such that the MSA ignoring these gaps is conflict free and 
therefore a tree construction corresponding to the MSA is possible. 

Representing the gaps as vertices and the conflicts as edges between 
the vertices corresponding to the conflicting gaps, we model the pro- 
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1 fi 2 3 4 5 

2 fi 3 14 5 

Figure 9.2: Two possible evolutionary trees corresponding to the MSA 
in Figure 9.1, lower figure. In the one tree (upper figure) sequences 1 
and 2 are closer related to each other (corresponding to gap gs) than 
sequence 3 to one of them; in the other tree sequences 2 and 3 are siblings 
(corresponding to gap 94.) 

blem by means of a conflict graph. We compute the minimum number 
of vertices covering all edges (cf. Figure 9.3). Thus, we have the pro- 
blem transformed into VERTEX COVER (Problem 2.1) [49]. Note that 
the size of the input graph in this application of vertex cover is bounded 
by approximately 20 vertices due to the small number of gaps appearing 
in a realistic VISA. 

VERTEX COVER is also useful when the problem is to compute the min- 
imum number of sequences in a given database representing all domains 
appearing in the sequences [50]. We represent the sequences as vertices 
and two vertices are adjacent if and only if they have a common domain. 
The corresponding graph problem to solve is the A@-complete problem 
DOMINATING SET [31]. We introduce the parameterized version 

Problem 9.0. ~DOMINATING SET 
Input: A graph G = (V, E), a positive integer k. 
Parameter: k 
Question: Does G have a dominating set of size 5 k (i.e., does there 
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Figure 9.3: The conflict graph corresponding to the MSA in Figure 9.1, 
lower figure. The conflict between gaps gs and g4 is represented by edge 
(92794). 

exist a subset V’ c V, IV’1 5 k, such that for each vertex w E V: 
v E V’ or N(w) fl V’ # Q)? 

Since ~-DOMINATING SET is known to be W[2]-complete [16] and every 
vertex cover in a graph is also a dominating set, it might be a useful 
method to compute a minimum vertex cover as a first step of a heuristic 
for solving DOMINATING SET. (Note that every graph has a dominating 
set of size IF].) 

In Part III we develop a new fixed-parameter-tractable algorithm for 
~-VERTEX COVER, the parameterized version of VERTEX COVER (cf. 
Problem 2.3, 15). We first describe the basic ideas of the known fixed- 
parameter-tractable algorithms of ~-VERTEX COVER (Chapter 9). The 
best algorithm so far by Niedermeier and Rossmanith runs in time 
0(k]V]+(1.29175)“.rC2) [58]. W e p resent a new improved fixed-parameter 
tractable algorithm with a time complexity of O(klVl +r”lc), r M 1.2906 
(Chapter 10). We improve the lclam value of 143 by 16 to 157. Besides a 
further improvement of the search tree and a better analysis of the run- 
ning time, we also developed a better kernelization. In Chapter 11, we 
compare an implementation of our fixed-parameter-tractable algorithm 
with two algorithms based on heuristics for VERTEX COVER. 



Chapter 9 

Known .FP’T Algorithms 
for k-Vertex Cover 

In Section 2.3.2, we introduced the ~-VERTEX COVER problem (Pro- 
blem 2.3) which was one of the first problems shown to be fixed-parameter 
tractable [19, 281. In this section, we describe the basic ideas of the 
known fixed-parameter-tractable algorithms for ~-VERTEX COVER. The 
first of those algorithms was presented by Fellows with a bounded search- 
tree algorithm and a running time of O(akn) (cf. Section 2.3.2, page 16 
and [24]). The algorithm due to S. Buss has an O(lcn + k2Lf2) time 
complexity [II]. Papadimitriou and Yannakakis, while proving that k- 
VERTEX COVER is in P when k is restricted to O(logn), provided an 
O(3”n) algorithm [60]. Though this algorithm does not have a bet- 
ter complexity, by using an observation due to Buss, Downey and Fel- 
lows improved the running time of this algorithm to O(kn + 3”k2) [19]. 
Downey and Fellows present a different algorithm that runs in time 
O(kn + 2”Ic2) [18]. Balasubramanian, Fellows, and Raman improved 
the running-time bound to O(lcn + r”lc2), r M 1.3247, with an improved 
search-tree algorithm [4]. This algorithm has been improved by Downey, 
Fellows, and Stege by using a better kernelization of the input graph to 
obtain a running time of O(kn+r” . k2), r M 1.3195 [21]. The algorithm 
by Niedermeier and Rossmanith runs in time O(lcn+rk.IC2), r M 1.2917, 
using a further improved search tree [58]. 
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9.1 Buss’ Algorithm 

This section describes the algorithm by Buss which runs in O(kn+/~~“+~) 
[ll]; the klam value of this algorithm is 9. Given a graph G = (V,E) 
and a positive integer /c, it checks whether it has a vertex cover of size Ic. 
The algorithm is based on the method of reduction to a problem kernel 
(cf. 2.3.3, page 17). The following algorithm assumes that the instance 
graph G = (V, E) is given in the adjacency-list representation. 

Step 1 Find the set H of all vertices of degree more than L in G. Let 
]H] = b. If b > k then answer no. Otherwise include H in the 
vertex cover, remove H and the edges incident to H from G. Let 
k’ = Ic - b. Remove any resulting isolated vertices. 

Step 2 If the resulting graph has more than Ic. k’ edges, then answer 
no. 

Step 3 Find by brute-force whether the resulting graph has a vertex 
cover of size Ic’. If so then answer yes. Otherwise answer no. 

9.2 The Algorithm by Papadimitriou and 
Yannakakis 

This algorithm has a running time of O(3”n) [60]. Papadimitriou and 
Yannakakis investigated the complexity of some NP-hard problems when 
the parameter Ic is restricted to be logarithmic in the input size and 
designed the following algorithm to show that the ~-VERTEX COVER 
problem is in P when k is restricted to O(logn). 

Step 1 Find a maximal matching in the graph (A matching is a subset 
of the edges of the graph such that no two elements have a common 
vertex). Let the size of the matching be m. If m > Ic answer no. 
If 2m 5 Ic, then answer yes. The 2m vertices form a vertex cover. 

Step 2 Let U be the set of the endpoints of the m edges of the maximal 
matching. For every edge of the matching, either one of the end 
points or both are in any vertex cover of G. Furthermore, once a 
subset of U is picked in a vertex cover, the rest of the vertex cover 
is uniquely determined: a vertex in V - U is included in the vertex 
cover if and only if there is an edge incident with it whose other 
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end point (which is in U) has not been picked in the vertex cover. 
Thus, cycle through the 3” subsets of U (by picking either one or 
both of the endpoints of each edge in the matching) and check, for 
each subset whether it, along with its unique extension to V, is 
of size at most Ic. If it is so for any subset, answer yes, otherwise 
answer no. 

By preprocessing the entire graph by applying Steps 1 and 2 of Buss’ 
algorithm (cf. Section 9.1), we can assume that the resulting graph G 
has O(Ic2) vertices and edges after spending O(lcn) time, ignoring the 
singletons in G since none of them has to be included in a minimum 
vertex cover.’ Thus, the bound for the algorithm reduces to O(lcn+3”k2) 
PI. 

9.3 The Algorithm by Balasubramanian, 
Fellows, and Raman 

This algorithm has a running time O(kn+(1.324718)“b2) [4] and consists 
of two steps: a preprocessing step, based on the method of reduction to 
a problem kernel (cf. Section 2.3.3, page 16) and a step based on the 
method of bounded search trees (cf. Section 2.3.3, page 17). The klam 
value of this algorithm is 129. 

Step 1 Additionally to Steps 1 and 2 of Buss’ algorithm (cf. Section 
9.1) included in the vertex cover are 

l all neighbors of vertices with degree 1 

l Let v be a vertex of degree 2 and y and .z be the neighbors of 
w. Then we include y and z in the vertex cover if (y,z) E E. 

l Let z,y,z be vertices of degree 2, and let N(z) = {y,z}, 
N(y, z) = (2, a}. Then we include {z, a} in the vertex cover. 

The number of vertices and edges of the resulting graph is O(k2). 

lTo verify the size of O(k2) of the kernel, assume that G has more than k2 + k 
vertices. Then there is a vertex 21 in each k-vertex cover of G and u must be incident 
to more than k vertices; but then deg(v) > k. Therefore, IEl 5 k2 and IV1 5 k(l+k). 
The running time of the preprocessing comes from the fact, that we only need include 
at most k vertices of degree more than k in a k-vertex cover (otherwise we can answer 
no and thus we can delete each of the at most k vertices in time O(n) from G, 
assuming an adjacency-list representation of the graph. 
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Step 2 The search tree is built as follows. The root consists of the 
kernelized graph problem (G, Ic). Note that we treat the last case 
after the others, that is, the graph left is 4-regular. 

1. If deg(w) = 2, let N(w) = {y, z}. Since (y, Z) $ E, w.1.o.g. ei- 
ther v and N(y, Z) or y and z are in a minimum vertex cover. 
Therefore we branch in (G’,lc - IN(y,z)j) and (G”,k - 2). 
G’ is the graph resulting from G by including N(y, Z) in the 
vertex cover, for G” y and z are included in the vertex cover. 

2. If deg(v) 2 5 then either w or all it’s neighbors are included 
in the vertex cover. The branches are accordingly. 

3. If deg(w) = 3, let N(v) = {z, y,z}. 

(a) (~,y) E E. Include either {z, y,z} or N(z) in the vertex 
cover. 

(b) There is a common neighbor w, v # w, between a pair of 
the vertices x, y, and Z. Either x, y, and z or w and w 
are included in the vertex cover. 

(c) There are no edges among x, y, and Z, and x has at least 
three neighbors other than v. We include either {x, y, z}, 
N(x) or WY, ~1 U {x>. 

(d) There are no edges among x, y, and z and each of x, 
y, and z has, apart from v, exactly two private neigh- 
bors. Let N(x) = {w,a,b}. Either {x,y,z}, {v, a, b}, or 
N(y, Z, a, b) are included in the vertex cover. 

4. Let N(w) = {a, b, c, d}. 

(a) If (a, b) E E, then we include in the vertex cover either 
{a, 4 c, 4, N(c), or {c> U N(d). 

(b) If there is no edge among a, b, c, and d, and a, b, and c 
share a common neighbor w # u then we include in the 
vertex cover either {a, b, c, d} or {w, w}. 

(c) If there is no edge among a, b, c, and d, each one of 
them has three neighbors other than Y, and no three of 
them have a common neighbor other than v, then either 
{a, b,c,d}, N(b), {b} U N(d) or {b,d} U N(u,c) are in- 
cluded in the vertex cover. 

The running time of O(kn + (1.324718)“1c2) is obtained as follows. As 
a preprocessing, we can do Step 1 (the kernelization and reduction) in 
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time O(lcn). After applying Step 1 we are left with a graph of size IGI = 
O(k’). The complexity determining a &vertex cover of the kernelized 
graph consists of the size of the search tree times O(k2), because O(lc2) 
is the work to do for finding a vertex to branch at and the branching 
itself. The size f(lc) of the search tree we obtain from the most expensive 
branching rule 3 (b), which implies that f(k) 5 f(Ic--3)+f(lc-2)+1 (i.e., 
3 or 2 vertices are included in the vertex cover via the branching). The 
polynomial corresponding to this recurrence equation is x3 - x - 1 = 0 
with the solution x M 1.3247.2 

9.4 The Algorithm by Downey, Fellows and 
Stege 

The main idea here is an improved kernelization, which is not only ap- 
plied as a preprocessing step, but also reapplied after each branching in 
the search tree. The graph is reduced to a graph having no vertices of 
degree less than four and no vertices having a degree of more than k. 
These rules are described more explicitly (but also generalized) in Sec- 
tion 10. Thus, we build the search tree from branching at vertices of 
degree at least four as described below. We published his algorithm in 
Pll. 

Following Observation 10.1, we perform this branching if there is a 
vertex of degree at least 6. By repeating this branching procedure, at 
each step reapplying the reduction rules, we can assume, that at each leaf 
of the resulting search tree we are left with considering a graph where 
every vertex has degree 4 or 5. If there is a vertex u of degree 4, then 
the following branching rules are applied. Suppose that the neighbors of 
a vertex w are N(w) = {a, b, c, d}. We consider various cases according 
to the number of edges present among the vertices a, b, c, d. 

Note that, if not all of the vertices in {a, b, c, d} are in a vertex cover, 
then we can assume that at most two of them are. 

Case 1. GIN(V) has an edge, say (a, b). Then it is not possible that 
c and d are in a minimum vertex cover at once, unless all four 
vertices of a, b, c, d are there. We can conclude that one of the 
following cases is necessarily a subset of the vertex cover C and we 
branch accordingly: 

ZFor further information about recurrence equations cf. [47]. 
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1. {u,b,c,d} E C 

2. N(c) E c 

3. (c} u N(d) c c. 

Case 2. The subgraph GI,v(Vl is empty. We consider three subcases. 

Subcase 2.1 Three of the vertices (say a, b, and c) have a common 
neighbor y other than v. 

If not all elements of {a, b, c, d} are in a k-vertex cover, v and y 
must be. We can conclude that one of the following is a subset of 
vertex cover C and branch accordingly: 

1. {a, b, c, d} c C 

2. {%Y> c c. 

Subcase 2.2 If Subcase 2.1 does not hold, then there may be a pair of 
vertices who has a total of six neighbors other than w, suppose a 
and b. If all of a, b, c, d are not in the vertex cover C then c $ C, 
or c E C and d $ C, or both c,d E C (in which case a, b $ C). 
We can conclude that one of the following sets is a subset of the 
vertex cover C and branch accordingly: 

1. {u,b,c,d} EC 

2. N(c) g c 

3. {c} u N(d) c C 

4. {c, d} u N(a, b) & C. 

Subcase 2.3 If Subcases 2.1 and 2.2 do not hold, then the graph must 
have the following structure in the vicinity of v: 

(1) IJ has four neighbors a, b, c, d and each of these has degree four. 

(2) There is a set E of six vertices such that each vertex in E is 
adjacent to exactly two vertices in {a, b, c, d}, and the sub- 
graph induced by E U {a, b, c, d} is a subdivided K4 with each 
edge subdivided once.3 

In this case we can branch according to: 
3’ lx., w.1.o.g. GIEU{a,b,c,d) has the edge set {(a,~), (vl,b), (b,vz), (‘uz, c), (c,v3), 

(o3,d), (d,~Uq), (u4,a), (a,%), (u5,C)> @,%)I (v6,@1 
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1. {a, b, c, d} c C 

2. (E u {v}) c C. 

If the graph G is regular of degree 5 (that is, there are no vertices 
of degree 4 to apply one of the above branching rules to) and none 
of the reduction rules can be applied, then we choose a vertex v 
of degree 5 and do the following. First, we branch from (G, Ic) to 
(G -v, k - 1) and (G - A$], Ic - 5). Then we choose a vertex u of 
degree 4 in G - v and branch according to one of the above cases. 
The net result of these two combined steps is that from (G, k) we 
have created a subtree where one of the following cases holds: 

1. There are four children with parameter values k - 5, from 
Case 1. 

2. There are three children with parameter values Ici = k - 5, 
lcs = k - 5 and Its = Ic - 3, from Subcase 2.1. 

3. There are five children with parameter values ki = lc - 5, 
lo = k - 5, IEs = Ic - 5, kq = Ic - 6 and Its = k - 9, from 
Subcase 2.2. 

The bottleneck recurrence comes from the degree 5 situation which pro- 
duces four children with parameter values k - 5. The total running time 
of the algorithm is therefore O(r”k2+IEn), where T = 4115, or r M 1.3195 
approximately. The klam value is 130. 

9.5 The Algorithm by Niedermeier and 
Rossmanit h 

This algorithm [58] is an extension of the algorithm by Balasubramanian, 
Fellows, and Raman (cf. Section 9.3, [4]). As done in [4] (cf. Section 9.3), 
the reduction to a problem kernel is used as a preprocessing step only. 
The search tree is improved; here the main idea is that in each branch 
of the search tree there is at most one graph being c-regular for each c, 
and therefore the most expensive branching leads to a running time of 
0(/m + rk . k2), r z 1.2917, and a klam value of 141. 

Since in Section 10 we make only use of branching rules using ver- 
tices of degree 4, 5 and 6, we skip the exact description of the more 
complicated branching rules in the search tree for the vertices of degree 
3 end refer to [58]. 
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Case 1 If there is a vertex v with degree 1, then branch according to 
N(v) (and nothing else). 

Case 2 If there is a vertex v with degree 6 or more, then branch ac- 
cording to v and N(v). 

Case 3 If there are no vertices with degree 1 or at least 6, but there is 
a vertex with degree 2 then proceed as follows. 

1. If the graph is 2-regular, an optimal vertex cover is easy to 
construct in linear time. 

Otherwise let v be a vertex with degree 2 and a, b its neighbors, 
where a has degree 2 3. The algorithm chooses the first case that 
applies. 

1. If there is edge (a, b) E E or if there is a path of length two 
from a to b not including v and therefore a cycle [v, b, c, a, v]. 
Furthermore, let deg(c) = 2. Then include {a, b} in the vertex 
cover (no branching is necessary). 

2. If ]N(u, b)\ > 4, then branch according to {a, 6) and N(u, b). 

3. Assume there is exactly one cycle of length four containing 
v. Say the cycle is [w, a, y, b, a, v]. Then branch according to 
N(y) and N(u). 

4. Assume there are two cycles of length 4 containing v. W.1.o.g. 
let [v, a, y, b, v] and [v, a, z, b, v] be these cycles. Then branch 
according to N(y) and {v, y, z}. 

Case 4 If the above cases do not apply and if the graph is regular, then 
choose some vertex v and branch according to w and N(v). 

Case 5 If the above cases do not apply and if there is a vertex v with 
deg(v) = 3 then let N(v) = {a, b, c} and proceed as follows. 

1. If there is a cycle [o, y, Z,U] then assume y = a and .z = b. 
Branch according to N(v) and N(c). 

2. If there are at least two different cycles [v, ~1, xi, wi, v] and 
[v, u2, x2, w2, v], then branch according to N(v) and {v, 21, x2). 

3. If there is exactly one cycle [v, U, x, w, v], then assume u = 
a and w = b. Furthermore assume deg(u) = 3. Branch 
according to N(v) and N(u). 
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4. If there is exactly one cycle [w, u, z, w, U] and the case above 
does not apply, we again assume u = a and w = b. Branch 
according to N(w),N(a), {a, V} U N(b, c). 

5. If none of the cases above applies in the whole graph, but 
there is a vertex w with neighbors N(w) = {a, b, c}, we distin- 
guish as follows. 

(a) Assume at least two vertices of {a, b, c} have degree at 
least four, say a and b. Then we branch according to 
N(w), {w)UN(a, b), -lw, alUN(b, 4 and {w,b)UN(a, 4. 

(b) Otherwise, we can assume that there is a vertex w in G 
with deg(w) = 3, N(w) = {a, b, c}, and exactly one of 
{a, b, c} have degree at least 4. In this case we refer to 
[58] due to the complicated branching in this case. We 
do not use of this case in our algorithm described in the 
next chapter. 

Case 6 If the above cases do not apply all the vertices in G have either 
degree 4 or 5. Let w be a vertex with deg(w) = 4. Let y E N(v) 
and deg(y) = 5. We proceed as follows. 

1. Assume there is a cycle [w, a, b, w]. 

(a) a, 6 # y. Let c 4 {a, b, y} be another neighbor of w. 
Branch according to N(w), N(y), and {w, y} U N(c). 

(b) a = y. W.1.o.g. let c,d E N(w), c,d $ {a, b} and (c,d) is 
not an edge. Branch according to N(w), N(c), {w,c} U 

N(d). 

2. If the above case does not apply and there is no vertex w with 
degree 4 that has the following two properties at once 

l w has a neighbor x with degree 5. 
l there are at least two different cycles w is contained in 

but not x. 

Let N(w) = {y, b, c,d}. B ranch according to N(y), N(w), 
iv, Y> U NC4 4, {w, Y, 4 U N(b, 4, and {w, Y, b) U NC, 4. 

3. If the above case does not apply pick a vertex w having these 
2 properties at once. 

l w has a neighbor y with degree 5, 
l there are at least 2 different cycles w is contained in but 

not y 
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branch according to N(y), N(w). 

Since later (cf. Section 10.3) we use Case 6 of this algorithm, we mention 
the recurrence equations following from the subcases. Subcases 6 (a) i, 
6 (a) ii, and 6 (c) imply the recurrence equation f(k) < f (k - 5) + 
2f(k - 4) + 1; the recurrence equation following from 6 (b) is f(k) 2 
f(k-9)+2f(k-8)+f(k-5)+f(k-4)+1. Thesolutioncorresponding 
to the resulting polynomials x 5-2x-1=Oandxg-2x-x4-x4-l=0 
is x M 1.2906. 



Chapter IO 

An Improved .WT 
Algorithm 

In this chapter, we present an improved fixed-parameter-tractable al- 
gorithm for ~-VERTEX COVER with a time complexity of O(kn + r”k), 
where T M 1.2906. We achieve a klam value of 157. 

A preliminary version of our algorithm was published in [67] (joint 
work with Fellows). The algorithm described here is a combination of 
the algorithm by Downey, Fellows, and Stege (cf. Section 9.4 and [al]) 
and the algorithm by Niedermeier and Rossmanith (cf. Section 9.5 and 
[58]). The main improvement is a better kernelization, which is achieved 
by new reduction rules and an improved structure of the search tree. 

The main idea for the new reduction rules is the concept of adding 
edges; the instance (G, k) is transformed into (G’, k’), by deleting ver- 
tices and adding edges such that G has a k-vertex cover if and only if 
G’ has a k’-vertex cover. 

We restate Observation 2.1 (cf. page 15). 

Observation 10.1. Given a graph G = (V,E). Then for each v E V 
and each vertex cover VC of G 

v E vc or N(w) c vc. 
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10.1 Reduction to a Problem Kernel 

Starting with (G, k), we apply each of the following reduction rules until 
no further application is possible. The justifications for the reductions 
are given below (cf. page 108-113). For the sake of completeness, we give 
also the proofs for the rules we took over from the algorithms described 
in the previous chapter. 

(R 1) If G has a vertex v with deg(v) > k then replace (G, k) with 
(G-v,k-1). Fu th r ermore, v is contained in every k-vertex cover 
of G. 

(R 2) If G has an edge (u, w) with deg(u) = 1, then replace (G, k) with 
(G - {u, w}, k - 1). 

Due to complexity reasons, we apply the following rules (R 3), (R 4), 
and (R 5) only for vertices w of degree at most y for a given constant 
y E N. 

(R 3) If G has two adjacent vertices u and v such that N(u) C N[v], 
then replace (G, k) with (G - w, k - 1) (cf. Figure 10.3, page 109). 

(R 4) If G has a vertex v with even degree, G]N(V) has exactly 

f dedw)(dedv) - 2) dg e es, and none of the other cases applies, 
then (up to renaming vertices) G(N(Vl has the following form. 

Let N(w) = {xi,xs,... ,~~s(~)}. Then the edges in the comple- 
mentary graph of G]NcUl are 

(cf. Figure 10.1). 

Replace (G, k) with (G’, k - i deg(v)). G’ is obtained from G by 

l adding all the possible edges between x&s(U) and N(xi); 

l adding all the possible edges between x&g(v)-1 and N(xs), 

l adding all the possible edges between X; &s(V)+i and 

N(x+ de.&; 

l deleting the vertices w, ~1, x2, . . . , Xi &s(v). 

Cf. Figure 10.4 on page 111 as an example. 
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Figure 10.1: (R 4): Every configuration not having a perfect matching 
[9] (shown by the red edges) in its complement would imply case (R 3). 

(R 5) If G has a vertex w with odd degree, GIN(~) has exactly 
($ deg(w)(deg(w) - 2) - i) e d ges, and none of the other cases ap- 
plies, then GIN(~) has (up to renaming vertices) the following form. 
Let N(v) = {x1,x2,. . . ,~d~s(~)}. Then the edges in the com- 
plementary graph of GIN(~) are (xl, xdeg(v)h (~2, xdeg(u)--l), . . . , 

(x~(deg(v)--l)~x~(deg(v)+3))t and (x+(deg(v)--l),x$(deg(u)+l)) ccf. Fig- 

ure 10.2). 

Replace (G, k) with (G’, k - 3 deg(w) + $). G’ is obtained from G 
by 

l adding all the possible edges between x$(deg(v)+s) and 

N(X$(de,(,)-1)) 
l adding all the possible edges between x&(&g(v)+s) and 

N(x;(de&+-3)) 

l adding all the possible edges between x&s(U) and N(xi) 

l adding all the possible edges between x~%(+~(~)+i) and 

N(x$(de,(+l)); 
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Figure 10.2: (R 5): Every configuration not having such a configuration 
of red edges in its complement would imply case (R 3). 

l deleting the vertices v, x1, 22,. . . , x&(&g(v)-l). 

Cf. Figure 10.5 on page 112 as an example. 

(R 6) If G has a vertex w with deg(w) = 3 and N(w) = {a, b, c}, and 
none of the above cases applies, then Gla,b,e contains no edge. 
Replace (G, k) with (G’, k). G’ is obtained from G by 

l deleting the vertex w from G, 

l adding all the possible edges between c and the vertices in 
N(a), 

l adding all the possible edges between a and the vertices in 
N(b)> 

. adding all the possible edges between b and the vertices in 

N(c)> 
l adding the edges (a, b) and (b, c). 

Cf. Figure 10.6 on page 114 as an example. Note that this reduc- 
tion rule is not symmetric. 

The reduction rules described above are justified as follows. 
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(R 1) Any k-vertex cover in G must contain v, since otherwise it would 
be forced to contain N(w), but IN(w)] > k. 

(R 2) If G has a k-vertex cover VC with w $ VC, then u E VC. But 
then (VC - {u}) U {v} is also a k-vertex cover. Thus, G has a 
k-vertex cover if and only if it has one containing v. That is, G 
has a k-vertex cover if and only if G - {u, w} has a (k - l)-vertex 
cover. 

(R 3) If a k-vertex cover VCdoes not contain v, then it would be forced 
to contain N(v) and therefore it must contain N[u] - {w}. But then 
(VC- {u}) U {w} is also a k-vertex cover (cf. Figure 10.3). Thus, 

Figure 10.3: Reduction rule (R 3). 

G has a k-vertex cover if and only if it has one containing v. 

(R 4) If G has a k-vertex cover, then there is a k-vertex cover VC 
having one of the following forms. 

1. N(w) E VC 

2. VEVC 

In the second case we can assume that at most deg(v) - 2 vertices 
of N(v) belong to the vertex cover. v is redundant, if all vertices 
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of N(w) belong to the vertex cover. If deg(w) - 1 of the vertices 
belong to VC, then we can exchange w by the vertex in N(w) not 
being in the vertex cover. 

Thus, we can assume VC has one of the following forms. 

. N(w) c VC 

l N(x+ deg(u)+l> x& deg(u) ) c VcT 

. N(x+ deg(v)+2, x+deg(v)-l) c vc 

l N(Xdeg(v),Xd c vc 

Similarly, if G’ has a k/-vertex cover, then there is a k/-vertex cover 
VC’ having one of the following forms. 

l lx+ deg(v)+lT . . . 1 xdeg(v) > c vc+ 

l N(xgdeg(,)+l) c I%’ 

. N(z+deg(,)+,) & vc’ 

l Nhieg(u)) c vc’. 

We show G has a k-vertex cover if and only if G’ has a k/-vertex 
cover. If G has a k-vertex cover of the first form, then G’ has 
a (k - i deg(v))-vertex cover containing {XL deg(vl+l,. . . ,x&s(U)} 
and vice versa. If G has a k-vertex cover L%’ of the form w E VC, 
N(v) - {Xi, xdeg(v)--i+l > c vc, Wvdeg(v)--i+l - ) C VCfor some 
i (1 5 i 5 i deg(w)),. then there is a k/-vertex cover Vc/ in G’ 
containing N(xdeg(u)--i+l) C Vc. Clearly, in G’ 

ix; deg(u)+l> . . . P %deg(u) > - @deg(v)--if11 c N(Xdeg(u)--i+l). 

Furthermore, the vertices adjacent to xdeg(u)--i+l in G’ agree with 
the neighbors of xi and x&s(v)--i+l in G. Finally a k/-vertex cover 
VC’ in G’ of the form N(Zdeg(u)--i+i) C Vc implies a k-vertex 
cover in G of the form v E VC, N(w) - {x~,x~~~~~~-~+~} C VC 
(1 5 i 5 ideg(w)). 

(R 5) If G has a k-vertex cover, then there is a k-vertex cover VC 
having one of the following forms. 
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Figure 10.4: Reduction rule (R 4) for deg(w) = 2. 

1. N(w) c VC 

2. VEVC 

In the second case we can assume that at most deg(w) - 2 vertices 
of N(w) belong to the vertex cover. Thus, we can assume VC has 
one of the following forms. 

. N(w) c VC 

’ N(x+(de,(u)+3), “+(deg(u)-1)) E vc 

l N(x+(deg(u)+5)r “$(deg(v)-3)) c vc 

. N(x;deg(t,),Xd E vc 

l N(x$(de,(v)-l), “$(deg(v)+l)) c vc 

If G’ has a k - (i(deg(v) - l)-vertex cover VG’, then there is one 
having one of the following forms. 

l {x$(deg(v)+l) > “+(deg(v)+3) i . . . 7 xdeg(v)) c vc’ 

l N(x$(deg(v)+l)) E vc 
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Figure 10.5: Reduction rule (R 5) for deg(v) = 3. 

We show G has a k-vertex cover if and only if G’ has a V-vertex 
cover. If G has a k-vertex cover of the first form, then Vc = 
vc- {z1722,‘.~ ~z~(deg(v)--l)~ is a vertex cover of G’ and vice 
versa. 

If G has a k-vertex cover VC of the form N(zdeg(v)--i+l, Q) c VC 
forsomei(l<i<$(deg(v)-3))then VC’= VC-{z~,Q,..., 
z$(&g(v)-l)} is k/-vertex cover in G’. (All the vertices covered 
from N(Q) in G are also covered in G’ because of the added edges 
between zd,,g(U)--i+l and N(Q) in G’.) Conversely, if G’ has a 
vertex cover VG’ of the form N(zi(&g(u)-l)) C VG then VC = 

Vc/ U ({51,x2,. . , x+f(deg(u)-l)} - {xi}) is a vertex cover for G. 

Finally, if G has a vertex cover of the form 

N(z$(de,(+l), “;(deg(v)+l)) c vc~ 

then VC’ = VC- {%1,x2,. . . , “+(deg(v)-l)} is vertex cover in G’. 
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(R 6) We show that for deg(v) = 3 and N(w) = {a, b, c}, we can apply 
(R 2) if G]{a,b,cl contains more than one edge. Assume G]la,b,cl 
contains two edges. Then the two edges must have a vertex in 
common, say a. But then N(v) c N[a]. We can assume that 
there is no edge in G]NcV), because otherwise we can apply (R 3) 
or (R 5) (cf. Figure 10.6). Let VC denote a k-vertex cover in G. 
We can assume that VC has one of the following forms. 

1. {u,b,c} c VC 

2. WE vc 

In the second case, we can assume that at most one of the vertices 
of {a, b, c} belongs to VC. 

We show that G’ has a k-vertex cover. If VC has form 1 then VC 
is also a k-vertex cover of G’. Let’s consider form 2. If none of 
the vertices of {a, b, c} belongs to VC, then (VC- {w}) U {b} is a 
k-vertex cover of G’. 

Now assume there is exactly one vertex of {a, b, c} in VC. 

l If a E VC then ( VC - {v}) U {c} is a k-vertex cover of G’. 

l If b E VC then ( VC - {w}) U {a} is a k-vertex cover of G’. 

l If c E VC then ( VC- {w}) U {b} is a k-vertex cover of G’. 

Conversely suppose G’ has a k-vertex cover VC. Then we can 
assume VC has one of the following forms: 

1. {a,b,c} & VC 

2. be VC 

3. {u,c} c vc 

4. {a, b} c VC 

5. {b,c} c VC 

Clearly, if VC has form 1 then it is also a vertex cover of G. If 
VC has form 2, then N(u, b, c) C VC and (VC - {b}) U {w} is a 
k-vertex cover of G’. If VC has form 3 then N(b, c) C VC and 
( VC- {b}) U {w} is a k-vertex cover of G. If VC has form 4 then 
N(a, c) 2 VC and (VC- {u}) U {w} is a k-vertex cover of G. 
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Figure 10.6: Reduction rule (R 6). 

10.2 Time-Complexity Analysis of the Re- 
duction to a Problem Kernel 

Simply because of reduction rule (R 1) we can conclude, after spending 
time O(kn), that the answer of input (G, k) is no if the number of vertices 
in G’ is larger than lc2 + k (cf. footnote page 97). 

To analyze the the running time of the other reduction rules we need 
to consider a graph of size O(k2) only. With the exception of (R 6), 
applying a reduction rule leads to decreasing the parameter by at least 
one. Therefore, we can apply each of (R l)-(R 5) in time O(k3). 

In the case of reduction rule (R 6), the parameter Ic is not decreased 
and we consider the running time of applying (R 6) seperately. We can 
assume that deg(w) > 2 for all w in G and for each w in G with deg(v) = 3 
there is no edge in GINcV) (otherwise one rule of (R 2) - (R 5) can be 
applied). Let w be a vertex in G with deg(w) = 3 and N(w) = {a, b, c}. 
After applying (R 6) to w, we obtain graph G’ with deg(z) 2 4 for all 
2 E {a, b, c} U N(a, b, c). We distinguish two cases. 

1. There is no vertex z E {a, b, c} UN(a, b, c) with deg(z) > k. In this 
case, we either apply (R 6) to another vertex in G, or no further 
reduction rule applies. When looking for the next vertex where 



10.3 A Better Search Tree 115 

(R 6) can be applied, we do not have to reconsider the vertices 
we checked to find the former one (because only the degree of 
the vertices {a, b, c} U N(u, b, c) changes). Therefore, all possible 
applications of (R 6) for a certain k can be done in time O(Ic3). 

2. There is a vertex z E {a, b, c}UN(u, b, c) with deg(z) > Ic. Then we 
apply (R 1) to 2 and the parameter k is reduced by one. Because 
we can find x, after applying (R 6) to w, in constant time, here 
(R 1) does need O(k) time additionally. 

Thus, the whole kernelization step can be done in time O(kn + k3) or 
simply 0 (kn) . 

At the end of this kernelization step we have reduced (G, Ic) to (G’, k’). 
G’ has minimum degree 4 if we have not already answered the question. 
If we still have no answer about the original input (G, k), then we are 
left with considering (G’, k’) where IV’1 5 k2 + k and k’ 5 k. 

Combined with a search tree, in the next section we present a further 
kernelization of the graph s.t. ]G] = O(k). 

10.3 A Better Search Tree 

In this phase of the algorithm we build a search tree of height at most k. 
The root of the tree is labeled with the output (G’, k’) of the kerneliza- 
tion. We describe how to build the search tree in three steps. Compared 
to the algorithms described in the previous chapter, we start branching 
at vertices of degree 7. This leads us to a smaller graph size of O(k) 
after applying this first branching step. 

Step 1. Following Observation 10.1, we create for every vertex of de- 
gree at least 7 two children, one labeled with (G’ - w, k’ - l), and the 
other one labeled with (G’ - N[w], k’- deg(v)). We repeat this branching 
procedure, at each step reapplying the reductions of the kernelization. 

After Step 1, we can assume that at each leaf of the resulting search tree 
we are left with an instance (G”, k”) consisting of a graph where every 
vertex has degree four, five or six, and none of the above cases of the 
reduction rules of the kernelization applies. 
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What does Step 1 mean to the size of the graph of such an instance? 
We consider the following graph-theoretical result by Bollobas [9]. 

Theorem 10.2. Suppose we are given a graph G = (V,E), IV1 = n, 
with 6 5 deg(v) 5 A for all w E V. Furthermore 6 < A - 2 and 
n > A + 6. Then the number of independent edges in G (two edges are 
independent if they have no vertex in common) is at least r&l. 

For 6 = 4 and A = 6, we obtain the following corollary. 

Corollary 10.3. Suppose we are given a graph G = (V,E), IV1 = n 
and n 2 10, with 4 5 deg(w) < 6 for all v E V. Then each vertex cover 
of G has a size of at least gn. 

Thus, we can answer no to the question whether G” has a k/‘-vertex 
cover if k” < $n, and therefore we can assume G” does contain at most 
2.5k vertices (i.e., IG”] = O(n)). 

Step 2. For every vertex of degree at least 6 we create two chil- 
dren, one labeled with (G’ - w, k” - l), and the other one labeled with 
(G” - N[w], k” - deg(w)) and repeat this branching procedure, at each 
step reapplying the reductions of the kernelization. 

At each leaf of the search tree we are left with an instance (Gc3), kc3)), 
Gc3) having vertices of degree 4 and 5. 

Step 3. We apply Case 4 (in the case where Gc3) is regular) and Case 6 
(in the case where there is a vertex of degree 4 with a neighbor having 
degree 5) of the algorithm by Niedermeier and Rossmanith (cf. Section 
9.5) and repeat this branching, until neither Case 4 nor Case 6 can be 
applied in Gc3), at each step reapplying (R l), (R 2), and (R 3) and the 
following branching variants of reduction rules (R 4), (R 5), and (R 6). 

These branching variants of the reduction rules are necessary to avoid 
a repetition of the 4- or 5 regularity of the graph in a branch when 
applying the algorithm, since in (R 4), (R 5), and (R 6) edges are added 
to the graph. Of course we only have to apply this variant in the case 
the graph has been 4 or 5 regular already. In each variant, we combine 
the reduction rule with a branching such that the resulting recurrence 
equation for this branching rule in total a polynomial with solution r 5 
1.290648801 (i.e., the new branching rules are not more expensive than 
the Case 6 in the algorithm by Niedermeier and Rossmanith). 
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We consider (R 4) for a vertex of degree 2 and (R 5) for a vertex of 
degree 3 only. 

(B 4) Let (G, k) be an instance where each vertex in G has degree at 
most 5. Suppose G has a vertex of degree 2 and (Rl)-(R3) do 
not apply to a vertex in G. Let N(w) = {a, b}. We can assume 
(a, b) $ E (otherwise (R 3) applies). We first reduce the graph and 
do a subsequent branching (cf. Figure 10.7). We reduce as follows. 

l delete w 

l add all the possible edges between b and N(u) 

l Include a in the vertex cover VC and delete a. 

Consider the resulting instance (G’, k - 1). For every neighbor w 
of b in G’ we have dega, (w) = deg, (w), that is only the degree of 
6 may be changed. If deg(w) < 4 we are done, because G’ contains 
vertices of degree smaller than 4 and thus, G’ is neither 4- nor 
5-regular. 

If deg,,(b) > 4 we branch according to (G’ - b, k - 2) and 
(G’ - N(b), k - (1 + IN(b)I IN( 2 4. Clearly, no resulting 
graph G” is 4- or 5-regular. The vertex in G” of highest degree 
has at most the degree of a vertex with the highest degree in G. 

(B 5) Suppose G has a vertex of degree 3 and (R 1)-(R 4) and (B 4) 
do not apply in G (i.e., we can assume that every vertex in G is 
of degree at least 2 and at most 5). Let N(v) = {a, b, c}. We 
can assume that (a, b) E E, but there is no other edge in Gl{a,b,cl 
(otherwise (R 3) applies). 

We apply (R 5) to v and as a result we obtain graph G’. Only the 
degrees of a, b and N(c) in G might have changed their degrees in 
G’. 

If G has vertices of degree 5, in G’ both a and b have a degree of 
at least 3 and at most 7. If all the vertices of {a, 6) U N(u) have a 
degree of 5, we branch according to a and N(u). Otherwise, as long 
as there are vertices of degree higher than 5 in G’ branch according 
to w and N(v). The reduction and the first branching results in a 
recurrence equation of the form f(k) 5 f (k - 2) + f (k - 6) + 1. 

If there is no vertex of degree 5 in G, in G’ both a and b have 
a degree of at least 3 and at most 5. If a or b have a degree of 
at least 4, we branch according to a and N(u). If both a and b 
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Figure 10.7: Branching rule (B 4). 

have a degree of 3 but there is a neighbor u of a and b having a 
degree of 5, we branch according to v and N(v). The reduction 
and the first branching result in a recurrence equation of the form 
f(k) 5 f(k - 2) + f(k - 5) + 1. 

(B 6) Suppose G has a vertex of degree 3 and (R 1)-(R 5), (B 4), and 
(B 5) do not apply in G. Let N(w) = {a, b, c}. We assume that 
there is no edge in Glta,b,c). We distinguish 3 cases. 

1. There are two vertices of {a, b, c}, say a, b, such that N(a) C 
N(b). 

2. The first case does not apply and there is a vertex w of degree 
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3 having a neighbor of degree at least 4. 

3. The first case does not apply and the graph is 3-regular. 

In the first case we first apply (R 6) at vertex w. The resulting 
graph is G’. Now we can reduce G’ by b applying (R 3). If the 
graph is S-regular, we can further assume that (B 5) does not apply 
in G. Then we pick a vertex u and branch according to IJ and N(v). 
Consider G-w. Now there are at least 3 vertices of degree 2 and we 
apply (B 4). In G - N(v) there are at least two vertices of degree 
2 and thus we apply (B 4) to them. The resulting recurrence 
equation is f(L) 5 f(k-6)+f(k-7)+2f(Ic-8)+2f(Ic-lO)+l. 

In the second case let deg(b) = 4. We apply (R 6). In the resulting 
graph G’ w.1.o.g. c has at least 2 neighbors U,W $ N(b) in G. 
Branching on c first and then on b (and if necessary also on a) 
results in a graph being neither 4- nor 5-regular, the recurrence 
equation is either f(k) 5 f(/c - 6) + f(lc - 1) + 1 or f(lc) 5 3f(Ic - 
7) + f(k - 3) + 1. 

Finally, branching a 3-regular graph G can be done via branching 
once, at a vertex v, according to Observation 10.1, and then in the 
resulting graphs we apply (B 4) at the vertices of degree 2. The 
resulting recurrence equation is of the form f(k) 5 Sf(lc - 15) + 
3f(b -12)-t f(k - 9)+f(k - 6)+f(k - 3)+1. 

10.4 Time-Complexity Analysis 

In Step 1, branching a vertex with degree 7 or higher implies the recur- 
rence equation of the form f(lc) 5 f(k - 7) + f(k - 1) + 1. The resulting 
polynomial r7 - r6 - 1 = 0 has the root r M 1.2554. The graph size is 
bounded by O(lc’) vertices and therefore so far we have a running time 
of O(lcn + rk . k2), T M 1.2554, for Ic > 189 . 

The recurrence equation resulting from Step 2 is f(lc) 5 f(k - 6) + 
f(k - 1) + 1. The root of its resulting polynoial is T M 1.2852. The 
bottleneck recurrence equation resulting from Step 3, Step 4 and Step 5 
comes from Case 6 in the algorithm by Niedermeier and Rossmanith 
(Section 9.5, [58]). The root of the resulting polynomial is r M 1.2906. 
Because of Corollary 10.3, the graph size is bounded by 2.51c vertices. 
Thus, the overall time complexity of our algorithm of O(lcn + @lc), 
r M 1.2906. 
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The klam value of 157 is obtained from max{(rr)‘IC2, (~3)’ 2.5k} > 102’, 
n M 1.2554 and 13 M 1.2906, for k 2 157.0818. We want to remark, that 
independently from this result Chen, Kanj, and Jia recently published 
an algorithm which solves ~-VERTEX COVER in time O(kn + 1.271”1e2) 

P41. 

lo.5 Ideas for Future Work 

Taking into account that VERTEX COVER is N’P-complete, we presented 
a very efficient XV- algorithm solving ~-VERTEX COVER. However, 
difficulties in practice can appear when the input graph is large. One 
problem is due to memory requirements, since we have to keep copies 
of the graph for each branch of the search tree. An other reason is the 
longer practical running time due to the large size of the search tree. 
Therefore, in the case of large input graphs, it is useful to spend more 
time in the kernelization step. 

For example, in the case of degree-4 vertices, some more reduction 
rules were found. Because we were not able to find reduction rules for 
all the degree-4 vertices, this does not help improving the running time. 

(R ‘7) If G has a vertex w with deg(v) = 4 and N(v) = {a, b, c, d}, none 
of the above cases applies, and if one of the following cases is ful- 
filled, then Glfa,b,c,dl contains at most three edges. Replace (G, k) 
with (G’, Ic’) according to one of the following cases depending on 
the graph Glfa,b,c,dl (up to renaming of the vertices a, b, c, cl). 

(R 7.1) There are exactly three edges in Glfa,b,c,~l which we assume 
to be the edges (a, b), (b, c), and (c, d). In this case, ,V = k and G’ 
is obtained from G by 

l deleting the vertex w from G, 

l adding all the possible edges between d and the vertices in 
N(a, 4 4 

l adding all the possible edges between a and the vertices in 
N(d), 

l adding the edges (a,~), (a,d), and (b,d). 

(R 7.2) There are exactly three edges in Glfa,b,c,dl which we assume to 
be the edges (a, b), (a, c), and (b, c). In this case, L? = Ic - 2 and 
G’ is obtained from G by 
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l adding all possible edges between {a, b, c} and N(d), 

l deleting vertices ZI and d. 

The rectification is as follows. 

(R 7) We show that if G]{a,b,c,dI has more than four edges we can apply 
CR 2). Let Gl{a,b,c,d) have five edges. But then at least three of 
them share a common vertex, say a. Then N(v) C N[a]. We can 
assume there are at most three edges in GIN(~), since otherwise we 
can apply (R 3) or (R 5). 

(R 7.1) If there exist a k-vertex cover in G then there exists a k-vertex 
cover VC of one of the following forms: 

1. {a, b, c, d} c VC 

2. {v,a,c} C VC 

3. {v,b,c} c VC 

4. {v,b,d} c VC 

Clearly, in the first case VCis a vertex cover of G’. In the second, 
third, and fourth case (VC- {v}) U {d} is a k-vertex cover of G’. 

Conversely, if G’ has a k-vertex cover VC, then VC has one of the 
following forms: 

1. {a, b, c,d} G VC 

2. {a,c,d} C VC 

3. {a, b,d} g VC 

4. {b, c, d} c VC 

5. {a, b,c} G VC 

In the first case VC is a vertex cover of G. If VC has form 2 then 
N(b, d) 2 VC and (VC- {d}) U {v} is a k-vertex cover of G. In 
the third case N(a, c) C VC and (VC - {a}) U {v} is a k-vertex 
cover of G. In the fourth case, N(a, d) C VC and (VC- {d}) U {v} 
is a k-vertex cover of G. In the fifth case, N(a, b, c, d) C VC and 
(VC- {b}) U {v} is a k-vertex cover of G. 
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Figure 10.8: Reduction rule (R 7.1). 

R 7.2) Let VCdenote a k-vertex cover in G. If v 4 VC, then necessar- 
ily {a, b, c, d} c VC. In this case, VC- {d} is a (k- l)-vertex cover 
of G’. Assume that VCcontains v. To cover the edges (a, b), (a, c), 
and (b, c) at least two vertices of {a, b, c} belong to VC. That is, in 
this case we assume d $ VC (otherwise w.1.o.g. {a, b, c, d} G Vc). 
Now VC - {v} is a (k - 1)-vertex cover of G’. 

Conversely, if G’ contains a (k - l)-vertex cover then it must con- 
tain one of the following forms. 

1. {a, b, c} & VC 

2. {a, b} G VC 

3. {u,c} c vc 

4. {b,c} c VC 
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In the first case VCU {d} is a k-vertex cover of G. In the other 
cases VCU {v} does it. 

Reduction rules (R 3), (R 4), and (R 5) should be applied for vertices 
with high degree y (cf. page 106). 

Even though if it results in squaring the running time of the kernel- 
ization step, another useful reduction rule might be: 

(R 8) If G has two nonadjacent vertices u and v such that ]N(‘LL, v) ] > k, 
then replace (G, Ic) with (G + (u, v), k). 

The rectification of (R 8) is as follows. It is impossible that a &vertex 
cover of G does not contain at least one element of {u,v}, because oth- 
erwise the vertex cover must contain all of the vertices of N(zl, v). This 
allows us to add edge (u, v). 

Because the kernelization step is independent of the branching rules and 
the kernelization is possible in polynomial time, kernelization might be 
a useful preprocessing step for any general method for VERTEX COVER. 

The presented fixed-parameter-tractable algorithm returns just one so- 
lution of a k-vertex cover. But note, that reduction rule (R 1) is appli- 
cable for any vertex cover of size k. And since after applying (R 1) we 
are left with a kernel of size O(Ic2) vertices, we can compute all possi- 
ble solutions for a k-vertex cover in time O(/XZ + ($Ic2) naively. This 
means also computing all solutions of a k-vertex cover of a given graph 
is fixed-parameter tractable. To improve on this naive method is left 
as an open problem, but a good starting point might be the search-tree 
technique by Fernau and Niedermeier [30] in the case of computing all 
(Icr + Its)-vertex covers for a given bipartite graph. 
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Experiments 

We compare our implementation of the fixed-parameter-tractable algo- 
rithm (cf. Section 9.4) with two VERTEX COVER algorithms based on 
heuristics. That is, we are interested not only in the existence of a 
&vertex cover for a fixed Ic, but in a minimal vertex cover (i.e., the solu- 
tion of the optimization version of Problem 2.1) for a given input graph 
G = (V,E), IV1 = n and ]E( = m . The first heuristic algorithm is based 
on the greedy heuristic and the second algorithm is based on a heuristic 
by Gonnet which we describe below. These vertex cover algorithms’ 
have been integrated into the Darwin system (Version 2.0) [35]. 

Greedy Heuristic. The greedy heuristic always takes the vertex with 
the highest degree, put it in the vertex cover and removes it from the 
graph. The greedy heuristic approximates the optimal vertex cover 
within 1 + log(k) where Ic is the minimal vertex-cover size [45]. The 
running time is O((n + m)n). 

Gonnet’s Heuristic. This heuristic first computes a lower bound of 
the size of the vertex cover. Therefore it looks for 3-cliques in the graph, 
enlarges them as much as possible and removes them. The algorithm 
then attempts O(n”) iterations in the complete search tree, afterwards 
the greedy heuristic is applied. If the lower bound coincides with the size 
of the answer, then one can conclude that the answer is optimal. Em- 
pirical evidence shows that this algorithm is O(n3) for random graphs 

lThe two heuristics have been implemented by G. Gonnet. 
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with about n In n edges. 

FP’T-Implementation. The fixed-parameter-tractable algorithm which 
solves ~-VERTEX COVER in running time O(lcn+(1.31951)“.k2) (cf. Sec- 
tion 9.4 and [21]) has been implemented by the author. 

The main idea of the implementation for solving VERTEX COVER 
consists of choosing a “good” Ic as a starting value. Then we check with 
our algorithm for &VERTEX COVER if a solution exists. Depending on 
whether the answer is yes or no we decrease or increase the value k and 
repeat the checking of the procedure until an optimal Ic is computed. 

Due to practical reasons this implementation is focused on input 
graphs with no more than IV1 In jV[ + 4% edges. This limit is quite 
reasonable since dense graphs are rather unlikely as input for conflict 
graphs. Experiments show, that in random graphs with IV1 In IV1 edges 
more than half of the vertices are contained in the vertex cover (Figure 
11.1-11.9). 

As a preprocessing step, we first compute an upper bound using the 
greedy heuristic. Thus, we exploit its excellent performance for graphs 
up to IV1 In IV1 edges, as shown in Figures 11.1-11.9. 

Using Darwin, we produced a set of 1000 random graphs for 100 vertices 
with varying number of edges. The vertex-cover sizes, computed with 
the different methods, and the corresponding CPU times are shown in 
the following figures. We observed that the greedy heuristic failed to 
produce an exact solution for approximately 15% of the input graphs 
whereas the Gonnet heuristic only failed for approximately 1% of the 
graphs. We obtained similar performance figures for random graphs 
with 200 vertices. The experiments ran on one processor 336 MHz SUN 
Enterprise 3500 with 6 processors and 3 GByte RAM. 



126 Experiments 

Figure 11.1: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 100 and 200 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. If the blue line is not visible then the 
black and the blue coincide. 
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Figure 11.2: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 200 and 300 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. If the blue line is not visible then the 
black and the blue coincide. 
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Figure 11.3: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 300 and 400 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. If the blue line is not visible then the 
black and the blue coincide. 
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Figure 11.4: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 400 and 500 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. If the blue line is not visible then the 
black and the blue coincide. 
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Figure 11.5: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 500 and 600 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. 
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Figure 11.6: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 600 and 700 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. 
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Figure 11.7: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 700 and 800 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. 
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Figure 11.8: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 800 and 900 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. 
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Figure 11.9: The computed size of the vertex covers (i.e., ordinate) for 
graphs of 100 vertices with an edge number between 900 and 1000 (i.e., 
abscissa). The results of the algorithm based on the greedy heuristic 
are displayed with red lines, the algorithm based on the heuristic by 
Gonnet with blue lines, and the results of the fixed-parameter-tractable 
algorithm are presented in black. 
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Figure 11.10: The computed CPU times (i.e., ordinate) for graphs of 100 
vertices with an edge number between 100 and 200 (i.e., abscissa). The 
results of the algorithm based on the greedy heuristic are displayed with 
red lines, the algorithm based on the heuristic by Gonnet with blue lines, 
and the results of the fixed-parameter-tractable algorithm are presented 
in black. 
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Figure 11.11: The computed CPU times (i.e., ordinate) for graphs of 100 
vertices with an edge number between 200 and 300 (i.e., abscissa). The 
results of the algorithm based on the greedy heuristic are displayed with 
red lines, the algorithm based on the heuristic by Gonnet with blue lines, 
and the results of the fixed-parameter-tractable algorithm are presented 
in black. 
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Figure 11.12: The computed CPU times (i.e., ordinate) for graphs of 100 
vertices with an edge number between 300 and 400 (i.e., abscissa). The 
results of the algorithm based on the greedy heuristic are displayed with 
red lines, the algorithm based on the heuristic by Gonnet with blue lines, 
and the results of the fixed-parameter-tractable algorithm are presented 
in black. 
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Figure 11.13: The computed CPU times (i.e., ordinate) for graphs of 100 
vertices with an edge number between 400 and 500 (i.e., abscissa). The 
results of the algorithm based on the greedy heuristic are displayed with 
red lines, the algorithm based on the heuristic by Gonnet with blue lines, 
and the results of the fixed-parameter-tractable algorithm are presented 
in black. 
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Figure 11.14: The computed CPU times (i.e., ordinate) for graphs of 100 
vertices with an edge number between 500 and 600 (i.e., abscissa). The 
results of the algorithm based on the greedy heuristic are displayed with 
red lines, the algorithm based on the heuristic by Gonnet with blue lines, 
and the results of the fixed-parameter-tractable algorithm are presented 
in black. 
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Figure 11.15: Here we compare the CPU time (i.e., ordinate) of the 
F’IV--implementation with the greedy heuristic as preprocessing (green) 
and Gonnet’s heuristic (red) as a preprocessing step for dense graphs 
(900 < [El 5 1000; i.e., abscissa). The differences in the running time is 
attributed to the different starting values resulting from the heuristics. 
Though the red line looks more stable in the running time, the average 
is worse. The average CPU time of the algorithm which uses the greedy 
heuristic as a preprocessing step is 62.256, the average CPU time of 
the algorithm which uses Gonnet’s heuristic as a preprocessing step is 
67.087. 
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Chapter 12 

Conclusions 

The main goal of this research has been to investigate mathematical 
models and algorithms for conflict resolution in molecular sequence data. 
Constructing evolutionary trees from DNA sequence data is an impor- 
tant and timely topic in computational biology. 

Part I of this thesis provided motivation for this research and intro- 
duced definitions and terms from graph theory, classical computational 
complexity, and parameterized computational complexity used in sub- 
sequent chapters. Part II investigated how to resolve inconsistencies 
between gene trees and species trees. In Part III we developed a new 
fixed-parameter-tractable algorithm for VERTEX COVER to resolve con- 
flict graphs. ’ 

12.1 Summary of Contributions 

The main contributions from this thesis are as follows: 

l a survey of mathematical models for contradictory trees 

l development of the explanation-tree model 

l a survey and development of models for gene duplication events 

l definition and complexity analysis of the SMALLEST COMMON Su- 
PERTREE problem 

l a fixed-parameter-tractable algorithm for the GENE DUPLICATION 
problem 
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l definition of the BALL-AND-TRAP GAME and complexity analysis 
of parameterizations of the BALL-AND-TRAP GAME 

l complexity analysis of the MULTIPLE GENE DUPLICATION pro- 
blem using the -AND-TRAP GAME 

l definition of a conflict graph model for multiple sequence align- 
ments 

l a survey of known fixed-parameter-tractable algorithms for the Ic- 
VERTEX-COVER problem 

l an improved kernelization and search tree for the ~-VERTEX-COVER 
problem 

l a time complexity of O(kn + r”k), T M 1.2906, for our L-VERTEX 
COVER algorithm 

l an implementation of our ~-VERTEX COVER algorithm and com- 
parison 

12.1.1 A Survey of Mathematical Models for Con- 
tradictory Trees 

Chapters 4 and 5 present a survey of known methods-consensus me- 
thods, agreement methods, and the duplication-loss approach-for com- 
puting trees summarizing the common properties of a given set of con- 
tradictory trees over a leafset. The most popular consensus tree is the 
Adams consensus tree [l, 2, 53, 54, 70, 721. The most famous agree- 
ment tree is the Maximum Agreement Subtree (MAST) [70]. While 
consensus and agreement subtrees preserve mathematical properties of 
trees, they provide little intuitive biological interpretation. In contrast, 
the duplication-loss approach [36] explains the differences between a 
given gene tree and a species tree with the minimum number of gene- 
duplication events and gene losses necessary to rectify the gene tree 
with respect to the species tree and, thus, affords an easy to interpret 
biological explanation. 

12.1.2 Development of the Explanation-Tree Model 

Chapter 5 surveys and develops models for counting evolutionary events. 
In Section 5.1 we model the history of a gene tree for a given species tree 
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by means of a cost function. This function assigns a value reflecting the 
number of evolutionary events in the history of the gene tree with respect 
to the species tree. The whole history of the gene tree with respect to 
a given species tree can be viewed by means of the explanation tree. 
The event function and a tree-stable location function determine the 
explanation tree. Section 5.1 showed that an explanation tree is leaf- 
labeled isomorphic to its gene tree. 

12.1.3 A Survey and Development of Models for Gene- 
Duplication Events 

Sections 5.2-5.4 formalize the DUPLICATION-AND-LOSS MODEL, the 
GENE-DUPLICATION MODEL, and the MULTIPLE-GENE-DUPLICATION 
MODEL. The basis for each model is a cost function, an event function, 
and a tree-stable location function. Each model results in a problem 
statement, namely, DUPLICATION AND Loss, GENE DUPLICATION, and 
MULTIPLE GENE DUPLICATION. 

12.1.4 Definition and Complexity Analysis of the 
Smallest-Common-Supertree Problem 

The smallest common supertree of a set of gene trees implies a lower 
bound for the number of gene-duplication events necessary to rectify 
the gene trees with respect to a species tree (cf. Section 6.1). In Section 
6.2 we show that the SMALLEST COMMON SUPERTREE problem is NP- 
complete and W[l]-hard when parameterized by the number of input 
trees. The hardness is shown by reduction from the SHORTEST COM- 
MON SUPERSEQUENCE problem. The problem becomes fixed-parameter 
tractable if we allow a bounded number of additional leaves (cf. Theorem 
6.5) [25, 271. 

12.1.5 An Fixed-Parameter-Tractable Algorithm for 
the Gene-Duplication Problem 

Section 7.2 develops our fixed-parameter tractable algorithm for a para- 
meterized version of the GENE DUPLICATION problem. This algorithm 
was implemented as a C program and tested using small samples of data. 



146 Conclusions 

12.1.6 Definition of the Ball-and-Trap Game and 
Complexity Analysis of Parameterizations of 
the Ball-and-Trap Game 

Section 8.1 defines the BALL-AND-TRAP GAME, which is a combinatorial 
game played on a rooted tree decorated with traps and balls. The score 
of the tree is defined as the sum of the scores over all vertices. The score 
of a vertex is defined as the maximum number of balls colored with 
the same color. The goal of the game is to execute defined moves such 
that the score of the tree is minimized. Several parameterizations of the 
BALL-AND-TRAP GAME are formalized in Section 8.2. In Section 8.3 
the BALL-AND-TRAP GAME is shown to be N’P-complete. Furthermore, 
two parameterizations of the BALL-AND-TRAP GAME are shown to be 
W[l]-hard. 

12.1.7 Complexity Analysis of the Multiple-Gene- 
Duplication Problem using the Ball-and-Trap 
Game 

The BALL-AND-TRAP GAME is a simplification of the MULTIPLE GENE 
DUPLICATION problem. We show a reduction from a restricted form of 
MULTIPLE GENE DUPLICATION to BALL-AND-TRAP (cf. Section 8.1). 
We then show in Section 8.4 a reduction from a W[l]-hard parameteriza- 
tion of BALL AND TRAP back to a parameterization of MULTIPLE GENE 
DUPLICATION thereby showing that the MULTIPLE GENE DUPLICATION 
problem is NP-complete and W[l]-hard [26]. 

12.1.8 Definition of a Conflict Graph Model for Mul- 
tiple Sequence Alignments 

Constructing Multiple Sequence Alignments (MSAs) is a fundamental 
problem in computational biology. The known algorithms computing 
MSAs usually fail to produce an exact solution corresponding to the 
underlying model due to the NP-hardness of the problem [13, 34, 39, 
44, 711. The main problem is the misplacement of gaps. Therefore 
we can view the problem of computing MSAs as a problem of inserting 
gaps at the correct places [48,49]. We model this problem by means of a 
conflict graph where the vertices and edges represent gaps and conflicts, 
respectively. The goal is to identify the the minimum number of gaps 
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which prevent the construction of a unique evolutionary tree. Hence, we 
have transformed the problem into the VERTEX COVER problem [49]. 

12.1.9 A Survey of Known Fixed-Parameter-Tractable 
Algorithms for the k-Vertex-Cover Problem 

Chapter 9 presents a survey of known fixed-parameter-tractable algorithms 
for the ~-VERTEX COVER problem, where k is the size of the vertex cover 
to be determined. The table below is a summary of this survey. 

Authors Refs Approach Time Klam 

Fellows [24] Bounded 
Complexity Value 

W”n) - 
search tree 

Buss & Goldsmith [ll] Reduction to a O(kn + kzk+‘) 9 
problem kernel 

Papadimitriou & [60] Maximal matching OWn) - 
Yannakakis 
Downey & Fellows [19] Combining [ll] 

and [60] 
O(kn + 3”k”) 35 

Downey & Fellows [18] Combining [24] O(kn + 2”k2) 54 

Balasubramanian, 
Fellows & Raman 

Downey, Fellows 
& Stege 

Niedermeier & 
Rossmanith 
Chapter 10 of 
this thesis 

and [11] 
[41 Combining [18] O(kn + r”k’) 

with an improved I- zz 1.3247 
search tree 

[21] Better kernelization O(kn + r”k2) 
and improved T M 1.3195 
search tree 

[58] Improved O(kn + r”k”) 
search tree r M 1.2917 
Combining [21] O(kn + r”k) 
and [58] and an T M 1.2906 
improved 
kernelization and 
search tree 

129 

130 

141 

157 

12.1.10 An improved Kernelization and Search Tree 
for the k-Vertex-Cover problem 

The main approach to reducing the time complexity of algorithms for 
~-VERTEX COVER is to improve on the problem kernel and the search 
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tree. In Chapter 10 we presented an improved kernelization, which is 
accomplished by new reduction rules and an improved structure of the 
search tree. The main idea of the new kernelization is to bound the 
degree at each vertex of the search tree to a fixed range (i.e., 4-6). 
This is accomplished by introducing additional reduction rules and the 
branching in the search tree. The new reduction rules use the concept of 
adding edges. The instance (G, t?) is transformed into an instance (G’, k’) 
by adding edges and deleting vertices, such that G has a k-vertex cover 
if and only if G’ has a /?-vertex cover. The main idea of the improved 
search tree is to branch at degree 7, which leads to a graph size linear 
in k. The result is a new fixed-parameter-tractable algorithm for the 
~-VERTEX COVER problem. 

Section 10.5 presents further reduction rules, which could be applied 
if the graph input size is dense or large. 

12.1.11 A Time Complexity of O(kn + r”k), where 
T M 1.2906, for our k-Vertex-Cover Algorithm 

The time complexity of the algorithm is basically determined by Rule 1 
of the kernelization phase and Step 3 of the search-tree-building phase. 
Because we were able to bound the degree of each vertex to a fixed range, 
we were able to apply a theorem by Bollobas [9] to show that the graph 
size, after this step, is linear in k. The overall time complexity of our 
~-VERTEX COVER algorithm is O(lcn + r”lc), where r M 1.2906. The 
klam value for this algorithm is 157, which is an improvement of 16 over 
the algorithm by Niedermeier and Rossmanith [58]. 

12.1.12 An Implementation of our k-Vertex-Cover 
Algorithm and Comparison 

We implemented our new fixed-parameter-tractable algorithm for VER- 
TEX COVER and integrated it into the Darwin system [35]. The main 
idea is to choose a “good” Ic as a starting value and then use our al- 
gorithm to check whether the solution is optimal. If it is not optimal, 
decrement Ic until an optimal solution is found. The implementation is 
designed for input graphs with at most IIf In IV1 + 4g edges, which is 
a reasonable assumption since conflict graphs are usually sparse. 

Using Darwin, we conducted selected experiments to compare our al- 
gorithm with respect to optimality and CPU-time with two algorithms 
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which employ the greedy heuristic and the Gonnet heuristic, respec- 
tively, to compute the vertex cover of the input graph. We used 1000 
random graphs with a fixed number of 100 vertices and a number of edges 
in the range of 100 to 1000. Of course our fixed-parameter-tractable 
algorithm produces an exact solution for every input graph. We ob- 
served that the greedy heuristic failed to produce an exact solution for 
approximately 15% of the input graphs, whereas the Gonnet heuristic 
only failed for approximately 1% of the graphs. For sparse graphs, our 
fixed-parameter-tractable algorithm performs better than the algorithms 
based on heuristics. 

12.2 Open Problems and Future Work 

In this section we formulate open problems for three of the research 
topics this dissertation investigated: GENE DUPLICATION, MULTIPLE 
GENE DUPLICATION, and VERTEX COVER. 

12.2.1 Open Problems in the Area of Gene Duplica- 
tion 

l The fixed-parameter-tractable algorithm solving GENE DUPLICA- 
TION is based on a bounded search tree only. Since a kernelization 
for each fixed-parameter-tractable problem exists [al], it is worth- 
while to investigate an efficient kernelization as a preprocessing 
step. 

l Moreover, the search tree used in the fixed-parameter-tractable 
algorithm for GENE DUPLICATION can probably be further im- 
proved. 

l Conduct extensive experiments using real DNA data sets. 

12.2.2 Open Problems in the Area of Multiple Gene 
Duplication 

l We did not find reasonable tractable parameterizations of the NP- 
complete problem MULTIPLE GENE DUPLICATION. One approach 
worth pursuing is the question whether there is a reasonable trac- 
table parameterization of the BALL-AND-TRAP GAME to develop 
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an algorithm for MULTIPLE GENE DUPLICATION. Another ap- 
proach is to investigate a more relaxed formulation of this model. 

l If no reasonable fixed-parameter-tractable algorithm is found, heur- 
istics could be developed for the MULTIPLE GENE DUPLICATION 
PROBLEMin order to conduct extensive experiments using real DNA 
data sets. 

12.2.3 Open Problems in the Area of k-vertex Cover 

l Because several reduction rules to get rid of special cases of degree 
4 vertices are known, it is an interesting question whether one 
can develop further reduction rules such that all of the degree 4 
vertices can be eliminated. This would further improve the running 
time of our fixed-parameter-tractable algorithm solving ~-VERTEX 
COVER. 

l The efficiency of our current implementation of the fixed-param- 
eter-tractable VERTEX COVER algorithm could be improved by 
storing intermediate results and reusing them in other branches of 
the tree using clever bookkeeping or hashing schemes. 

l The implementation could also be improved for dense graphs. For 
dense graphs both the greedy algorithm and the Gonnet heuristic 
algorithm deviate more from the optimal solution than for sparse 
graphs. Thus, the amount of work to be done for the ~-VERTEX 
COVER algorithm to find an optimal is prohibitive. Better upper 
bounds for dense graphs are also needed. 

l Moreover, the additional reduction rules presented in Section 10.5 
could be applied if the graph input size is dense and/or large. In 
this cases, it would pay off to spend more time preprocessing to 
reduce the size of the search tree. 
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