
Diss. ETH No. 13364

Resolving Conflicts in Problems
from Computational Biology

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY (ETH)

ZURICH

for the degree of
Doctor of Technical Sciences

presented by
ULRIKE STEGE

Dipl. Math.
born May 1, 1969

Mannheim, Germany
Citizen of Germany

accepted on the recommendation of
Prof. Dr. Gaston H. Gonnet, examiner

Prof. Dr. Emo Welzl, co-examiner

1999

Contents

Zusammenfassung

Abstract

I Introductory Part

1 Introduction
1.1 Motivation .
1.2 Problems .
1.3 Approach and Major Results

2 Preliminaries
2.1 Notation .
2.2 Classical Computational Complexity
2.3 Parameterized Computational

Complexity
2.3.1 Definitions
2.3.2 Two Examples: Clique and Vertex Cover
2.3.3 FTPT Techniques

7

9

1

9
9

11

13
13
15
16

II Resolving Inconsistencies between Gene Trees
and Species Trees 19

3 Biological Background 21

4 Mathematical Models of Contradictory Trees 25
4.1 Consensus Trees . 25

4 Contents

4.2 Agreement Trees 27

5 Models for Counting Evolutionary Events 29
5.1 Modeling the History of a Gene Tree 30
5.2 The Duplication-and-Loss Model 38
5.3 The Gene-Duplication Model 39
5.4 The Multiple-Gene-Duplication Model 40

6 The Smallest-Common-Supertree Problem 44
6.1 Problem Statement and Motivation 44
6.2 The Complexity of Smallest Common Supertree 48

6.2.1 Intractability of Smallest Common Supertree ... 48
6.2.2 A Tractable Parameterization 52

7 An F’P7 Algorithm for Gene Duplication 54
7.1 A Generalization of the Gene-Duplication Model 56
7.2 A Fixed-Parameter-Tractable Algorithm 61

8 On the Multiple-Gene-Duplication Problem 77
8.1 The Ball-and-Trap Game 78
8.2 Parameterizations of the Ball-and-Trap Game 81
8.3 Intractability of Ball and Trap 83
8.4 Intractability of Multiple Gene Duplication 86

III Resolving Conflicting Sequences Using
Vertex Cover 89

9 Known 3FT Algorithms for k-vertex Cover 95
9.1 Buss’ Algorithm 96
9.2 The Algorithm by Papadimitriou and Yannakakis . . . 96
9.3 The Algorithm by Balasubramanian et al. 97
9.4 The Algorithm by Downey et al. 99
9.5 The Algorithm by Niedermeier and Rossmanith 101

10 An Improved FP’T Algorithm 105
10.1 Reduction to a Problem Kernel 106
10.2 Time-Complexity Analysis of the Reduction to a Problem

Kernel . 114
10.3 A Better Search Tree 115
10.4 Time-Complexity Analysis 119

Contents 5

10.5 Ideas for Future Work 120

11 Experiments 124

IV Conclusions and Open Questions

12 Conclusions 143
12.1 Summary of Contributions 143

12.1.1 A Survey of Mathematical Models for Contradic-
tory Trees . 144

12.1.2 Development of the Explanation-Tree Model . . . 144
12.1.3 A Survey and Development of Models for Gene-

Duplication Events 145
12.1.4 Definition and Complexity Analysis of the Smallest-

Common-Supertree Problem 145
12.1.5 An Fixed-Parameter-Tractable Algorithm for the

Gene-Duplication Problem 145
12.1.6 Definition of the Ball-and-Trap Game and

Complexity Analysis of Parameterizations of the
Ball-and-Trap Game 146

12.1.7 Complexity Analysis of the Multiple-Gene-Duplication
Problem using the Ball-and-Trap Game 146

12.1.8 Definition of a Conflict Graph Model for Multiple
Sequence Alignments 146

12.1.9 A Survey of Known Fixed-Parameter-Tractable Al-
gorithms for the &Vertex-Cover Problem 147

12.1.10An improved Kernelization and Search Tree for
the k-Vertex-Cover problem 147

12.1.11A Time Complexity of O(lcn + r”lc), where r M
1.2906, for our k-Vertex-Cover Algorithm 148

12.1.12 An Implementation of our &Vertex-Cover Algorithm
and Comparison 148

12.2 Open Problems and Future Work 149
12.2.1 Open Problems in the Area of Gene Duplication . 149
12.2.2 Open Problems in the Area of Multiple Gene Du-

plication 149
12.2.3 Open Problems in the Area of &Vertex Cover . . . 150

Bibliography 151

: :’
,f, .,,

._/.: ^

j. .:

Zusammenfassung

Evolutionsbaume stellen ein zentrales Thema im Gebiet der Biologie dar.
Mit der Verfiigbarkeit von grossen Mengen molekularer Sequenzdaten
werden neue und verbesserte Methoden entwickelt, urn Evolutionsbaume
zu bestimmen. Die Dissertation untersucht mathematische Modelle aus
dem Gebiet der Konfliktresolution in Sequenzdaten.

Die vorliegende Arbeit konzentriert sich auf zwei spezifische Konflikt-
resolutions-Probleme: das Problem, Inkonsistenzen zwischen Genbau-
men und Speziesbaumen zu erklaren; und das Problem, Konfliktgraphen,
die man findet, wenn man Multiple Sequence Alignments (MSAs) bes-
timmen miichte zu l&en. Beide Probleme sind NP-hart, aber effiziente
praktische Lijsungen sind gefragt. Wir untersuchen die parameterisierte
Komplexitat von diesen Problemen, urn effiziente Parameterisierungen
zu finden, die zu praktischen fixed-parameter-tractable Algorithmen fiih-
ren. Damit wenden wir die neueste Ergebnisse aus dem Informatikgebiet
der parameterisierten Komplexitat auf Probleme aus der Computational
Biology an.

Diese Dissertation besteht aus drei Hauptteilen. Der erste Teil mo-
tiviert die vorliegende Forschungarbeit und fiihrt Definitionen und Terme
aus der Graphentheorie, der klassischen Komplexitatstheorie und der
parameterisierten Komplexitatstheorie ein, die dann in nachfolgenden
Kapiteln verwendet werden. Im zweiten Teil studieren wir das Problem
der Identifikation von Speziesbaumen, d.h., korrekte Evolutionsbaume
fur eine Menge Spezies, wenn eine Menge von (i.a. unterschiedlichen)
Genbaumen gegeben ist.

Wir beginnen mit einer fibersicht von mathematischen Modellen
fiir unterschiedliche Baume und prasentieren die bekanntesten Meth-
oden, urn die Evolutionsbaume zu berechnen. Die vorliegende Arbeit
fasst Modelle zusammen, urn Evolutionsereignisse zu bewerten und, vom
Duplication-und-Loss Model1 ausgehend, entwickelt neue Modelle. Zwei

8 Zusammenfassung

Probleme, die daraus resultieren sind GENE DUPLICATION and MULTI-
PLE GENE DUPLICATION. Der kleinste gemeinsame Superbaum (small-
est common supertree) einer Menge von Genbaumen impliziert eine un-
tere Schranke fiir die Anzahl von Genduplikationen, die niitig sind, urn
einen Genbaum mit einem Speziesbaum zu erklsren. Wir zeigen, dass
das SMALLEST-COMMON-SUPERTREE Problem NT-vollst%ndig und
W[l]-hart ist, wenn es nach der Anzahl von Inputb%umen parameter-
isiert wird. Danach untersuchen wir Eigenschaften des GENE DUPLI-
CATION Problems, die zu einem fixed-parameter-tractable Algorithmus
fiihren. Urn die Komplexitat des MULTIPLE GENE DUPLICATION Prob-
lems zu analysieren, haben wir das kombinatorische Spiel BALL AND
TRAP erfunden, das mit einen Baum der mit Ballen und Fallen bestiickt
ist, gespielt wird. Das BALL-AND-TRAP Spiel wird dann verwendet
urn zu zeigen, dass das MULTIPLE-GENE-DUPLICATION Problem NT-
vollst5ndig und W[l]-hart ist.

Das Konstruieren von MSAs ist ein fundamentales Problem in Com-
putational Biology. Die bekanntesten Algorithmen, urn MSAs zu berech-
nen, produzieren gewijhnlich nicht eine exakte Losung fiir beziiglich
des zugrunde liegenden Modells, weil das Problem N?-hart ist. Das
Hauptproblem ist die falsch Plazierung von Gaps. Im dritten Teil von
dieser Dissertation modellieren wir dieses Problem anhand eines Konflik-
tgraphen dessen Knoten bzw. Kanten Gaps bwz. Konflikte, reprasentie-
ren. Das Ziel ist, die minimale Zahl von Gaps zu identifizieren, die
die Konstruktion eines eindeutigen Evolutionsbaums verhindert. Damit
haben wir das Problem in das VERTEX-COVER Problem transformiert.
Fiir das ~-VERTEX-COVER Problem fassen wir bekannte fixed-parame-
ter-tractable Algorithmen zusammen und entwickeln einen neuen fixed-
parameter-tractable Algorithmus, urn Konfliktgraphen zu l&en. Die
Hauptidee dieses Algorithmus ist eine verbesserte Kernelization, welche
durch neue Reduktionsregeln und eine verbesserte Struktur des Such-
baumes erreicht wurde. Die Zeitkomplexit% dieses Algorithmus ist
O(kn+r”k), T M 1.2906, was den bisher besten Algorithmus von Nieder-
meier and Rossmanith, mit einer Laufzeit von O(kn+r”.IC’), r M 1.2917,
verbessert .

Abstract

Evolutionary trees, trees that reflect the ancestral relationships among
species, have been a central topic in biology for many years. With the
availability of large amounts of molecular sequence data, new and im-
proved methods for estimating evolutionary trees are being developed.
This dissertation investigates mathematical models in the area of con-
flict resolution in sequence data. This thesis concentrates on two specific
conflict resolution problems: the problem of resolving inconsistencies
between gene trees and species trees; and the problem of resolving con-
flict graphs encountered when computing Multiple Sequence Alignments
(MSAs). Both problems are NP-hard, but require efficient solutions in
practice. We investigate the parameterized computational complexity of
these problems to find effective parameterizations, which lead to practi-
cal fixed-parameter-tractable algorithms. Thus, we apply recent results
of the computer science field parameterized complexity to problems of
computational biology.

The thesis consists of three major parts. Part I provides motiva-
tion for this research and introduces definitions and terms from graph
theory, classical computational complexity, and parameterized compu-
tational complexity used in subsequent chapters. In Part II we study
the problem of identifying the species tree, that is, the evolutionary
tree, for a set of species, when a set of (usually contradictory) gene
trees is given. We begin with a survey of mathematical models for
contradictory trees and present the best known methods for computing
evolutionary trees. The thesis then surveys and develops models for
counting evolutionary events based on the duplication-and-loss model.
Two resulting problems are GENE DUPLICATION and MULTIPLE GENE
DUPLICATION. The smallest common supertree of a set of gene trees
implies a lower bound for the number of gene-duplication events nec-
essary to rectify the gene tree with respect to a species tree. We show

10 Abstract

that the SMALLEST-COMMON-SUPERTREE problem is NP-complete and
W[l]-hard when parameterized by the number of input trees. We then
investigate properties of the GENE DUPLICATION problem, which lead
to a fixed-parameter-tractable algorithm. To analyze the complexity of
the MULTIPLE GENE DUPLICATION problem, we invented a combinato-
rial game called BALL AND TRAP which is played on a tree decorated
with balls and traps. Using the BALL-AND-TRAP GAME, we show that
the MULTIPLE-GENE-DUPLICATION problem is N’P-complete and W[l]-
hard.

Constructing MSAs is a fundamental problem in computational bi-
ology. The best known algorithms for computing MSAs usually fail to
produce an exact solution corresponding to the underlying model due to
the NT-hardness of this problem. The main problem is the misplace-
ment of gaps. In Part III of this dissertation, we model this problem by
means of a conflict graph where the vertices and edges represent gaps
and conflicts, respectively. The goal is to identify a minimum num-
ber of gaps which prevents the construction of a unique evolutionary
tree. Thus, we have transformed the problem into the VERTEX-COVER
problem. We present a survey of known fixed-parameter-tractable al-
gorithms for the ~-VERTEX-COVER problem and develop a new fixed-
parameter-tractable algorithm to resolve conflict graphs. The main idea
of this algorithm is an improved kernelization accomplished by new re-
duction rules and an improved structure of the search tree. The time
complexity of this algorithm is O(lcn + r”lc), T M 1.2906, improving on
the previous best algorithm by Niedermeier and Rossmanith, which runs
in O(kn + rk . lc’), T M 1.2917.

Part I

Introductory Part

Chapter 1

Introduction

1.1 Motivation

Evolutionary trees, trees that reflect the ancestral relationships among
species, have been a central topic in biology for many years. With
the availability of large amounts of sequence data (nowadays DNA and
amino acid sequence data), which provide a rich source of information,
new and improved methods for estimating evolutionary trees are be-
ing developed. As a result, many interdisciplinary research programs
have emerged to store, manipulate, analyze, and visualize sequence data
effectively.

This dissertation investigates selected mathematical models in the
general area of conflict resolution in molecular sequence data. Conflicts
in molecular sequence data arise, for example, due to random events
amplified by the evolution of species, the wrong interpretation of exper-
imental data, or the incorrect manipulation and storage of data.

In this thesis, we concentrate, in particular, on mathematical models
for two specific conflict resolution problems:

1. the problem of resolving inconsistencies between gene trees and
species trees; and

2. the problem of resolving conflict graphs encountered when com-
puting multiple sequence alignments.

As many problems in this area, both investigated problems are N/p-hard
but require efficient solutions in practise.

4 Introduction

The most famous approaches to deal with N’P-hard problems are heuris-
tics [32] and approximation algorithms [43]. Another way to deal with
NP-hard problems is to study the parameterized complexity for reason-
able parameterizations of the problems [19]. Thus, this interdisciplinary
thesis applies recent results of the computer science field parameter%&
complexcity to problems in computational biology.

1.2 Problems

We first study the problem of identifying the correct species tree, that
is, the correct evolutionary tree for a set of species, when a set of (usu-
ally contradictory) gene trees is given (cf. Figure 1.1). A gene tree is
an evolutionary tree built over families of homologous genes. Two genes
are said to be homologous if they evolved from a common ancestor. The
inconsistencies among the different gene trees are caused by gene di-
vergence and are the result of either a speciation event or a duplication
event. A speciation event takes place in the genome of the least com-
mon ancestor taxa of the two corresponding genes whereas a duplication
event occurs during evolution [22, 421. We focus on mathematical mod-
els explaining the contradictions in the topologies of the gene trees via
gene-duplication events and subsequent losses, that occur during the
evolution of a gene family [36, 59, 731.

The second problem we consider in this dissertation concerns the reso-
lution of conflict graphs. This problem has important practical applica-
tions in other areas of computer science, including fault-tolerant LCD
digit design and traffic-light design. In computational biology, conflict
resolution occurs when, for example, when constructing Multiple Se-
quence Alignments (MSA). MSAs can be used for building evolutionary
trees and for predicting the secondary structure of proteins; both are
fundamental problems in computational biology.

The problem of computing MSAs for different biological models is
N’P-hard [13, 34, 39, 44, 711. The known methods for computing MSAs
usually fail to produce an exact solution. Often, the computed MSAs do
not allow building a unique corresponding evolutionary tree (assuming
the existence of an evolutionary tree corresponding to an MSA). One
way to deal with this problem is to detect conflicts among sequences
and then to transform the problem into a conflict graph where the se-
quences correspond to the vertices and the conflicts to the edges in the

1.2 Problems 5

What is the correct species tree?

What is the correct species tree?

Figure 1.1: Gene trees are evolutionary trees built over families of homol-
ogous genes (upper figure). Given contradictory gene trees, the question
is how to resolve the species tree. The species tree is not necessarily one
of the given gene trees (lower figure).

6 Introduction

graph. The goal then is to eliminate the minimum number of sequences
(vertices) such that there is no conflict in the multiple sequence align-
ment of the remaining sequences. The graph problem to solve here is
the N’P-complete problem VERTEX COVER [19, 21, 31, 461.

1.3 Approach and Major Results

The dissertation consists of four major parts. The first part collects the
theoretical foundations necessary for the thesis. Part II investigates the
problem of resolving inconsistencies between gene trees with respect to
a species tree. Motivated by the MSA problem, Part III studies the res-
olution of conflict graphs on the example of VERTEX COVER. Part IV
concludes the dissertation and poses open problems.

Part I: In Chapter 2, we provide a short introduction to the necessary
graph theory, and we sketch the basics in classical and parameterized
complexity theory. In parameterized complexity analysis 1191, the goal is
to identify useful ranges of a parameter Ic, e.g., for an N’P-hard problem
and determine if the problem (for instances of size n) can be solved in
time f(k)ncY for some constant a: independent of the parameter. This
behavior (fixed-parameter tractability) can be viewed as a generalization
of ‘P-time. The analog of NT in parameterized terms is the complexity
class W[l].

Part II: Assuming the evolution of a set of organisms is explainable
by means of an evolutionary tree, we study the problem of resolving the
correct species tree for a given set of (possibly contradictory) gene trees.
Chapter 3 gives the biological background for this part. Related work
to this problem is presented in Chapter 4. Chapter 5 introduces models
that count evolutionary events to measure the inconsistencies between
a gene tree and its corresponding species tree.

Besides a general concept for these kinds of models (Section 5.1), we
describe the DUPLICATION-AND-LOSS MODEL [36, 38, 731. The GENE-
DUPLICATION MODEL (Section 5.3) is a restriction of the DUPLICATION-
AND-LOSS MODEL to gene-duplication events only. Both the DUPLICA-
TION-AND-LOSS MODEL and the GENE-DUPLICATION MODEL treat gene
duplications as independent events and compute the minimum number
of events (duplication and/or losses) necessary to rectify a gene tree with

1.3 Approach and Major Results 7

respect to a species tree. In Section 5.4 we introduce the MULTIPLE-
GENE-DUPLICATION MODEL. Here gene duplications are not necessar-
ily independent events; the model takes into account the evidence that
genomes (e.g., Eukaryotic organisms) have been entirely duplicated one
or more times or individual chromosomes (or parts of it) have been du-
plicated multiple times [29, 37, 38, 631.

Resulting from these models, we discuss the problems GENE DUPLI-
CATION (Chapters 6 and 7) and MULTIPLE GENE DUPLICATION (Chap-
ter 8). GENE DUPLICATION asks for the species tree which implies the
smallest number of gene duplications necessary to rectify a set of gene
trees with respect to the species tree; MULTIPLE GENE DUPLICATION
asks for the species tree which implies the smallest number of multiple
gene duplications necessary to rectify a set of gene trees with respect to
the species tree.

SMALLEST COMMON SUPERTREE, the problem discussed in Chap-
ter 6, has an interesting relation to GENE DUPLICATION since it implies
a lower bound of the number of gene duplications necessary to rectify
a set of gene trees with an optimal species tree. Given a set of binary
trees, SMALLEST COMMON SUPERTREE asks for a smallest binary tree
that is a supertree of the input trees. Though we show that the problem
is W[l]-hard when parameterized by the number of input trees (Sec-
tion 6.2), the problem becomes fixed-parameter tractable when a small
number of duplicated leaves is permitted additionally in the output tree
(Section 6.2.2,[25]).

In Chapter 7, we present a fixed-parameter-tractable algorithm for
the NP-complete problem GENE DUPLICATION when parameterized by
the number of gene duplications. In contrast to GENE DUPLICATION,
MULTIPLE GENE DUPLICATION is NP-complete even when the species
tree is given and restricted to only two input trees (Chapter 8). Here,
we also prove W[l]-hardness of MULTIPLE GENE DUPLICATION for a
reasonable parameterization.

Part III: We first describe the basic ideas of the known fixed-parameter-
tractable algorithms of ,&VERTEX COVER (Chapter 9). While the best
algorithm in the literature runs in time O(kn + rlc . lc’), r M 1.29175,
[58], we present an improved fixed-parameter tractable algorithm with
a complexity of O(kn + r”lc) and r M 1.2906 (Chapter 10).

In Chapter 11 we compare an implementation solving VERTEX CO-
VER, which uses a fixed-parameter-tractable algorithm for &VERTEX
COVER, with two heuristics for VERTEX COVER.

8 Introduction

Part IV concludes this thesis with Conclusions and Open Questions.

Chapter 2

Preliminaries

This chapter begins with a presentation of the graph theoretical nota-
tions used in subsequent chapters. Section 2.2 is a brief introduction to
classical complexity theory; parameterized complexity theory is intro-
duced in Section 2.3. By means of two examples, namely the famous
CLIQUE and VERTEX COVER problems, we point out the likely differ-
ences between W[l]-hardness and fixed-parameter tractability (Section
2.3.2).

2.1 Notation

A graph G = (V,E) consists of a set of vertices V and a set of edges
E, where E C (y) is a set of unordered pairs. Usually, we denote
the number of edges IEl by m and the number of vertices IV1 by n.
The graph G* = (V”, E*) is called the complementary graph of graph
G=(V,E)ifV*=VandE*=(y)-E.

A path p(u, u) in G = (V, E) from vertex 2~ E V to vertex v E V is
an ordered set p(2~,~) = [u, ~11, ‘us,. . . , ‘uk, v] of vertices of V such that
(u,v~),(~~,w)~E,and(w~,w~+~)~Efori=l,..., k-l(lc~N)). F’ur-
thermore, in our context for a path ~(21, v) all the edges (ZL, WI), (u,+, v) E
E and (‘ui, wi+r) E E (i = 1,. . . , Ic - 1) are pairwise distinct. The length
]p(u, u)] of a path p(u, w) = [u, ~1, ~2,. . . ,‘uk, IJ] is L+ 1, namely the num-
ber of edges between u and u in p(u,v). The vi, i = 1,. . . , Ic, are called
the elements of path p(u, w) (in short, vi E p(zl, w), i = 1,. . . , lc). A path
p(u,v) in G of length at least 3 with IL = v, u # ~1,. . . , vk, and vi # u~j

10 Preliminaries

for i # j is called a cycle in G.
If (v, w) E E, then we call w and v neighbors (or adjacent vertices).

The neighborhood of a vertex v is N(v) = {2o](v, w) E E}. For u, v E V,
we abbreviate N(u) U N(v) by N(u, u). N[v] = N(v) U {w} denotes the
closed neighborhood of v E V.

The degree deg(v) of a vertex ‘u E V is defined to be deg(v) = IN(v)).
Let zr E N. A graph G = (V, E) is called x-regular if deg(v) = z for all
v E v.

Let G = (V,E) be a graph and let V’ 2 V. Glv, = (V’,E’), E’ =
{(u,v)Ju, v E V’ and (u, U) E E}, is called the restriction of G to V’. A
graph G’ = (V’, E’) is called a subgraph of G = (V, E), if V’ C_ V and
E’ C E. We denote the subgraph property with G’ C G.

For a graph G = (V, E) and a vertex u E V we write G-u to denote
G] v--(~), the graph G without the vertex u. For a set V’ we write G-V’
for G]v.-vf.

A tree T = (V, E) is a connected, acyclic graph. A rooted tree T = (V, E)
is a tree with a distinguished vertex root(T), called the root of T. For
each vertex v there is exactly one vertex v’, (v,v’) E E, such that v’ is
on the (unique) path from v to the root in T. ‘u’ is called the parent of
v. We denote v’ with parentT(v). All the other vertices w, w # v’ and
(v, w) E E, are called the children of v in T. Vertices having no children
are called leaves of T. Every vertex having one or more children is called
an internal vertex of T. For each vertex v E V, all the vertices belonging
to the path p(v, root(T)) are ancestors of v. All trees occurring in this
thesis are rooted trees. We simply call them trees. The size ITI of a tree
T = (V, E) we define to be ITI = IV(.

A tree is binary if each internal vertex has at most two children. A
tree is complete binary if each internal vertex has exactly two children.
For each v E V in a complete binary tree T we call the two children vl
and II, of v, the left child and the right child of v. Due to algorithmic
reasons we use the ordered version of a complete binary tree, although
in most cases we make no use of the ordering.

A leaf-labeled tree T = (V, E, L) is a tree with vertex set V, edge set
E, and a set of labels L, where each leaf IJ E V is labeled by an element
1 E L, denoted by e(v) = 1. We say T = (V, E, L) is a leaf-labeled tree
over L, if for each 1 E L there is a leaf v E V such that Z?(v) = Z.Then L
is called the lea&et of T.

Let T = (V, E, L), T’ = (V’, E’, L’) be leaf-labeled trees. T’ is a
subtree of T, T’ <top T, if T’ is contained in T by topological containment

2.2 Classical Computational Complexity 11

that respects ancestry with label isomorphism at the leaves. For a leaf-
labeled tree T = (V,E,L) and a vertex u E V, T(u) = (V’,E’,L’),
V’ = {v E V/u is on the path p(v, root(T))} and E’ = {(v, w)lv, w E V’
and (v, w) E E}, is the subtree of T induced by u. The leafset of T(u) is
denoted by LS(u) = L’.

A leaf-labeled tree T = (V, E, L) is called a p-tree (for phylogenetic
tree) if there are no two leaves labeled by the same leaf label. Otherwise,
we call T an rl-tree (or repeated-leaf tree). That is, in rl-trees leaf labels
may be repeated. Using p-trees, we simplify the notation of a leaf-labeled
tree T = (V, E, L) over L by identifying the leaf labels and the leaves:
we define e(v) = v for all leaves v in T. Thus, L c V denotes the set of
leaves in a p-tree T.

We call two leaf-labeled p-trees Tl = (VI, El, L1) and T2 = (Vz, E2, Lz
to be leaf-labeled isomorphic, Tl E Ts, if Tl stop T2 and L1 = L2.

Suppose we are given a leaf-labeled tree T = (V, E, L) over L and a
set L’ C L. A least common ancestor Zca(L’) in T is a vertex u, u E V,
s.t.

1. L’ C LS(u), and

2. there is no vertex x in T(u), z # u, with L’ C LS(x)

Note, that the least common ancestor of a set of leaves is unique when
a p-tree is given.

2.2 Classical Computational Complexity

In this section, we give the necessary definitions of classical computa-
tional complexity theory. For further background we recommend the
book Computers and Intractability by Garey and Johnson [31]. We as-
sume basic knowledge in formal language theory.

A decision problem II consists of a set Dn of instances and a subset
Yn c Dn of yes-instances. For any finite set C of symbols, C* denotes
the set of all finite strings of symbols over C. If 1-: is a subset l C C*
we say that L is a language over the alphabet C.

Given an encoding scheme e for a problem II, the connection be-
tween decision problems and languages is represented by QI, e] = {x E
C*]C is the alphabet used by e, and z is the encoding under e of an
instance I E Yn}. Usually we abbreviate C[II, e] by L .

12 Preliminaries

A deterministic Turing-machine program M with input alphabet C ac-
cepts z E C* if and only if A4 halts in the distinguished accepting state
when applied to input x. The language JCM recognized by the machine
M is given by CM = {x E C* IA4 accepts x}. We define the time-
complexity function TM : Z+ + Z+, TM(~) = max{ml there is an
x E C* with 1x1 = n, such that the computation of A4 on input x
takes m steps}. A deterministic Turing-machine program M is called
a polynomial-time deterministic Turing-machine program if there exist
a polynomial p such that, for all n E Zf, TM(n) 5 p(n).

We define the class ‘P, the class of polynomial-time algorithms.
P = {Cl there is a polynomial-time deterministic Turing-machine pro-
gram M for which L = LM}. To introduce the class NT’, the class
of all languages recognizable nondeterministically in polynomial time,
we define for a nondeterministic Turing-machine program M, the time-
complexity function TM : Z+ + Z+: TM(n) = max({l}U{ml there is an
x E ,CM, 1x1 = n, such that the time to accept x by M is m}). A non-
deterministic Turing-machine program M is called a polynomial-time
nondeterministic Turing-machine program if there exist a polynomial p
such that TM(n) 5 p(n) for all n > 1. Finally, NP = {Cl there is a
polynomial-time nondeterministic Turing-machine program M for which
c = CM).

A polynomial transformation from a language Lr c CI to a language
Lz C YEa is a function f : CT + ,Ea that satisfies the following two
conditions:

1. There is a polynomial-time deterministic Turing-machine program
that computes f.

2. For all x E CT, x E ,Lr if and only if f(x) E Lz.

A language C is NP-complete, if

1. ,C E NP, and

2. for all languages L’ E NT there is a polynomial transformation
from L’ to L.

We call L NT-hard, if it satisfies condition 2.

2.3 Parameterized Computational
Complexity 13

2.3 Paramet erized Computational
Complexity

The theory of parameterized complexity was introduced by Downey and
Fellows [15, 16, 17, 18, 191; for a detailed introduction in the area we
recommend [19]; our surveys about coping with intractability in terms
of parameterized-complexity theory give a brief introduction [20, 211
(joined work with Downey and Fellows).

2.3.1 Definitions

A parameterized language L: is a subset C C C* x IV. If C is a pa-
rameterized language and (2, k) E l, then we will refer to z as the
main part, and to Ic as the parameter. A parameterized language C is
fixed-parameter tractable if it can be determined in time f(lc)na whether
(2, Ic) E L, where 1x1 = n, LY is a constant independent of both n and Ic,
and f is an arbitrary function. The class of fixed-parameter-tractable
parameterized languages is denoted F’P’T. Note that the class .ZVV is
unchanged if the definition above is modified by replacing f(k)n” by
f(k) + 7P.l About half of the naturally parameterized problems cata-
loged as A@-complete by Garey and Johnson [31] are in KJV [19].

Let ,C and .C’ be parameterized languages. We say that C reduces to
.C’ by a parameterized reduction if there is an algorithm which transfers
(x, k) into (x’,g(R)) in time f(k)lxI”, where f,g : N + N are arbitrary
functions and Q is a constant independent of k, so that (2, k) E C if and
only if (~‘,g(k)) E L’.

The parameterized analog of the complexity class NP is W[l]. More-
over, W[l]-hardness is basic evidence that a parameterized problem is
likely not to be fixed-parameter tractable. The analogy is very strong,
since the ~-STEP HALTING PROBLEM for nondeterministic Turing-
machines is complete for W[l] [12].

Before we define the class W[l] we need some definitions. Let us consider
Boolean expressions as Boolean circuits (e.g., a 3-conjunctive normal

lTo see this useful property we consider a running time of f(k)na. Then there
exists a function g(k) such that g(k)+na+’ is also a time bound. Let g(k) = f(k)*+‘.
We show f(k)na 5 g(k) +na+l for all n and k. If n 5 f(k) then g(k) 2 f(k)na. If
n > f(k) then n”+l 2 f(k)na. -

14 Preliminaries

formula is a Boolean circuit consisting of one input (of unbounded fan-
out) for each variable, a possibly inversion gate for each variable, and if
built of a large and of small ors with a single output line). More general,
a decision circuit C is a Boolean circuit with exactly one output line.
Given x E (0, l}“, an input vector to the n input lines of C, C(x) is
said to be true if the output line has value 1. Otherwise, it is said to be
false.

For a decision circuit we define small gates to be not gates, and gates,
and or gates with some predetermined bound on fan-in, and large gates
to be and gates and or gates with unrestricted fan-in. A decision circuit
is of mixed type if it consists of circuits having small gates and large
gates.

A Boolean circuit has fan-out one. The depth of a circuit C is defined
to be the maximum number of gates (small or large) on any path in C
from the input variables to the output line. The weft of a circuit C is
defined to be the maximum number of large gates on any path from
the input variables to the output line. A family of decision circuits F
has bounded depth if there is a constant h such that every circuit in the
family F has depth at most h. F has bounded weft if there is a constant
t such that every circuit in the family F has weft at most t. A decision
circuit has a satisfying assignment of weight k if the assignment is true
and it has exactly k variables set to be true.

Let F={C1,&,... , Ci, . . . } be a family of decision circuits. Asso-
ciated with F is a parameterized language .CF = ((Ci, k)(Ci has a weight
k satisfying assignment}.

A parameterized language l belongs to the class W[l] if L reduces
to the parameterized problem fZ~(r,h) for the family F(1, h) of mixed
type circuits of weft at most 1 and depth at most h, for some constant
h.

A parameterized language L is W[l]-complete, if

1. C E W[l], and

2. for all parameterized languages f?, .C’ E W[l], ,!Z’ reduces to L by
a parameterized reduction.

We’call ,!I W[l]-hard, if it satisfies condition 2.

What about the practicality of a fixed-parameter-tractable algorithm?
Of course, considering a running time of O(f(k)na) of an algorithm for

2.3 Parameterized Computational
Complexity 15

a fixed parameter k, the range of k depends strongly on the function f.
Downey and Fellows introduce the klam value which is the largest Ic such
that f(k) 5 10” to characterize the practicality of a fixed-parameter-
tractable algorithm [19]. In the example of ~-VERTEX COVER, (cf. Pro-
blem 2.1 and Problem 2.3) we present our fixed-parameter-tractable al-
gorithm which has a klam value of 157 (cf. Chapter 10).

2.3.2 Two Examples: Clique and Vertex Cover

In 1972, Karp proved, in one of his seminal papers, that both CLIQUE
and VERTEX COVER are NP-complete [46].

The classical versions

Problem 2.1. VERTEX COVER
Instance: A graph G = (V, E), a positive integer k.
Question: Does G have a k-vertex cover (i.e., does there exist a subset

V’ C V, (V’I 5 Ic, such that for each (x, y) E E either x or y belongs
to V’)?

Problem 2.2. CLIQUE
Instance: A graph G = (V, E), a positive integer k.
Question: Does G have a clique of size 1 lc (i.e., does there exist a

subset V’ C V, IV’/ > Ic, such that (:‘) E V?)?

In fact, the NP-completeness of CLIQUE is shown via a reduction from
VERTEX COVER. It turns out that the complexity of the naturally
parameterized versions of these problems is likely to be different.

The parameterized versions

Problem 2.3. ~-VERTEX COVER
Instance: A graph G = (V, E), a positive integer Ic.
Parameter: k.
Question: Does G have a /c-vertex cover (i.e., does there exist a subset

V’ E V, IV’] 5 5, such that for each (s,y) E E either x or y belongs
to V’)?

16 Preliminaries

Problem 2.4. K-CLIQUE
Instance: A graph G = (V, E), a positive integer Ic.
Parameter: le.
Question: Does G have a clique of size 2 Ic (i.e., does there exist a

subset V’ c V, IV’1 > Ic, such that (\‘) C V?)?

While ~-CLIQUE is shown to be W[l]-complete [X3], ~-VERTEX COVER
is fixed-parameter tractable. This follows directly from this observation.

Observation 2.1. Given a graph G = (V, E). Then for each v E V
and each vertex cower VC of G

v E VC or N(v) G VC.

Thus, given an input (G, k), the original input graph G has a k-vertex
cover if (G - w,lc - 1) or (G - N(v),k - IN(v)]) has a solution. Since
the fixed parameter L reduces in each such step by at least one, we
can decide in time O(2”IVI) whether G has a vertex cover of size Ic
[16, 241. The technique used, the method of bounded search trees, is
described below. For further historical information and an improved
fixed-parameter-tractable algorithm for ~-VERTEX COVER running in
time O(klVI + r”k), r m 1.2906, we refer to Part III.

2.3.3 .FTp7 Techniques

We describe two important techniques for constructing fixed-parameter-
tractable algorithms. The first technique, the method of reduction to a
problem kernel, can be applied not only as a preprocessing step but also
at each node of a bounded search tree.

The method of reduction to a problem kernel

The main idea of this technique is to reduce in polynomial time the
given problem (5, k) to an equivalent problem where the problem size
is bounded by a function of JL More precisely, this method reduces a
problem instance I to an equivalent instance I’, where the size of I’
is bounded by some function of the parameter k. The instance I’ is
exhaustively analyzed, and a solution for I’ can be lifted to a solution
for I in the case where a solution exists. Often, this technique leads
to an additive rather than a multiplicative f(k) exponential factor. We
will illustrate this technique in Chapter 10 using the ~-VERTEX COVER
example.

2.3 Parameterized Computational
Complexity 17

The method of bounded search trees

This method was first introduced by Downey and Fellows in [17]. The
idea here is to maintain a bounded search tree of the different possibilities
for finding a solution of the problem (z, k). A search tree is a rooted tree
bounded in the size by a function f(k). To avoid confusion we call the
vertices of a search tree nodes. The nodes of the search tree are labeled
by k-solution candidate sets. The search tree does not have to be small
(i.e., an exponential size is allowed).

In general, a fixed-parameter-tractable algorithm using the method
of bounded search trees is described as follows.

1. Compute a search tree.

2. Run an efficient algorithm on each branch of the tree.

If the size of the search tree depends only upon the parameter, then, for
a fixed k, the search tree becomes constant size and the algorithm is then
efficient for each fixed k. This method is illustrated with the examples of
GENE DUPLICATION (Problem 7.1, Chapter 7) and ~-VERTEX COVER
(Section 10.3).

!i’ :. ,-
.-. : * .,- -_’

i .’
! ; ,(; i .’ ; i {I .,

i:

Part II

Resolving Inconsistencies
between Gene Trees and

Species Trees

Chapter 3

Biological Background

In the past, the main source of information for the reconstruction of
evolutionary relationships among species was studying the history of a
character. Characters are independent variables where values are col-
lections of mutually exclusive character states (e.g., in the binary case:
“Does a species have wings?“) [42]. It is of prime importance to study
homologous characters. These are characters that are based on evolu-
tionary comparable structures [22].

As DNA sequences become easier to obtain, the evolution of a gene
receives more importance. We consider homologous genes of different
taxa that have an analogous function in their organisms. A set of ho-
mologous genes is called a gene family.

To compare gene trees of different gene families for one set of taxa,
one usually exposes inconsistencies among the different gene trees [8, 36,
591. We consider inconsistencies caused by gene divergence like specia-
tion events or duplication events (cf. Figure 3.1). If the common ancestry
of two homologous genes can be tracked back to a speciation event, then
they are said to be related by orthology; two such genes are called or-
thologous. If the ancestry is traced back to a gene-duplication event,
then they are related by paralogy [29, 421 and the two genes are called
paralogous (cf. Figure 3.2). Once a gene has been duplicated, each copy
can evolve independently. Thus, a single species may contain several
copies of what was a single gene in an ancestor.

When we talk about gene duplications we only mean the duplicated
genes which are accepted from their organisms. There is ample evidence
that gene duplication is the most important mechanism for generat-

22 Biological Background

Gene Duplication

. ..TATAACCGJ~TTAC(.C;;ACCTTTATACTGCCGTAGCT,,,

Figure 3.1: An example of a gene duplication on a DNA sequence is
shown in the upper figure. The gene (red) is replicated and inserted
in the DNA sequence. In the lower figure an example of a gene loss,
caused by a mutation is shown. In one of the duplicates of a gene, a
mutation changed the base A into base C. Thus, the gene can loose its
functionality. Gene losses can be caused by other evolutionary events
like insertions or deletions.

ing new genes and new biochemical processes that have facilitated the
evolution of complex organisms from primitive ones [51]. A duplicate
gene may accumulate harmful mutations and become nonfunctional, as
long as the other duplicate gene is functioning normally. These non-
functional duplicate genes are called pseudogenes [51]. The existence of
pseudogenes is much more likely than the possibility that a gene evolves
into a new gene. In the model considered in this dissertation we do not
distinguish between gene losses, pseudogenes, and newly evolved genes.
We simply consider them all as gene losses (cf. Figure 3.1).

We assume the existence of an evolutionary tree for all the taxa
we talk about. Furthermore, we make the basic assumption that we

23

have exactly one gene from each contemporary species present in a gene
tree [36, 38, 591. We postulate gene losses for all the other possible
homologous.

- duplication

m speciation

AB 1 C D2 3EF

Figure 3.2: The evolution of a gene family (red). The phylogeny for the
taxa 1,2, and 3 is the black tree. Orthologous are: A and C, B and D,
AC and E, and BD and F. Paralogous in 1,2, and 3 are: A and B, C and
D, and E and F, all caused by the duplication of the ancestor gene X).

Where does a duplication event happen? A duplication event involves a
stretch of DNA in the genome of an organism. Thus, a duplication event
can effect one or more genes at once (cf. Figure 3.3). We talk about a
multiple gene duplication if a set of genes was duplicated in one event
creating a set of paralogous genes.

24 Biological Background

gene 1 gene 2

. ..TATAACCGATTTGTACGCGACCTTTATACTG...

/ *-

/ \
. ..TATAACC(.AI’ITGTAC(;CGACACCTTACCGA”I”’I’TGTAC(;CC;CTATACTG..,

gene I ’ gene 2’ gene 1” gene 2

Figure 3.3: An example of a multiple gene duplication. Note that more
than one gene is duplicated at once.

Chapter 4

Mat hemat ical Models of
Contradictory Trees

In this chapter, we give a short overview of the most famous approaches
in the literature for computing a tree describing common properties of a
given set of contradictory trees over a leafset L. Three different types of
methods can be found in the literature: consensus methods, agreement
methods, and the duplication-loss approach. Consensus trees (Section
4.1) as well as agreement trees (Section 4.2) preserve mathematical prop-
erties of trees but have little intuitive justification in a biological sense.
In mathematical terms, a consensus tree is a leaf-labeled tree, possibly
an rl-tree. Since this thesis focuses on rooted trees only, we ignore the
unrooted versions of agreement and consensus trees and refer to the cited
articles. As an example Figure 4.1 depicts different consensus and agree-
ment trees for a given set of input trees. The duplication-loss approach
in detail is discussed in Chapters 5, 6, 7, and 8.

4.1 Consensus Trees

A consensus tree T = (V, E, L) is a leaf-labeled tree over leafset L, built
from a set of binary p-trees (all over leafset L). In this section, we give a
short overview of the main concepts of consensus trees in the literature.
The strict consensus tree [54, 70, 721 is a consensus tree containing all
the internal vertices inducing subtrees whose leafsets agree with a leafset
of an induced subtree of each of the input trees. Obviously, the strict

26 Mathematical Models of Contradictory Trees

“rn “)Kn
AB C D BC D A

A B C D ABCD B C D
Figure 4.1: (1) and (2) are two gene trees. (a) is the Adams consensus
tree (1) and (2); (b) is the strict consensus tree of (1) and (2), and (c)
the maximum agreement subtree (1) and (2).

consensus tree is not very informative and therefore various extensions
exist (cf. Figure 4.1 (b)).

The most popular consensus tree is the Adams consensus tree [l, 2,
53, 54, 70, 721. It can be viewed as a refinement of the strict consensus
tree. The Adams consensus tree T, for a given set of input trees, is built
starting at root(T). Each child of root(T) is labeled with a nonempty
set I. I is the intersection of the leafsets of the subtrees induced by
one child each of the roots of the input trees. The procedure is applied
for every newly created vertex w for T labeled by a set consisting of
at least two elements; the input trees are restricted to the leafset of w
(cf. Figure 4.1 (a)).

The majority-rule tree [7, 53, 54, 701 and the median consensus tree
[7, 611 are related concepts. While the latter is based on a distance
measure between the trees, the majority-rule tree contains exactly the
leafsets of the by internal vertices induced subtrees that have the prop-
erty that these leafsets are contained in more than half the input trees.
Various generalizations of the majority-rule tree exist [5, 61. In general,
determining binary median trees is A@-hard [55], but for two trees the

4.2 Agreement Trees 27

problem is solvable in polynomial time [lo].
In contrast to the strict consensus methods, in the cluster-height

consensus tree there is a height assigned to each vertex of the set of
input trees assigned. The height increases or decreases monotonically
with respect to set inclusion [57, 68, 691.

The clique consensus tree was first suggested by Swofford [70]. The
idea is to apply a weighting on frequency or edge weightings on all of the
clusters of the input trees and find a maximum clique when defining the
consensus trees. Bryant introduced the maximum edge-weight consensus
tree [lo]. The tree is defined to be the maximum weighted clique of the
set of all leafsets of the input trees, each weighted by the sum of the
edge weights of the corresponding edges in the weighted input tree. It is
interesting to note that several properties of the maximum weight clique
methods lead to consensus trees mentioned above, specifically the strict
consensus tree, the majority-rule tree, or the loose consensus tree [lo].

4.2 Agreement Trees

An agreement tree of a set of trees is built over a subset of the maximum
leafset containing information common to the given trees. These trees
do not necessarily contain the full leafset.

The most famous agreement tree is the maximum agreement subtree
(MAST). This was introduced by Swofford in 1991 (cf. Figure 4.1(~))[70].
The MAXIMUM AGREEMENT SUBTREE problem is stated as follows.

Problem4.1. MAXIMUM AGREEMENT SUBTREE
Input: p-trees Tl, Th over leafset L and a positive integer m.
Question: Is there a tree T of size ITI 2 m leaves, with T stop Ti for

i = 1, . ..) k?

When the input trees are bounded by degree d, the problem is solvable in
polynomial time. In 1995, Farach, Przytycka, and Thorup have shown
an O(k31LI + ILId) time algorithm [23]. In 1997, Bryant presented a
simpler version with the same time complexity [lo]. The algorithm by
Przytycka has a running time of O(k31Ll+kd) [62]. A generalized version
of the MAST problem where leaf labels are allowed to be repeated is NP-
complete for binary trees [25]; the MAST problem for unbounded degree
is shown to be NP-complete for k 2 3 [3]. For two trees polynomial
time algorithms were developed independently by Steel and Warnow [65],

28 Mathematical Models of Contradictory Trees

and Goddard et al. [33]. Furthermore, Hein et al. have shown that
the MAST problem for three trees with unbounded degree cannot be
approximated in polynomial time within a ratio of 21°g6 n for any 6 < 1
(unless P = ~$9) [41].

Chapter 5

Models for Counting
Evolutionary Events

Instead of looking for a common consensus or agreement for a set of
(possibly contradictory) gene trees, Goodman et al. suggested in 1979
the DUPLICATION-AND-LOSS MODEL [36]. For a given gene tree and
species tree, the model explains the differences in the topology with the
minimum number of gene-duplication events and gene losses necessary
to rectify the gene tree with respect to the species tree [36]. The model
has been discussed by Page [59], Guigo et al. [38], Mirkin et al. [56],
Zhang [73], and Ma et al. [52].

Before stating the DUPLICATION-AND-LOSS MODEL, we introduce
a general concept for models that rectify a gene tree with respect to
a species tree via speciation events and gene-duplication events (Sec-
tion 5.1). We then describe the DUPLICATION-AND-LOSS MODEL (Sec-
tion 5.2). Furthermore, we introduce two variants of this model: the
GENE-DUPLICATION MODEL (Section 5.3) and the MULTIPLE-GENE-
DUPLICATION MODEL (Section 5.4). The GENE-DUPLICATION MODEL,
a restriction of the DUPLICATION-AND-LOSS MODEL, is the basis for
Chapter 6 (published in [25], which is joint work with Fellows, Hallett,
and Korostensky) and Chapter 7 (published in [SS]). The MULTIPLE-
GENE-DUPLICATION MODEL, which was suggested in [38] and formal-
ized in [26] (joint work with Fellows and Hallett), is the basis for Chapter
8 and [26].

30 Models for Counting Evolutionary Events

If not noted differently, all trees in the rest of this part are leaf labeled;
gene trees and species trees are binary leaf-labeled trees.

5.1 Modeling the History of a Gene Tree

Let a gene tree G and a species tree S be denoted by G = (VG, EG, LG)
and S = (Vs, Es, Ls).

Every model we describe in this chapter (cf. Section 5.2-5.4) uses
three functions: a location function ZocG,S : VG + Vs, the event function
eventG,S : VG + {dup, spec}, and a cost function cost. To a given gene
tree and a given species tree, the cost function assigns a value reflecting
the number of evolutionary events happening in the history of the gene
tree with respect to the species tree. ZocG,S is a tree-stable function
associating each vertex in G with a vertex in S.

Definition 5.1. Let G = (VG, EG, LG) be a gene tree, S = (Ifs, ES, Ls)
be a species tree, LG E Ls, and let 2 : VG + VS be a function. We call 1
tree stable, if for all u, w E VG the following holds. Z(v) = 21 for all w E LG
and if v is an ancestor of u in G then Z(v) is an ancestor of Z(u) in S.

Note that, because ZocG,s is tree stable, for LG = LS ZocG,s always maps
the root of the gene tree to the root of the species tree: locG,s(root(G)) =
root(S). Furthermore, if ZocG,s(W) = root(S) for a vertex w E VG, then
zocG,S = root(s) for all ancestors of w in G.

Finally, eventG,s indicates whether the event in G corresponds to a
gene-duplication event or a speciation event. More precisely, we define
eventG,S as follows.

ForeachuEV~-LG,

1

spec if ZocG,s(u’) # ZocG,s(u),for all u’ where u’ is a
eventG,S(u) = child of u in G.

dup otherwise

Thus, each vertex in the gene tree G is associated with either a gene-
duplication event or with a speciation event; the event is located at a
vertex in the species tree S.

As a property of such a model we remark that for a vertex w E VG
with ZocG,s(w) = u (u E VS), there is no ancestor v of w in G such that
Zoc~,s(v) = u and eventG,g(v) = spec.

5.1 Modeling the History of a Gene Tree 31

1 3 52 461234 561234 56

Figure 5.1: A gene tree (red tree, left) is depicted representing the evo-
lutionary tree of the successors of a gene 2. The leaf labels indicate the
species the gene-family members are located in. The species tree is the
black tree, shown in the middle figure. The right figure shows the gene
tree mapped into the species tree. Thus, the evolution of gene x we
interpret as follows. The gene x was contained in the species w which
is the ancestor of 1, 2, 3, 4, 5, and 6. w’s latest moment before speciat-
ing is represented by the root of the species tree. Before the mentioned
speciation event takes place, gene x is copied inside of w and therefore,
when speciating, the children of the root of the species tree contain 2
copies (i.e., zr and xs) each. The evolution of the rest of the gene family
coincides with the speciation events.

Intuitively, an internal vertex v of the gene tree indicates a gene-duplica-
tion event happening before vertex w in the species tree, if v is located
at w (i.e., ZOCG,S(V) = w) and at least one of v’s children, say v’, is also
located at w (i.e., there exist a vertex v’ E VG, parentG(d) = w, such
that ZOCG,S(V’) = v). Thus, the gene existing in the parent of w, that
represents an ancestor of gene v, has at least two copies in the species
that is represented by w (cf. Figure 5.1).

In general, the whole history of the gene tree G = (VG,EG,L) for a
given species tree S = (VS, ES, L) (corresponding to speciation events
and duplication events during the evolution of a gene family) can be

32 Models for Counting Evolutionary Events

viewed by the explanation tree & = (VE, E&, L) which we define next.
The explanation tree for a given gene tree and a species tree is a tree
which is leaf-labeled-isomorphic to the gene tree (cf. definition on page 11
in Chapter 2), representing the evolutionary events of the gene family
that happened along the evolution of the species tree. An example of
an explanation tree for a given gene tree and species tree is shown in
Figure 5.2.

’ vertex of v, ” “*

- duplications

A B C D E F

Figure 5.2: The lower figure shows an explanation tree for gene tree
G with respect to species tree S depicted in the upper figure. The
duplications (red boxes) are vertices in V3, the red vertices of degree 2
that do not have duplications as parents are vertices in Vz, all the other
red vertices are elements of VI.

In order to define the explanation tree & = (Vz, EE, L) we first intro-

5.1 Modeling the History of a Gene Tree 33

duce the set V’. Due to technical reasons we introduce two bijective
functions fi : Vs x VG -+ Cl and fi : Vs x VG + &, with Cl n C2 = 0,
and I& = l&l = IVs x VG~. Then V* = {zI+u,w with (u,w) E VS x
VG and fl(u, w) = x> U (~13 U, w with (u, w) E Vs x VG and fz(u, w) =

Y>.

We define the vertex set VE C_ V’ U L of the explanation tree & =
(VE, EE, L). V, is composed of the given leafset L and the following sets
vl,vi?,v3 c v*.

l Each internal vertex w E VG with ZocG,S(w) = u is represented as
the element fi(u, w) E V* in the set VI, if not both of the children
of w imply a duplication event in S and if wl and wT are also
located at u:

VI = {fi(u,w) E V’Iu = ZocG,S(w),w E (VG-L),u E Vs, and not
(ZocG,S(w$ = hXG,s(W,) = U and eWentG,S(Wl) = eventG,S(U$) =
dUP) 1.

l For each vertex ?J E VG - {root(G)} and its parent w = paren&(
each internal vertex u E Vs in the path p(ZOcG,S(v), ZOCG,S(W)) in
the species tree, excluding the vertices ZOCG,S(W) and ZOCG,S(W), is
represented as the element f~(u, w) in Vz:
vz = U int(v), where

uW-{rOOt(G)}

int(v) = {fi(u,w) E V*l3u,w with (u,w) E Vs x VG,

U # ZocG,S(~),~ # ZocG,S(w), W = purentG(u), and

‘11 E P(zocG,S(v), zocG,S(w)}.

l Furthermore, each vertex w E VG, ZOCG,S(W) = u, which is a du-
plication event in S (i.e., event(w) = dup), is represented as the
vertex fi(u, w) in V3:

V3 = {fz(u,w) E V*~~OCG,S(W) = u and event(w) = dup}.

Note, that for a vertex w E VG with event(w) = dup and Zoc(w) = u it
is possible, that both ~I(ZL, w) and fi(u, w) are elements of &, namely
fl (u, w) E Vi and f~(u, w) E V,.

34 Models for Counting Evolutionary Events

We remark, that each vertex w E VG has at least one corresponding
vertex in V& (i.e., there is a vertex u E Vs with fr(u, w) E V& or
fz(u, w) E V&). Furthermore, VI, Vz, and V3 are pairwise disjoint. (Ob-
viously, VI n V3 = 0 and I$ fl V3 = 8. Assume VI n Vs # 0. That is, there
is an element 2 E VI n Vz, and there are elements u E Vs and w E VG
with 2 = fr (u, w). Because z E VI we know ZOCG,S(W) = u. But because
2 E Vz we know ZOCG,S(W) # u. Contradiction.)

The edges E& of the explanation tree are introduced corresponding to
the gene tree G. fr-’ and fT1 denote the inverse functions of fr and fi.

l Let w E L, a E VI UVs, and f;‘(u) = (u, w). Then a = parentE(w)
if and only if w = purentG(u) and u = parents(w).

l Let a, b E VI and f;‘(a) = (u,w), f[l(b) = (z,y). Then b =
paren& if and only if y = purentG(w) and 2 = parents(u).

l Let a, 6 E V= and f;‘(a) = (u, w), f;‘(b) = (z, y). Then b =
pure&(u) if and onIy if w = y and z = parents(u).

l Let a, b E V3 and f;‘(u) = (u, w), f;‘(b) = (z, y). Then b =
parentE(u) if and only if y = parent(w) and u = x.

l Let a E VI, b E Vz, and f;‘(a) = (u, w), f;‘(b) = (xc, y). Then
b = purentE(u) if and only if y = paren& and z = parents(u).

l Let a E Vz, b E VI, and f,-‘(u) = (u,w), &l(b) = (x,y). Then
b = purentE(u) if and only if w = y and z = parents(u).

l Let a E VI, b E V3, and &‘(a) = (u, w), f;‘(b) = (x:, y). Then
b = purentE(u) if and only if either (y = purentG(w) and u = x)
or (y = purentG(w) and 2 = parents(u)).

l Let a E V3, b E VI and &‘(a) = (u,w), f;‘(b) = (x,y). Then
b = pure+-(u) if and only if y = pure&c(w) and z = pure?+(u).

l Let a E Vz, b E V3, and f;‘(u) = (u,w), f;‘(b) = (x,y). Then
b = purentE(u) if and only if w = y and x = parents(u).

l Let a E V3, b E Vz, and &‘(a) = (u,w), f;‘(b) = (x,y). Then
b = purentE(u) if and only if y = pare&c(w) and x = parents(u).

5.1 Modeling the Historv of a Gene Tree 35

Lemma 5.1. Let & = (VE, EE, L) be the expcplanution tree for a gene tree
G, a species tree S, a tree-stable location function ZOCG,~, and the event
function evenk,g. Then

I. & = (Vt, E&, L) is a leaf-labeled rooted tree.

2. G E & (i.e., G is leaf-labeled isomorphic to E).

Proof. 1. We show

(a) every vertex in VE except one has exactly one parent in E.

(b) the elements in L are leaves (i.e., no element in L has a child).

(c) there is exactly one element a E V, s.t. either

f;‘(a) = (root(S), root(G)) or

f;‘(u) = (root(S), root(G)).

Furthermore a has no parent in E.

These properties are sufficient to show that & is a tree. Because
of (a) and (b), & is connected, contains no cycles, and has leaves
L. Property (c) shows that & is rooted.

The verifications of the claims above are as follows.

(a) We first show, that every leaf in V& has exactly one parent
in E. Let u E L, w = parentG(w), and ZOCG,S(W) = u, then
eventG,s(w) = spec. (This follows directly from the definition
of the event function, since leaves of the gene tree are always
located at leaves of the species trees and internal vertices of
the gene tree are always located at internal vertices of the
species tree, and therefore a leaf of the gene tree is never
located at the same vertex in the species tree as its parent.)
Therefore, there exists an element a E VI U Vz with fc’(u) =
(u, w), and, due to the definition of E&, a = parentE (w).

Since both the species tree and the gene tree are well-
defined trees, v has exactly one parent in G and in S. There-
fore, the existence of a E Vr U Vz (with f;‘(u) = (u, w),
w = purentG(v), and u = parents(v)) is unique.

Let a be an internal vertex of V& (i.e., a $ L). Furthermore,
we assume that f;‘(u) # (root(S),root(G)) and f;‘(u) #
(root(S), root(G)).

36 Models for Counting Evolutionary Events

Let u E Vs, w E VG such that a = fi(u, w) or fs(u, w). Then
we can assume that w # root(G). (Assume w = root(G).
Then u # root(S). But this is a contradiction to the definition
of G and S, since G and S have the same leafset. Therefore
the root of the gene tree is located at the root of the species
tree.)

We now show that a has a parent b in & and that b is
uniquely determined.

l Let a E VI with f;‘(u) = (u,w). Then ZOCG,S(W) = u.
We distinguish the following cases:

i. u # root(S) and w # root(G).
W.1.o.g. let u* = parents(u) and w* = purentG(w).

Then there is an element b E V& such that either
b = fi(u*,w*), b = fs(u*,w*), or b = fs(u,w*).
(Assume there is no such element b. That is, w* is
neither located at u nor at u*: ZOCG,S(W*) # u (i.e.,
euentG,s(w”) # dup) and ZOC~,S(W*) # u*. Further-
more u* $! p(u, ZOCG,S(W’)). But this is a contradic-
tion to the property, that the location function is tree
stable.)

ii. u = root(S). Then w # root(G).
w.1.o.g. w* = parentG(w). Then there is an el-

ement b E V& such that b = fi(u, w*). Element b
exists, because all the ancestors of w in G are all lo-
cated at the root in the species trees and therefore
all of them are duplication events. Thus, b E V3 and
b = paren$ (a).

If b = fi(u*,w*), then u* = ZocG,S(w*) (i.e., b E VI. Or
u* E p(u, ZOCG,S(W*))). But then b E Vz. Therefore in
this case b = purentE(v).

If b = fs(u,w*) or b = fs(u*,w*), then b E V3 and
therefore b = parentE (v).

We now show that b is uniquely determined. Assume
there exist a vertex b’ E V&, b’ # b, and b’ = parentE (w).

- If b’ E VI then there exist x E Vs, y E VG with
b’ = fi(x,y) and x = pure?+(u), y = pare&G(w).
But then b’ = b. Contradiction.

- If b’ E Vz then there exist x E V,, y E VG with b’ =
fl(x,y) and x = par%(u), Y E P(u,~ocG,s(w*)).

5.1 Modeling the History of a Gene Tree 37

But then b’ = b. Contradiction.

- If b’ E I4 then there exist x E Vs, y E VG with
b’ = fz(z,y), y = purentG(w) and either 2 = u or
x = parents(u). But then b’ = b. Contradiction.

l Let u E V2 with v = fi (u, w). Again, we distinguish the
following cases:

i. u # root(S) and w # root(G).
Let u* = parents(u), w* = purentG (u)), and u’ =

ZOCG,S(W). Then u* E p(u, u’) and there is an element
b E VE such that b = fi(u*,w*). If u* = u’ then
b E VI, else b E V,.

We show b is uniquely determined.
Assume there exist a vertex b’ E V&, b’ # b, and

b’ = purentE(v). But this is a contradiction to the
definition of species tree and gene tree.

ii. u = root(S). Then w # root(G). But then a $ Vz.
Contradiction.

l Let be v E V3 and v = fi(u,w).
As before, we distinguish the following cases:

i. u # root(S) and w # root(G).
w.1.o.g. w* = parentG(w). Then there is an el-

ement b E VE such that 6 = fz(u,w*). Element b
exists, because all the ancestors of w in G are all lo-
cated at the root in the species trees and therefore
all of them are duplication events. Thus, b E V3 and
b = paren&(
Let u* = parents(u) and w* = purentG(w). Then
ZOCG,S(W) = u and there is an element b E VE such
that either b = fi(u*, w*) or b = fi(u, w*).

ii. u = root(S). Then w # root(G). Since w is located
at the root of the species tree all the ancestors of w
in G are located at root(S) as well. Then there exist
b E V3 with b = fi(u,w*).

If b = fi(u*,w*) then b E VI U Vs, else if b = fi(u,w*)
then b E V3.

We show 6 is uniquely determined.
Assume there exist a vertex b’ E V&, b’ # b, and b’ =
purentE (v).

38 Models for Counting Evolutionary Events

- If b’ E VI then there exist z E Vs, y E VG with
b’ = fi(x, y) and z = parents(u), y = parentG(w).
But then b’ = b. Contradiction.

- If b’ E Vz then there exist x E Vs, y E VG with b’ =
fl(x,y) and x = ParWdu), Y E P(u,~~cG,s(w*)).
But then b’ = b. Contradiction.

- If b’ E V3 then there exist z E Vs, y E VG with
b’ = fi(x,y), y = purentG(w) and either x = u or
x = parent,(u). But then b’ = b. Contradiction.

(b) The claim follows directly from the definition of the set of
edges E&.

(c) We consider the cases where f;‘(u) = (root(S),root(G)) or
fF1(u) = (root(S), root(G)).

Because ~ocG,s(root(G)) = root(S), such an element a al-
ways exists in VE. Furthermore, because then neither u nor w
has an ancestor in its corresponding tree, no parent for a in &
is defined. To see that it is impossible that fi(root(S), root(G)) E
V, and fs(root(S), root(G)) E V&, we assume fi (root(S), root(G)) E
Vt. Then fi(root(S),root(G)) E VI. But this means, there
cannot be a child of root(G) which is located at the root of S,
the necessary condition for the existence of fi(root(G), root(S))
in V&.

2. Because for each vertex v E VG (ZOCG,S(V), v) is ancestor in &
of each element in LS(v). That is, LS(v) 2 LS((ZOCG,~(V),V)).
Therefore G <top S, which proves the claim.

0

This section introduced the explanation tree, which is a general concept
for viewing the history of a gene tree G with respect to a species tree S.
A cost-model taking into account the event function even&$ and a tree-
stable location function determines the explanation tree. The following
sections define three specific models to rectify a set of (contradictory)
gene trees with respect to a species tree.

5.2 The Duplication-and-Loss Model

We describe the DUPLICATION-AND-LOSS MODEL introduced in [36].
Let G = (VG, EG, L) be a gene tree and let S = (Vs, Es, L) be a species

5.3 The Gene-DuDlication Model 39

tree. The location function ZOCG,~ : VG + Vs, is defined by the least-
common-ancestor mapping, i.e., Zoc G,S(u) = kus(Ls(u)) for all u E I&.
Obviously, ZOCG,~ is tree stable. The cost function is defined by

costDL(G, S) = I{+ E VG - L, eWntG,s(U) = dup}I

+ c (IP(ZOCG,S(W), ZOCG,S(U))~

where

UEVQ -L
+ IP(~ocG,S(%)i zocG,S(u))I - 2) >

c (IP(zocG,S(ul), ~ocG,S(u))I + IP(zocG,S(%-), zocG,S(u))l - 2).
UEVG-L

defines the number of losses.
The location function, the least-common-ancestor mapping, implies

that co&L(G, S) is the minimum number of gene-duplication events
and gene losses necessary to rectify the gene tree G with the species tree
S.

It is not very difficult to verify that for a gene tree G and species tree
S costDL(G, S) can be computed in linear time [73], since computing the
least common ancestor is possible in linear time [40, 641.

Figure 5.3 (a) and (b), page 42, show the explanation trees for
two gene trees and a species tree under the DUPLICATION-AND-LOSS
MODEL. The question which is implied by the DUPLICATION-AND-LOSS
MODEL is stated as follows.

Problem 5.1. DUPLICATION AND Loss
Input: Gene trees Gi, . . . , Gk over leafset L.

Output: A species tree S with minimal cost (i.e., 5 costDL(Gi,S) is
i=l

minimized).

Recently, Ma, Li and Zhang have shown that DUPLICATION AND Loss
is NP-complete [52].

5.3 The Gene-Duplication Model

The GENE-DUPLICATION MODEL [26, 66, 731 is the same as the DUPLI-
CATION-AND-LOSS MODEL, but restricted to gene-duplication events

40 Models for Counting Evolutionary Events

only. Gene losses are not considered in this model. Using the same loca-
tion function as in Section 5.2, the minimum number of gene-duplication
events necessary to rectify a gene tree G with a species tree S is defined
by COSkD (G, s) = IDuPsGDI,

DUPSGD = {u/u E VG - L, eWentG,S(u) = dup}.

As in the case of the cost function in the DUPLICATION-AND-LOSS
MODEL, for a gene tree G and a species tree S, costGD(G, S) can be
computed in linear time. Similar to DUPLICATION AND LOSS we state
the GENE DUPLICATION problem as follows:

Problem 5.2. GENE DUPLICATION
Input: Gene trees Gr , . . . , Gk over leafset L.

Output: A species tree S with minimal cost, i.e., 5 costGD(Gi,S) is
i=l

minimized.

As for the DUPLICATION AND Loss problem, GENE DUPLICATION was
also shown to be NP-complete [52]. In Section 6 and Section 7 we
investigate GENE DUPLICATION in more details.

5.4 The Multiple-Gene-Duplication Model

In Section 5.2 and Section 5.3, gene-duplication events are considered to
be independent events. The MULTIPLE-GENE-DUPLICATION MODEL,
which we formalized in [26], takes into account that a duplication event
happening on the nucleotide level, can involve more than one gene at
once and motivates the definition of a multiple gene duplication. The
idea of clustering gene-duplication events was suggested by Guigo et
al. [38].

Suppose we are given the gene trees Gr, . . . , Gk and the species tree
S. Consider a vertex u in S. In any model following the concept sug-
gested in Section 5.1, each gene tree Gi has some number of vertices d
(possibly zero) with locG,,s(d) = u and eWentG,,s(d) = dup (1 5 i 5 k).
Let Dup(u) = {di, dz, . . . , d,} denote this set. We can partition Dup(u)
into classes with the property that each class has at most one vertex
from each gene tree Gi and so that these sets are maximal. One such set
is termed a multiple gene duplication and it counts exactly one to the

5.4 The Multiple-Gene-Duplication Model 41

overall number of multiple gene duplications required to rectify the gene
trees with respect to the species tree. The multiple-gene-duplication
score for the vertex u is the total number of such partitions. By “mov-
ing” gene duplication events in Gi towards the root of S according to a
set of rules, we can decrease the total number of multiple gene duplica-
tions required (as illustrated on page 40). We define the cost function
to be costMG(Gl,... ,Gk,S) =

c r&x I{+ = Zoc&(u) and event(w) = dup}I .
UEVS

Let G = (VG,EG,L) be a gene tree and let S = (Vs, Es, L) be a
species tree. What does “moving a gene duplication towards the root
of S” mean? For a vertex u E VG with ever&J(u) = dup we simply
change the location ZoCG,s(u) of a vertex u to the location of its parent
v = parentG(u) (i.e., after each move the location function is redefined
with ZOCG,S(u) := lOCG,S(W)). Now e?JCntG,S(W) = dUp,

Consider a vertex u E VG such that euentG,s(u) = dup and u # root(G),
and for all x E VG, where x # u and x is ancestor of u in G, ZoCG,S(x) #
ZOCG,s(u). Let w = parentG(u). The rules for moving duplication events
towards the root of a species tree are specified as follows:

Move 1: If CWCntG,s(u) = dup, we may move the duplication associated
with u from ZoCG,S(u) to ZOCc,s(W). NOW ZOCG,S(U) = ZO@,s(W).

Move 2: If CuentG,s(u) = spec, when moving the duplication associated
with u from ZOCG,s(u) to ZOCG,S(V), we must change CuCntG,s(u) to
be dup. Now ZOC,$s(u) = ZOCG,s(V).

Note, that after applying Move 2 the number of duplication events is
increased by one. Note that both Move 1 and Move 2 preserve the tree
stability of the new location function.

Let us reconsider the GENE-DUPLICATION MODEL. For a gene tree G
and a species tree S, DupsGD(G, S) is the set of vertices in G having
gene-duplication events in S under the GENE-DUPLICATION MODEL;
as shown earlier, the number of gene duplications is minimized over
all possible tree-stable location functions. Furthermore, the locations
locG,s(d) for the vertices d E Du~sGD(G, S) are the “latest” possibili-
ties where the events can take place (i.e., the vertices in DupsGD(G, S)

42 Models for Counting Evolutionary Events

Figure 5.3: (a) depicts two gene trees, G1 and Gs, and a proposed species
tree S. (b) shows that the species tree S has the explanation trees for Gr
and Gz embedded inside of it according to the standard DUPLICATION
AND LOSS model. Note that Gr causes one duplication (vertex d) whilst
Gs causes 3 gene duplications (vertex b and twice vertex e). The score
according to the DUPLICATION AND LOSS model is 4 duplications and
15 losses; the score according to the GENE DUPLICATION model and to
the MULTIPLE-GENE-DUPLICATION model is 4. (c) After moving the
gene duplication of Gr located at vertex d to the root e of the species
tree S, two additional gene duplications for Gr need to be postulated.
Nevertheless, the score according to the MULTIPLE GENE DUPLICATION
model is now 3 (even though we count 5 duplications). Note that it is
not beneficial to move the gene duplication from Gz located at c towards
the root. The two gene duplications located initially at the root from
Gz cannot move upwards.

5.4 The Multiple-Gene-Duplication Model 43

cannot be located closer to the leaves of S). Certainly, if we do not care
about the minimum in the number of gene-duplication events, gene-
duplication events can happen “earlier” in the history of a gene family
than postulated in the GENE-DUPLICATION MODEL (i.e., a duplication
event can be located closer to the root of the species tree), and also more
gene-duplication events may be necessary.

Observation 5.2. Given the gene trees Gi, Gs, . . . , Gk and a species
k

tree S, c coskD(Gi, S) provides an upper bound for the number of
i=l

multiple gene duplications.

Definition 5.2. Given a gene tree G, a species tree S, and the functions
IocG,s and eventG,s mapping G into S, we say that S receives G, if the
configuration given by locate and eVentG,g can be reached by a series of
moves (Move 1 and 2 on page 41 starting from the initial configuration
obtained by applying the location function IocG,S and the event function
euentG,s defined in the GENE-DUPLICATION MODEL (cf. Section 5.2).

Figure 5.3 on page 42 gives a concrete example.

Finally, we state the MULTIPLE GENE DUPLICATION problem as follows:

Problem 5.3. MULTIPLE GENE DUPLICATION
Input: Gene trees Gr, . . . , Gk over leafset L, integer c.
Question: Does there exist a species tree S and location functions
locG;,S, 1 5 i 5 k, such that S receives Gi, . . , Gk with at most c

multiple gene duplications, i.e., costMG(& , . . . , Gk, S) < c?

Chapter 6

The Smallest-Common-
Supertree Problem

This chapter, as well as Chapter 7, focuses on the GENE DUPLICATION
problem. We present the problem SMALLEST COMMON SUPERTREE
which has an interesting relation to GENE DUPLICATION. The smallest
common supertree of a set of gene trees gives us a lower bound for the
number of gene-duplication events necessary to rectify the gene trees
with respect to a species tree. Section 6.1 motivates and introduces the
problem; Section 6.2 analyzes the parameterized complexity of SMALL-
EST COMMON SUPERTREE.

6.1 Smallest Common Supertree - Problem
Statement and Motivation

Before introducing Smallest Common Supertree we begin with the fol-
lowing definition.

Definition 6.1. A common supertree T = (V, E) of a given set of gene
trees Gr,. . . , Gk is a binary rl-tree with Gi stop T (i = 1, .., k). A
vertex v E V is a duplication vertex of T if LS(vl) n LS(v,) # 0.

We formalize the base problem of this chapter.

6.1 Problem Statement and Motivation 45

Problem 6.1. SMALLEST COMMON SUPERTREE
Input: Gene trees G1, . . . , Gk over leafset L and a positive integer m.
Question: Does there exist a common supertree T such that ITI 5 m?

The SMALLEST COMMON SUPERTREE problem is motivated as follows.
Given gene trees G1, . . . , Gk and a species tree S, all over leafset L,
then there is an rl-tree S* which is a common supertree of G1, . . . , Gk,
and S*‘s duplication vertices are a lower bound for the number of gene-
duplication events necessary to rectify G1, . . . , Gk with respect to S.

First, we show how to compute S* for a single gene tree G (Algorithm
Builds*) Then we generalize the algorithm and compute a common
supertree for a given set of k gene trees (Algorithm BuildAllS*).

Algorithm BuildS*(gene tree G, species tree S): rl-tree S*
create a copy S’ of S
S’ := CreateRl(G, S, S*)
return

end BildS*.

procedure CreateRl(gene tree G, species tree S, rl-tree S*): rl-tree S*
if locG,s(root(G) = root(S) and eventG,s(root(G)) = dup then

create a copy T of S
create a new vertex w
WI := root(S*); w, := root(T)
root(S*) := w
(* S* is now extended by a new root w, which is the parent of *)
(* the former root of S*; the other child of w is T. *)
S*(root(S*)l) := CreateRl(G(root(G)l), S, S*(root(S*)l))
S*(root(S*),) := CreateRl(G(root(G),), S, S*(root(S*),))

else
if LS(root(G),) C LS(root(S*)l) then

swap left and right subtree of G
endif
S*(root(S*)l) := CreateRl(G(root(G)~),S(root(S)~),S*(root(S*)~))
S*(root(S*),) := CreateRl(G(root(G),), S(root(S),),S*(root(S*),))

endif
(* S*(root(S*)i) and S*(root(S*),) have been replaced in S*
(* by the results computed by the CreateRl-procedure calls.
return

46 The Smallest-Common-Supertree Problem

end CreateRl.

Lemma 6.1. Suppose we are given a gene tree G and a species tree S.
Let S* be the d-tree built with the Algorithm BildS*. Then

I. G &, S*.

2. the number of duplication vertices of S* corresponds exactly to the
number of gene-duplication events costGD(G, S).

Proof.

I. We prove by induction over costGD(G, S).

Let costGo (G, S) = 0. Then G = S and therefore G <top S.

Assuming the claim holds for costGD(G, S) 5 i, we show, that it
also holds for costGD(G, S) = i + 1. Let G be a gene tree and S a
species tree s.t. costGD(G, S) = i + 1.

If eWntG,s(rOOt(G)) = dup, then both costGD(G(root(G)l), S) 5
i and CostGD(G(root(G),), S) 5 i. Furthermore, G(root(G)l) stop
S*(root(S*)t) and G(root(G),) <top S*(root(S*)r) and therefore
G <top S*).

If eventG,s(root(G)) = spec, then either all vertices u E VG with
eventG,s(u) = dup are in one subtree of the root of G (i.e, either in
G(root(G)l) or in G(root(G),)) or costGD(G(root(G)~),S) 2 i and
costGD(G(root(G),),S) < i. In the latter case, G(root(G)l) <top
S*(root(S*)l) and G(root(G),) stop S*(root(S*),) and therefore
G Stop S*. If all the vertices u E VG with eventc,s(u) = dup are
in one subtree of the root of G, let v E VG be the least common
ancestor of all those vertices u. Then costGD(Gv) = i + 1 and ei-
ther G(v) itop G(root(G)l) or G(v) <top G(root(G),). W.1.o.g. let
G(v) Stop G(root(G)l). It is sufficient to show that the tree
T* := BuildS*(G(v),S(locG,s(v))) contains G(v) as a subtree,
i.e., G(v) <top T*. If eventG(,),g(v) = spec, then neither the
left nor the right subtree of root(G(v)) has more then i vertices
w with ew.ntG(,),s(w) = dup (otherwise we have a contraction
to the property that v is the least common ancestor in G with
COStGD(G(V),S) = i + 1). If ethwtG(,),s(v) = dup then neither the
left nor the right subtree of root(G(v)) has more then i vertices w
with euentG(,),s(w) = dup.

2. Since S has no duplication vertex (S is a p-tree), the only candi-
dates for duplication vertices are those vertices w in S*, which are

6.1 Problem Statement and Motivation 47

created when calling Builds* for each duplication event. Clearly,
the number of newly created vertices is exactly COS&D(G, S), and
they are all duplication vertices.

We generalize Algorithm Builds* to Algorithm BuildAllS*, which
computes an rl-tree S’ for k gene trees G1, . . . , Gk and a species tree S
such that S* is a common supertree of G1, . . . , Gk and the number of

duplication vertices of S* is a lower bound for 5 COS~GD(G~, S). In the
i=l

recursive call, we extend the species by a new root vertex and let a copy
of the species tree be the other subtree of the root, if at least one of the
given gene trees has a gene duplication at the root of S.

Algorithm BuildAllS*(gene trees G1, . . . Gt , species tree S):
rl-tree S’

create a copy S’ of S
S” := CreateAllRl(G1,. . . ,GI,,S,S*)
return

end BildAllS*.

procedure CreateAllRl(gene trees G1, . . . , Gk, species tree S, rl-tree S”):
rl-tree S*

if there is at least one gene tree G E {Gl, . . . , Gk} with
Zocc,s(root(G)) = root(S) and eventG,s(root(G)) = dzlp then

create a copy T of S
create a new vertex w
wz := root(S*); w, := root(T)
root(S*) := w
(* S* is now extended by a new root w, which is the parent of *)
(* the former root of S*; the other child of w is T. *I
for each G E {Gl,. . . , Gk} with ewentG,s(root(G)) = spec do

if LS(root(G),) C LS(root(S)l) then
swap left and right subtree of G

endif
endf or
S*(root(S*)l) := CreateAllRl(G1(root(G1)1), Gz(root(Gs)l), . . ,

Gk(root(Gdz), S, S*(roo@*)z))
S*(root(S*),) := CreateAllRl(G1(root(G1),), Gx(root(Ga)T), . , . ,

Gdr4G&), S, S*(root(S*),))

48 The Smallest-Common-Supertree Problem

else
for eachGE{Gr,... , Gk} with LS(root(G),) c LS(root(S)i) do

swap left and right subtree of G
endfor
S*(root(S*)l) := CreateRl(Gr(root(Gr)i), G~(~oo~(Gz)L), . . . ,

Gk(root(G&), S(root(S)& S*(root(S*)i))
S*(root(S*),) := CreateRl(Gr(root(Gr).),Gs(root(Gz).), . . . ,

Gk(root(G&),S(root(S),),S*(root(S*),))
endif
(* S*(ro~t(S*)~) and S*(root(S*),) are replaced in S* by the
(* results computed by the CreateAllRl-procedure calls.
return

end CreateAllRl.

Corollary 6.2. Suppose we are given k gene trees G1, . . . , Gk and a
species tree S. Let 5” be the &tree built with the Algorithm BuildAllS*.
Then

1. Gi <top, S’ for i = 1,. . . , k

2. the number of duplication vertices of S” is a lower bound for the

number of gene-duplication events 5 costaD(Gi,S).
i=l

A solution of the minimization version of SMALLEST COMMON Su-
PERTREE is called a smallest common supertree. Because of Corol-
lary 6.2, a smallest common supertree gives a lower bound for the num-
ber of duplication vertices resulting from the optimal species tree, the
solution of the minimization version of the problem GENE DUPLICA-
TION. But this is also a lower bound for the number of gene-duplication
events necessary to rectify gene trees with respect to a species tree.

6.2 The Complexity of Smallest Common
Supertree

6.2.1 Intractability of Smallest Common Supertree

We show NJ-completeness of SMALLEST COMMON SUPERTREE (Pro-
blem 6.1) and W[l]-hardness of SMALLEST COMMON SUPERTREE for
parameter k (Problem 6.2). The hardness is proven by a reduction from

6.2 The Complexity of Smallest Common Supertree 49

SHORTEST COMMON SUPERSEQUENCE restricted to p-sequences’ (Pro-
blem6.3and6.4). P-SEQUENCE SHORTEST COMMON SUPERSEQUENCE
is known to be NP-complete and W[l]-hard when parameterized by the
number of input sequences (cf. Theorem 6.3 and Theorem 6.4, [25, 271).

Problem 6.2. SMALLEST COMMON SUPERTREE (parameterized version)
Input: Gene trees G1, . . . , Gk over leafset L and a positive integer m.
Parameter: k.
Question: Does there exist a common supertree T such that ITI 5 m?

Problem 6.3. P-SEQUENCE SHORTEST COMMON SUPERSEQUENCE
Input: p-sequences ~1, xk over alphabet C and a positive integer M
Question: Does there exist an &sequence x, with 1x1 5 M and zi is

subsequence of x for i = 1, Ic?

Problem 6.4. P-SEQUENCE SHORTEST COMMON SUPERSEQUENCE(~~-
rameterized version of Problem 6.3)
Input: p-sequences 21, xk and a positive integer M
Parameter: Ic.
Question: Does there exist an rl-sequence x, with 1x1 5 M and xi is

subsequence of x for i = 1, Ic?

Theorem 6.3. [25, 271 P-SEQUENCE SHORTEST COMMON SUPERSE-
QUENCE is hard for W[l] parameterized by k and NP-complete.

Theorem 6.4. SHORTEST COMMON SUPERTREE is hard for W[l] pa-
rameterized by k and N?-complete 125, 271.

Proof. We reduce from P-SEQUENCE SHORTEST COMMON SUPERSE-
QUENCE (parameterized version). As an instance I of P-SEQUENCE
SHORTEST COMMON SUPERSEQUENCE (parameterized version) we are
given Ic p-sequences x1,22, . . . , xk over an alphabet C. Let M be a posi-
tive integer. W.1.o.g. we assume that each symbol of C occurs in at least
one of the input sequences. Let a sequence xi let be of length ti and
consist of the symbols xi = xi[l]zi[2]. . .xi[tJ (1 5 i 5 ti).

lAnalogous to a p-tree, for an alphabet C a p-seqwnceis a sequence where each
symbol of C occurs at most once. In an rl-sequence symbols may be repeated.

50 The Smallest-Common-Supertree Problem

Wetransformthe instance I of P-SEQUENCE SHORTEST COMMON Su-
PERSEQUENCE (parameterized version) into an instance I' of SMALLEST
COMMON SUPERTREE (parameterized version). Let L = C U ($1, $,} U

{01,gz,... , go} with $1 +! C, u~jE,1~{1,2},1<j<M. Foreachxi
we construct a binary leaf-labeled tree Ti represented by the expression
(((. . . ((F,~:i[l]),zi[2]), . . .),~[t&,$l), 1 5 i 5 lc and I = 1 if i is odd
and 1 = 2 if i is even (cf. Figure 6.1); here F is a binary leaf-labeled cater-
pillar tree over the leafset (01, ~2, . . . , OM, $l,} with I’ = 1 if i is even
and 1’ = 2 if i is odd. Furthermore, for simplicity we denote the caterpil-
lar tree built over the leafset {u~,oz,. . . , (TM} with F,. Let m = 2M+4.

(i) xi x,[l]x,[2] xi[ti] (ii)

(iii) I$,,,,,... ./-

A\
01 0, oy

Figure 6.1: Gadget for proof of Theorem 6.4. In the P-SHORTEST COM-
MON SUPERSEQUENCE instance each sequence zi (i) is transformed into
a p-tree Ti (ii).

Because each zi is a p-sequence, F is a p-tree, and for each i $I # $I!,
each Ti is a p-tree (1 5 i 5 k) and therefore 1’ is a valid instance for
SMALLEST COMMON SUPERTREE (parameterized version).

We show I is a yes-instance if and only if I’ is a yes-instance.

+ Let z = 2[1]2[2]. . . z[M’], M’ 5 M, be a solution for I. Then
T = ((. . . (((F,, ($1, fib)), 411), 421), . . , z[M’IL ($1, WI is a solu-

6.2 The Complexity of Smallest Common Supertree 51

+ Let the rl-tree T* be a smallest solution for I’, IT*1 = m’ 5 m. It is
sufficient to show that there exist a common supertree T, ITI 5 m’,
of the form ((. . (((F,, ($1, $~)),3$1),$1), . . ,x[M’l), ($1, &I),

M’ < e < M. Then from T we can construct the sequence
2[l]J2] . . . z[&‘], which is a common supersequence of all zi, 1 5
i < lc.

Because F, is a subtree of each Ti, 1 5 i 5 k, and none of Fr’s
leaf symbols LS(root(F,)) is element of C, we can assume that T*
contains F, as a subtree, and U’(w) = {gr, us, . . . ,OM} where u
is the least common ancestor of {rrr, fls, . . , oM} in T*. Further-
more, w.1.o.g. T’ contains twice the sibling pair ($1, $2) and the
least common ancestor of the one pair of $1 and $2 is a child of
the root of T*, while the least common ancestor of the other pair
is a child of the parent of w.

Figure 6.2: Proof of Theorem 6.4, “-+“: Rearranging of T* is possible
because of the caterpillar structure of the Ti.

We show that we can rearrange T* to T. We refer to the subtrees
((. . (2[1],2[2]), . . .),z[M’]) in T and ((. . . (2i[1],~[2]), . . .),~i[ti])
in Ti as the caterpillar parts of T and Ti (1 5 i 5 k). Consider the
tree X*, which is the tree T’ restricted to the subtree containing all
the leaves si[l],~i[2], . . . ,zi[ti] (1 5 i 5 k). W.l.o.g., we consider
the case that X* is not a caterpillar tree (i.e., T* differs from T).
Then there is an internal vertex v in T*, u # root(T*), s.t. none
of w’s children wr and 2)s is a leaf and neither wr nor 212 is the
root of F,. Let 212 be the child of v with T*(wz) not containing
any leaves in {Q , . . . , 0~). Then for each i, 1 5 i 5 k, because
{~i[1],%[2]7.. . ,zi[tJ} build the caterpillar part of Ti there is at
most one leaf of {~[l], Zi[2], . . . , zi[ti]} contained in the subtree
of T* induced by vs. Therefore, we can reorganize the subtree

52 The Smallest-Common-Supertree Problem

induced by u2 in T* such that each leaf in T*(vz) is a child from
the path between 01 and v (cf. Figure 6.2).

6.2.2 A Tractable Parameterization

Because of the interesting result we want to mention the following para-
meterization of SMALLEST COMMON SUPERTREE which is fixed-parame-
ter tractable. Although SMALLEST COMMON SUPERTREE (parameter-
ized version) is W[l]-hard, the problem becomes fixed-parameter trac-
table if we allow a bounded number of leaves T additionally to the size
of the common supertree; the parameter is (k, r).

Problem 6.5. BOUNDED SMALLEST COMMON SUPERTREE
Input: Ic gene trees Gi (1 5 i 5 k) over leafset L, IL1 = n, and a
positive integer T
Parameter: (lc, r)
Question: Does there exist a common supertree T of the Gi of size at

most n + r?

Here we can interpret r as representing the number of gene-duplication
events.

Theorem 6.5. [25, ,271 BOUNDED SMALLEST COMMON SUPERTREE is
fixed-parameter tractable.

Because of the analogy between supertree and supersequence problems
we state the following two parameterizations of SHORTEST COMMON
SUPERSEQUENCE which are also both fixed-parameter tractable [25, 271.

Problem 6.6. BOUNDED DUPLICATION FOR P-SEQUENCES
Input: k p-sequences xi E C* for i = 1, k and a positive integer
T representing the number of duplication events. We assume that
ICI = n and that each symbol of C occurs in at least one of the input
sequences.
Parameter: (k, r)
Question: Does there exist a common supersequence z of length at most

n + r?

6.2 The Complexity of Smallest, Common Supertree 53

Problem 6.7. BOUNDED DUPLICATION FOR COMPLETE P-SEQUENCES
Input: Complete 2 p-sequences zi (1 5 i 5 k) over an alphabet C of size

n, a positive integer T, and a cost function c : c -i z+.
Parameter: T

Question: Does there exist a common supersequence z of duplication
cost 11~11~ 5 r where the duplication cost is defined:

l141c = Cb(~) - lb(a)
REC

n,(z), a E C, denotes the number of occurrences of symbol a in 2.

2A complete p-sequence over an alphabet C contains every symbols of C exactly
OIHX!.

Chapter 7

A Fixed-Parameter-
Tractable Algorithm for
Gene Duplication

The main result of this chapter is our fixed-parameter-tractable al-
gorithm for the problem GENE DUPLICATION parameterized by the
number of gene duplications c (Problem 7.1). The underlying model
for this problem is the GENE-DUPLICATION MODEL (cf. Section 5.3). A
preliminary version of this result was published by Stege in [66].

Problem 7.1. GENE DUPLICATION (parameterized version)
Input: Gene trees Gr, . . . , Gk over leafset L, a positive integer c.
Parameter: c.
Question: Does there exist a species tree S such that Gr, . . . , Gk can

be rectified with respect to S with at most c gene-duplication events,

i.e., itI costGD(Gi, s) 5 c?

Before we describe a fixed-parameter-tractable algorithm solving Pro-
blem 7.1, we point out a restriction of the non-parameterized version of
the N’P-complete problem GENE DUPLICATION (Problem 5.2, page 40),
where the problem becomes solvable in linear time. We restate GENE
DUPLICATION in its minimization version.

55

Problem 7.2. GENE DUPLICATION (minimization version)
Input: Gene trees Gr , . . . , Gk over leafset L.
Output: A species tree S such that the number of gene-duplication events
necessary to rectify Gr, . . , GI, with respect to S is minimized (i.e., a

species tree s.t. $ cost~~(Gi, S) is minimized).
i=l

We make the following observation.

Observation 7.1. Suppose we are given gene trees G1, . . Gk. Let c* =
k

yj~(C costGD(Gi, Gj)). Then c* is an upper bound for the number of
i=l

gene-duplication events required to rectify the gene trees GI, . . . , Gk with
an optimal species tree.

Thus, we can determine a gene tree which is a best possible solution
for a species tree when we consider the gene trees Gr , . . . , Gk as possi-
ble solutions only. Furthermore, if a species tree S, which solves Pro-
blem 7.2, does not agree with one of the gene trees G1,. . . , GI,, then
k

C costGD(Gi, S) 2 k, because for each gene tree we need at least one
i=l
gene-duplication event for the rectification of the differences with the
species tree. Therefore, if c* 5 Ic, we know that there is an optimal
species tree S E {Gr, . . . , Gk} and therefore in this special case S is
computable in linear time depending on IL1 and k.

Observation ‘7.2. Suppose we are given gene trees G1, . . . Gk. Let c’ =

$n(i COStGD(Gi, Gj)). If c* 2 k then k is a lower bound for the
j=l i=l
number of gene-duplication events necessary to rectify the gene trees with
respect to a species tree.

We now prepare for the algorithm solving Problem 7.1 by introducing
a generalized version of the GENE-DUPLICATION MODEL, because it
provides useful properties for solving GENE DUPLICATION.

56 An F’PT Algorithm for Gene Duplication

7.1 A Generalization of the Gene-Duplica-
tion Model

In this section we introduce the GENE-DUPLICATION MODEL FOR SPLITS.
The notion of a split is one of the cornerstones of our fixed-parameter-
tractable algorithm.

Definition 7.1. Let L be a leafset, IL1 > 1. We call 2, = (Q/Z&) a
split of L if

2. D1 # L

3. Vi # 0, and

4. 231 f-l v, = 0.

We call V complete if Vl U V, = L and V, # 0. Otherwise we call V
incomplete.

Definition 7.2. Let L be a leafset and let V = (VllV,), V’ = (V~IV~)
be splits of L with Vl UV, = VL U Vb. Then V = 2)’ if and only if Q =
Vj or Vl =VL.

Definition 7.3. Suppose we are given a leafset L and the gene trees
91 = (v,,,J%,,m... ,h = (Vg,&,,,,Lm) (m 2 1) with Li C L
(i = l,.. .,m)andUL~=L.IfL~~L~=0foralli,j~{l,..., m},
i # j, then we call the 91,. , gm a gene forest over L. Furthermore, for
a gene forest G consisting of the trees gi, . . . , gm we write VG = Uz”=, V,;

To simplify the description and the implementation of the algorithm
we extend the definition of the cost function co&D in the GENE-
DUPLICATION MODEL and allow a gene forest as an input instance in-
stead of a gene tree.

Definition 7.4. Suppose we are given a gene forest G and a species
tree S. Then costGD(G, S) = IDu~s,,(G,S)I, where

DupsGD(G, S) = {ulu E VG - L, evenk,s(u) = dup}.

We next define the cost for a gene forest and a split similarly to the cost
for a gene forest and a species tree.

7.1 A Generalization of the Gene-Duplication Model 57

Definition 7.5. (GENE-DUPLICATION MODEL FOR SPLITS)
Let G = (I/G, EG, L) be a gene forest consisting of gene trees gi, . . . , gn
over L. Let further 2, = (V&V,) be a split of L. If V, # 0 then
cost(G, V) = I Dups(G, V) 1, where

Dups(G, V) = {v E VGILS(V) n Vl # 0 and LS(v) n V, # 0 and

((LS(vl) n Vl # 0 and LS(v1) n V, # 0) or (LS(v,) n 2)~ # 0 and

LSW n VT # 0))).

Otherwise,
cost(G,V) = bErngDl cost(G, (Vl, {b})).

Definition 7.6. For given gene forests Gi, Gz, . . . , Gk over a leafset L
and a split V over L, we call a species tree Sa optimal depending on 2)

if 5 costGD(Gi, So) is minimized over all possible species trees S with
i=l

Vt c LS(root(S)t) and V, C LS(root(S),).

The following observations and Lemma 7.6 provide the main ingredients
for the fixed-parameter-tractable algorithm described in Section 7.2.

Observation 7.3. Suppose we are given gene forests G1, . . . , Gk over
a leafset L. Let V = (VtlV,) be a complete split of L. Furthermore, let
S be an optimal species tree for Gi, . . . , Gk depending on 2). Then for
eachGE{Gi,...,Gk}

DuPs(G, 2)) 2 DUPSGD (G, S)

k
and C cost(Giy V) is exactly the number of gene-duplication events lo-

id
cated at the root of S (cf. Figure ‘7.1).

Observation 7.4. Suppose we are given gene forests G1, . . , Gk over
L. Let 2) = (VllV,), V’ = (V~IV~) be complete splits of L. Let S be
an optimal species tree for G1, . . . ,GI, depending on V and let S’ be the
optimal species tree for G1,. . . , Gk depending on V’. If Dups(Gi, V) C
Dups(Gi, V’) for i E (1,. . . k}, then

2 COStGD(&,S) 5 -& COStGD(Gi,S').
i=l i=l

58 An FIT Algorithm for Gene Duplication

Figure 7.1: Gene forests Gr, Gs, and Gs are mapped into a split. The
marked vertices are the vertices which create a duplication event at the
root of the tree induced by the split. Since every internal vertex in
a gene forests corresponds to exactly one event (duplication or specia-
tion), every species tree depending on the split has the same number of
duplication events located at the root.

Definition 7.7. Let Gr , . . . , Gk be gene forests over a leafset L, let D =

(Q/D,) be a split of L with 5 cost(Gi, ‘D) = 0. Let a, b E L- (D,a UD,),
i=l

a # b. Furthermore let Dr = (ID, U {a, b}lDT), I& = (2)~ U {a}1D,U {b}),
D3 = (23 u {b)lD, u {a>), and V4 = (DllQ. U {a, b}). We call (a, b) a
conjkt pair if either

l 5 cost(Gi,Dj) > 0 for j E {1,2,3,4} or
i=l

l if the following properties are all fulfilled.

1. 27, = 0.

7.1 A Generalization of the Gene-Dunlication Model 59

2. 5 cost(Gi,Dj) > 0 for j E {2,3,4}.
i=l

3. For each gene forest Gi cost(Gi,Dl) = 0.

4. fj Li = 0 where
i=l
Li = {c E L-DJcost(Gi, @~{a, b}l{c}) = 0}, i E (1,. . . ,k}.

Definition 7.8. Let G1, . . . , GI, be gene forests over a leafset L, let 2) =
k

(DljDr) be a split of L with C cost(Gi, D) = 0. If we can supplement
i=l

the split D to a complete split D* = (D;lD:) of L, ZJ C D;, 23, C Z?:,

such that 5 cost(Gi, D*) = 0, then we call D* a completion of 2).
i=l

Observation 7.5. Suppose we are given k gene forests G1, . . , Gk ouer
a leafset L. Let 2) = (QID,) be a split of L with D)I U D, # L. Let

5 cost(Gi,D) = 0. Furthermore, let the gene forest Gi consist of the
i=l
gene treesgi ,... ,gb; (i E {l,...
(i E {l,...

, k}). Then for any vertexu = root(gj)s
, ICI, j E 11,. . . 7Pi)t and s E {l,r))

LS(w) n (Dl u Z&) c 23, or LS(w) n (Q u DT) c Q..

Lemma 7.6. Suppose we are given two gene forests G and H ouer a
leafset L. Let 2) = (D@r) be a split of L with ;I)1 U ;I), # L. Suppose,
furthermore, that cost(G,D) = cost(H,D) = 0. Then either there is
a conflict pair (a, b), a, b E L - (D, U D,,), or there is a completion
v* = (V~IV,:) of ID.

Proof. Let the gene forest G consist of the trees 91,. . . , gp and let
the gene forest H consist of the trees hl,. . . , h,. Furthermore, let

hi w&’ = root(gi)l, v$~ = root(gi), (i E (1,. . . ,p}) and u1 = roOt(h

VT hi = root(hj)r (j E (1,. . . , q}).

We show that if there is no conflict pair, then D has a completion D*.
Let a, b E L - (Dl U 2&.). Then for G we distinguish the following cases.

l There is a tree gi E (91,. . . ,gP} with a, b E LS(w,si) (s E {Z,r}).

l There are gil,giz with a E LS(root(gi,)), b E LS(root(giz)) (il = iz
is possible).

60 An F’P’T Algorithm for Gene Duplication

Furthermore, because there is no conflict pair in L - (V, U DD,) we know

1. cost(G, 271) = cost(H,V,) = 0, V1 = (V, u {a, b}lVT),

2. cost(G,V2) = cost(H,Z&) = 0, V2 = (V, u {a}lZ&. u {b}),

3. cost(G,Vg) = cost(H,Vs) = 0, ID3 = (2)~ U {b}\V, U {a}), or

4. cost(G,V4) = cost(H,V4) = 0, V4 = (VIIV, u {a, b}).

We consider all possible cases for any two leaves a, b $! L - (Vl U D,),
a # b, (symmetric cases are excluded).

Case 1 If a, b E LS(v,si) (s E {I, r}) we know that cost(G,Vl) =
cost(H,Vl) = 0 or cost(G,V& = cost(H,V4) = 0. Because of
Observation 7.5 and because there is no conflict pair for 2, in
L-(V1UVr),theredonotexisttl,t2,tg~{v~”li~{1,...p},s~
{Z,r}}U{v~!Ij E (1,. . . ,q},s’ E {Z,r}}suchthat LS(tl)nLS(t2) #
0, LS(tl) n LS(t3) # 0, LS(t2) n (23 UV,,) C Vl, and LS(t,) n (27 u
Q-) 2 VT.
Therefore, in both cases there is a completion V* of V, namely
V* = (QU{a, b}uE,* I V,u{Z E L - (V, u V, u {a, b}) 1 Z $ ET}),

whereEg=
1

ZEL-(V~UVrU{a,b})I ifZELS(v,g”)nLS(v?)

then -3~ E (LS(@‘) U LS(v2)) with x E Q.} if cost(G,Vl) =

cost(H,Vl) = 0 and otherwise, V* = (Vi U (1 E L - (V, U V, U

{a,b})IZ$!E,*}IV,U{a,b}UE,*)whereE~= ZEL-(QUV,U
{

{a, b}) I if 1 E LS(wp) n LS(vf!) then 42 E LS(vi”) U LS($)

with x E Vl
>

.

Case 2 If a E LS(v,S”) (s E {Z,r}) and b E LS($‘) (s’ E (1,~)) then
similarly

1. if cost(G,Vl) = cost(H,Vl) = 0 then V* = (Vl U {a, b} U

E~IV,U{ZEL-(V~UV~U{~,~})~Z$!E~}),~~~~~E,*=

{
1 E L - (Vl U V, U {a, b}) I if 1 E LS(@) n LS(vf?) then

4x E (LS(v,s’) U LS(v,h:)) with x E VT}, is a completion of
2).

7.2 A Fixed-Parameter-Tractable Algorithm 61

2. if cost(G, Vz) = cost(H,&) = 0 then V* = (VZ U {a} U

E,*~V,U{ZEL-(V~UV~U{~,~})~Z~E,*}),~~~~~E,”=

1
1 E L - (Vl U V,, U {a, b}) I if 1 E LS(w%“) n LS(v:?) then

Glx E (LS($;) U LS(vy)) with x E V,.}, is a completion of
V.

3. cost(G,&) = cost(H,Z&) = 0 then V* = (Vl U {a, b} U

E,*~V,U{ZEL-(V~UV,U{~,~})~Z~E~}),~~~~~E~=

{
1 E L - (291 U V, U {a, b}) I if 1 E LS(@) n LS(v:!) then

732 E (LS($‘) U LS(v::)) with x E Vr }, is a completion of
V.

4. if cost(G,Vd) = cost(H, ‘Dd) = 0 then 2)’ = (Vl U (1 E L -
(V~UV,U{a,b})~Z~E,*}~V,U{u,b}UE~),whereEq*=

{
I E L - (Vi U V,U {a, b}) I if 1 E LS(@“) n LS(v:/) then

GIx E LS(wi’) U LS(vi!) with x E Vl , is a completion of
V.

Corollary 7.7. Suppose we are given a leafset L. Let GI, . . . , Gk be
gene forests with LS(root(Gi)) & L (i E (1,. . . , lc}). Let 2) be an incom-

plete split of L with 6 (Gi, V) = 0. Then Gl, . . . Gk have a completion
i=l

of 2) if and only if each pair of {Gl, . . . , Gk} has a completion of 2).

Lemma 7.6 and Corollary 7.7 lead to the following theorem.

Theorem 7.8. Suppose we are given a Zeafset L and gene forests G1, . . . ,
Gk, where LS(root(Gi)) C L (i E (1,. . ,k}). Let 2, = (VllV,) be
an incomplete split of L where IDI, V, are Zeafsets and Vl,V, # 0.
Then either there is a completion of V or there is a conjZict pair (a, b),
a,bEL-(VlUV,).

7.2 A Fixed-Parameter-Tractable Algorithm

The outline of the algorithm is described as a recursive bounded search-
tree algorithm based on Observation 7.3. We compute the leafsets of the

62 An FP’T Algorithm for Gene Duplication

left and the right subtree of the root of the species tree first and then
refine this split to a binary tree recursively.

Before describing the algorithm in detail, we make the following ob-
servations concerning the number of input trees/input forests.

Definition 7.9. Suppose we are given a gene tree G over a leafset L.
Let 2) be a complete split of L.

1. We say that G is of type V if and only if
(LS(root(G)l)ILS(root(G),)) = V.

2. For the given gene trees Gr , . . . , Gk we define the set 7 := {V/V is
a complete split of L and 3Gi where Gi is tree of type V} to be
the set of different types of Gr, . . . , Gk.

Observation 7.9. Let 2) be a complete split of a Zeafset L and let G
be a gene tree ower L with (LS(root(G)l)ILS(root(G),)) # 2). Then
cost(G,V) > 0.

Observation 7.10. Suppose we are given gene trees Gl, . . . , Gk over
a leafset L and an integer c > 0. If 17) > c then the question whether
there exists a complete split V of L with Et, cost(Gi,V) 5 c has the
answer no.

Observation 7.11. Let G1,. . . , Gk be gene trees over L and let c be a
positive integer. If there exists a complete split IS of L where
I{GilGi is a tree of type V*}I > c and the answer to the question whether
there exists a complete split 2, of L with Cf=, cost(Gi, V) 5 c is yes, then
Cf=, (Gi, V’) 5 c and ~~=, (Gi, V) > c for all complete splits 2) # V*.
Furthermore, I{Gilcost(Gi,V*) > O}l 5 c.

Corollary 7.12. Let Gl, . . . , Gk be gene trees over a Zeafset L and Zet
c be a positive integer. If the question whether there exists a complete
split V with Cfzl(Gi,V) 2 c has the answer yes, then the following
properties are satisfied.

2. If~{GilGiisatreeoftypeV}~~cforaZZVE’T,thenk~c2.

3. I{GiIcost(Gi,V) > O}l 5 c for all 2) CF=l(Gi,V) 5 c

4. If Ic > c and 4V with I{GilGi is a tree of type V} I > c then there
is a split V* E 7 with CfE1(Gi,V*) 5 c.

7.2 A Fixed-Parameter-Tractable Algorithm 63

Figure 7.2: An example illustrating the fixed-parameter-tractable al-
gorithm solving GENE DUPLICATION. A species tree for three gene trees
is computed. Here after the first step only one SearchTreeNode has to
be kept. A triple (kr , ks, 16s) at a branch of the search tree means that
gene tree Gr, which is mapped into the split at the child of the branch,
can be rectified with Icr duplications, gene tree Gs with Its duplications,
and finally Gs with ks duplications. This figure is continued on page 76.

We now describe the fixed-parameter-tractable algorithm solving GENE
DUPLICATION. The algorithm is presented in pseudo code. We start
with the definitions of the data structures.

type
nodeRef = pointer to SearchTreeNode;
SearchTreeNode = record

leaf: boolean;
complete: boolean;
L: integer;
Gl,... , Gk: GeneForest;

64 An F’PT Algorithm for Gene Dunlication

Vi, V,: Leafset;
L: Leafset;
c: integer;
M: set of Leafset;
childr,... , childk : nodeRef;

end;

type
PairOfLeaves = record

conflict: boolean;
p1,~2: Leaf;

end;

type
Split = record

2)~) V,: Leafset;
end;

The main function, geneDuplication, answers for an input of k gene
trees over a leafset L and an integer c the question, whether there exists a

k
species tree S over L s.t. C cost(Gi, S) 5 c. First, the root of the search

tree is created. Then, following Corollary 7.12, we consider several cases
depending on the number of gene-tree types and the number of gene
trees of a given type. The search tree is produced by the two functions
blueTree and redTree. The function blueTree is responsible for all
possible splits costing no more than c > k for a certain instance. The
function redTree recurses on an instance associated with a complete
split 2) = (VllVT) processing VI before V,.

function geneDuplication(G1,. . . , Gk: GeneForest; L: Leafset, c, k:
integer): boolean;
var

7: set of Split;
23, V*: Split;
ID,, V,: Leafset;
a: Leaf;
j, count: integer;
root, left, right, out: SearchTreeNode;

7.2 A Fixed-Parameter-Tractable Algorithm 65

begin
root.complete := false;
root.Gl, . . . , root.Gk := Gl,. . . ,Gk;
ro0t.L := L;
ro0t.c := c;
r0ot.k := k;

/* consider the cases depending on the number of gene-tree types */
/* and the number of gene trees of a given type (cf. Corollary 7.12) */

7 := (Vl3Gi with Gi is tree of type V};

if 171 = 1 then
/* all trees agree on their type; no branching is necessary to */
/* compute a complete split of L, all the Ic input gene trees */
/* are unchanged (cf. Observation 7.4) */

let V+ E 7;
root.complete := true;
ro0t.Q := V’.Vl;
root.V, := V*.V,;
root.M := 0;
root := compute(root);

else if 171 > c then
/* any split would cause costs higher than c */

return false;

else
/* 171 5 c; kernelize in the number of forests */

count := 0;
for each V E 7 do

if [{GilGi is tree of type V}l > c then
count++;
ID+ := v;

end
end;

if count = 1 then
/* if this split is not chosen, all the trees (> c) of this type */
/* would cause costs */

rootcomplete := true;

66 An .FP7 Algorithm for Gene Duplication

root.Dl := l7.Q;
root.DT := D* 23,;
root := compute(root);

/* the number of forests which are not trees is bounded by c */

else if count > 1 then
return false;

else if k > c then
/* count = 0 */
/* the split of the root of a possible solution is in ‘T */

for i = 1 to 171 do
root.childi := copy(root);

end;

j := 0;
for each D E 7 do

j++;
root.childj.complete := true;
root.childj.Dl := D.Dl;
root.childj.DT := D.D,;
root.childj := compute(root.child);

end;

else
/* k 5 c */

let a E L;
root.Dl := {a};
root := blueTree(root);

end
end;

for each search-tree leaf left in root with 1eft.c > 0 do
Vi := left.Vl;
VT := left.Vr;
left := redTree(lejI,ID~);

if left = nil then return false;

for each search-tree leaf right in left with right.c > 0 do

7.2 A Fixed-Parameter-Tractable Algorithm 67

right := redTree(right, DD,);

if right = nil then return false;

if 3 a complete search-tree leaf out in right with out.c > 0
and not(0ut.M # 0 and o&.2), n (n out.M) = 0) then

return true;
end

end
end;
return false;

end geneDuplication;

Function redTree is called for input instances associated with complete
splits and proceeds in a manner similar to the function geneDuplica-
tion.

function redTree(node: SearchTreeNode, L: Leafset): SearchTreeN-
ode;
var

cnode: SearchTreeNode;
7: set of Split;
l2, 2)*: Split;
Q, 2),: Leafset;
j, count: integer;

begin
if IL1 = 1 then

return node;
end;

cnode := copy(node);
cnode.complete := false;
cn0de.L := L;
cnode.k := the number cn0de.G; that are trees when restricted to L;

7 := (Vl3cnode.Gi with cnode.Gi is tree and tree of type V};

if 171 = 1 then

68 An FPT Algorithm for Gene Duplication

/* all trees agree on their type */
let V* E 7;
cnode.complete := true;
cn0de.Q := V*.Q;
cnode.Vp := V* .V,;
cnode := compute(cnode);

else if 171 > cnode.c then
cnode.c := -1;

else
/* 171 5 c; kernelize in the number of forests */

count := 0;

for each 2) E 7 do
if I{ cnode.Gil cnode.Gi is tree of type V}I > c then

count++;
v* := v;

end
end;

if count = 1 then
/* if this split is not chosen, all the trees (> c) of this type */
/* would cause costs */

cnode.complete := true;
cnode.Vl := V*.Vl;
cnode.V, := V* .V,;
cnode := compute(cnode);

/* the number of forests which are not trees is bounded by c */

else if count > 1 then
return false;

else if cnode.k > cnode.c then
j := 0;
for each 2, E 7 do

j++;
childj := copy(cnode);
childj xomplete := true;
childj.V1 := V.Vl;

7.2 A Fixed-Parameter-Tractable Algorithm 69

childi .VT := V.V,;
childj := compute(childj);
cnode.childj := childj;

end;

else
/* cnode.b 5 cnodex */

cnode := blueTree(cnode);
end;

end;

for each search-tree leaf left in cnode with 1eft.c 2 0 do
Vl := 1eft.Q;
23, := left.V,;
left := redTree(left,Vl);
if left = nil then return nil;

for each search-tree leaf right in left with right.c 2 0 do
right := redTree(right, VT);
if right = nil then return nil;

end
end;
return cnode;

end redTree;

When function blueTree is called, the number of trees in the set of in-
put forests is bounded by c and the number of input forests is bounded
by ;(c” + c).

function blueTree(node: SearchTreeNode): SearchTreeNode;
var

pair. PairOfLeaves;
ret, child1 , childz, child,, childh: SearchTreeNode;

begin
pair := conflictPair(node);

if pair.concflict then
child1 := copy(node);

70 An 3P7 Algorithm for Gene Duplication

child2 := copy(node);
child, := copy(node);
child4 := copy(node);

child1 .Vl := node.Vl U {pair.pl, pair.pz};
node.childl := compute(child1);

child2 .Vl := node.Vl U {pair.pl};
child, .VD, := node.VT U {pair.pz};
node.childz := compute(childz);

child, .Vl := n0de.Q U {pair.pn};
child3 .V, := node.& U {pair.pl};
node.childs := compute(child3);

childJ.V, := node.V, U {pair.pl, pair.pz};
node.childd := compute(child4);

for each search-tree leaf ret in node with rec.c 2 0 do
ret := blueTree(rec);

end;
return node;

else
return Complete(node) ;

end;
end blueTree;

function conflictPair(node: SearchlkeeNode): PairOCeaves;
var

done: boolean;
Ll,... , Lk: Leaf&;
costl,cost2,cost3,cost4: integer;
pair: PairOfLeaves;
childI, child2 ,childs , childd: SearchneeNode;

begin
done := false;
child1 := copy(node);
child2 := copy(node);

7.2 A Fixed-Parameter-Tractable Algorithm 71

child3 := copy(node);
child4 := copy(node);

for each pair in node.L do
if not done then

child1 .Vl := node.Vl U {pair.pl, pair.pz};
child2.Q := n0de.Q U {pair.pl};
child2 .VT := node.VT u {pair.pa};
childs.Vl := node.Vl U {pair.pa};
child, .V, := node.V? U {pair.pl};
child43, := node.V, U {pair.pl, pair.pz};

node.k
cost1 := C cost(node.Gi, (child1.Q I child1 .VT));

i=l
node.k

cost2 := C cost(node.Gi, (child2.V~lchild2.V,));
i=l

node.k
costs := C cost(node.Gi, (child, .V, I child3 .VT));

i=l
node.k

cost4 := C cost(node.Gi, (childJ.Vl I child4 .VT));
i=l

ifT3costi=O(i=1,...,4)then
done := true;
pairxonflict := true;

else if 73 COSti = 0 (i = 2,. . . ,4) and child1 .V, = 0 then
for i := 1,. . . , node.k do

Li := (1 E LI cost(nodeGi, (child1 .Vl I child1 .VT)) = 0);
end;

node.k
if fi Li = 0 then

i=l
pairxonflict := true;

else
pair.conflict := false;

end:

else
pair.conflict := false;

end

72 An F’PT Algorithm for Gene Duplication

end;
return pair;

end conflictpair;

Note, that in the case where V, = 0 for a split 2) = (Vi/V,) the set of
vertices in a gene forest is not uniquely determined when the forest is
mapped into the split. Therefore, we keep building possible solutions
under the assumption that a valid result can be found, that is, VD, con-
tains at least one element of each element in M (if M # 0).

function compute(node: SearchTIeeNode): SearchTreeNode;
var

del, Vl, V,: Leafset;
2): Split;

begin
Vl := node.Vl;
V, := node.VD,;
V.Vl := v1; v.v, := v,,;

if V, # 0 then
de1 := Dups(node.Gi, V};
node.Gi := node.Gi- del;
node.c := node.c - I dell;

else /” V, = 0; this is only the case when called from function */
/* blueTree; i.e., node.k 5 node.c; */

for i := 1,. . . , node.k do
Li := (1 E Llcost(node.Gi,V) = O};

end;

no8e.k
if C cost(node.Gi, V) > 0 then

i=l
let node.G be an element from node.Gr , . . . , node.Gk

with cost(node.G, V) > 0;

if node.G is a tree then
de1 := {‘V E &,&.G [U(w) n ?A # 0 and (M(W) n 2)~ # 0 or

LS(w,) n VZ # 0) and tll E Ll E LA’(w)};
node.G := node.G- del;

7.2 A Fixed-Parameter-Tractable Algorithm 73

node.c := node.c--;

node.k
if C cost(node.Gi,D) > 0 and node.c 2 0 then

i=l
node := compute(node);

end;

else
/* node.G is a forest consisting of the trees g1 and gs */
/* (otherwise cost(node.G, D)= 0) */

node.chilc& := copy(node);
node.child2 := copy(node);
Ml := the leafset of node.G such that cost(gl,V) > 0;
de1 := {W E v&,&G ILS(w) n 221 # 0 and (L?(W) n 231 # 0 or

LS(w,) n 2)~ # 0) and VZ E MIZ E U’(w)};
node.chil&.G := node.G - del;
node.chil& .c :=node.c - 1 dell;
node.chil& .M := node.M U {Ml};

node.k
if c cost(node.Gi,D) > 0 and node.c 2 0 then

i=l
node.chi& := compute(node.childl);

end;
Mz := the leafset of node.G such that cost(gz,D) > 0;
del := {w E V,ILS(w) n 23~1 # 0 and (LS(wl) n D,I # 0 or

M(w,) n Dl # 0)andVZ E MzZ E M(W)};
node.chi1ds.G := node.G - del;
node.childs .c :=node.c - 1 dell;
node.chi1cls.M := node.M U {M2};

node.k
if C cost(node.Gi,D) > 0 and node.c > 0 then

i=l

nodechild := compute(node.child2);
end

end;

else
node.k

/* n Li =0 */
i=l

for i := 1,. . . , nodek do /* Ic 6 i(c” + c) */

74 An FPT Algorithm for Gene Duplication

if there is exactly one tree g in node.Gi with cost(g, D) > 0 then
de1 := {W E Vno&.Gi ILS(w) n 2)~ # 0 and (LS(wl) n 271 # 0 or

LS(w,) n Dz # 0) and Vl E (L - Li)l E LS(w)};
node.chilc$.M := node.M U {L - Li};
node.childi.Gi := node.Gi- del;
node.chilc&.c := nodee - I dell ;

k
if C cost(node.chilcli.Gi,D) > 0 and node.c 2 0 then

i=l
node.chil& := compute(node.childi);

end;

else
let 91, gs be the trees in node.Gi with

cost(gl, D) > 0 and co&!, 23) > 0;
node.chil& := copy(node);
node.childi.chilcll := copy(node);
node.child~.chilc12 := copy(node);
MI := the leafset of node.G such that cost(gl,D) > 0;
de1 := {W E &&,G ILS(w) n 2)l # 0 and (LS(wl) n Dz # 0 0r

LS(w,) n ;n, # 0) and ‘dl E Ml1 E LS(w)};
node.chil& .childI .G := node.G - del;
node.child~.childI.c :=node.c - Idell;
node.childi.childI.M := node.M U {Ml};

if 5 cost(node.chilcli.chilc& .Gi, 2)) > 0 and
i=l
node.childi.childl.c 2 0 then

node.childi.chilclI := compute(node.childi.chilclI);
end
Mz := the leafset of node.G such that cost(gz,D) > 0;
de1 := {V E vnode.G ILS(w) n 271 # 0 and (L!?(q) n 23~ # 0 or

LS(w,) n ;Dl # 0) and VI E n/r,1 E LS(w)};
node.childi.child2.G := node.G - del;
node.childi.chilc12.c :=node.c - (dell;
node.childi.childn.M := node.M U {Mz};

if 5 cost(node.childi.chilcls.G~,D) > 0 and
i=l
node.chilcli.child2.c 2 0 then

7.2 A Fixed-Parameter-Tractable Algorithm 75

node.childi.chilc12 := compute(node.chilcli.chilclz);
end

end
end;
return node;

end compute;

function Complete(node: SearchTreeNode): SearchTreeNocle;

Follows Lemma 7.6.

end Complete;

To see that the algorithm described above has a fixed-parameter-tractable
running time for parameter c, we consider the size of the search tree built.
In the function geneDuplication the root of the search tree is created.
Then the instance at the root either is completed without any branching,
calls the function blueTree, or generates at most c branches, where on
each branch a complete instance is computed and c is decreased.

In blueTree, either a conflict pair is computed, or the split is com-
pleted (cf. Lemma 7.6). In case of the existence of a conflict pair, there
are at most f(c” + c) branches. At each branch, c is decreased.

The work to do at each node of the search tree, i.e., to decide whether
to complete the split or to branch, can clearly be accomplished in poly-
nomial time.

76 An 2?P7 Algorithm for Gene Duplication

Figure 7.2: continued

Chapter 8

On the Multiple-Gene-
Duplication Problem

In this chapter we study the complexity of MULTIPLE GENE DUPLICA-
TION (Problem 5.3). All the results we published in [26] (joint work with
Fellows and Hallett). The underlying model is the MULTIPLE-GENE-
DUPLICATION MODEL introduced in Section 5.4. A restricted version of
MULTIPLE GENE DUPLICATION has the species tree S known. We state
it as follows:

Problem 8.1. MULTIPLE GENE DUPLICATION II
Input: Set of gene trees G1, . . . , Gk, a species tree S, integer c.
Question: Does there exist functions ~OcG;,S, eVentGi,S (1 5 i 5 /c) such

that S receives G1, . . . Gk with at most c multiple gene duplications
(i.e., costMG(G1,. . . ,Gk,S) 5 c)?

By reduction to and from a combinatorial problem called the BALL-
AND-TRAP GAME, we show W[l]-hardness and N’P-completeness for
MULTIPLE GENE DUPLICATION II. We introduce the BALL-AND-TRAP
GAME in Section 8.1. In Section 8.3 we show W[l]-hardness and NP-
completeness of two different parameterizations of the BALL-AND-TRAP
GAME. The intractability of MULTIPLE GENE DUPLICATION II is pre-
sented in Section 8.4.

78 On the Multiple-Gene-Duplication Problem

8.1 The Ball-and-Trap Game

The BALL-AND-TRAP GAME is played on a rooted tree T = (V,E)
decorated with a set of traps D and a set of balls B. Let L c V be the
set of leaves of T. Every ball and trap has a color associated with it;
this is given by the functions c&j : B -+ [l : k] and CD : D + [l : k],
respectively. The balls and traps are initially associated with internal
vertices of T by means of the attaching functions 1~ : B + V - L and
10 : D + V-L. Each ball b E B of color Cg(b) is labeled with a (possible
empty) subset & c D of traps. For each ball b every trap d E & is
of the color CD(d) = cg(b). A ball with a given set of traps may occur
many times in the tree (i.e., for b, b’ E B & = Ri and cB(b) = cg(b’) but
lB(b) # lB(b’) is possible). Also, a vertex in the tree can be decorated
with many different balls and traps.

A game consists of some number of moves, after which the score is
calculated. The rules of the game are as follows:

1. Balls and traps are initially placed at internal vertices of T accorcl-
ing to 1~3 and 1~.

2. Balls may not move down the tree (i.e., towards the leaves). They
may either stay in the same place or move upwards (i.e., towards
the root) according to the topology of T. In each turn, a ball b on
a vertex w can be moved to the parent(w).

3. We say that a trap d E D is dangerous for a ball b E B if d E Rb.
A ball b sets off a trap if the ball is placed at the vertex of a trap
dangerous for b.

4. When a trap d is set ofs by a ball b, it is removed from the game
and replaced by two new balls b,,,, b,,,! such that

(a) CB(bnew) = CB(bnem~) = C&b),

(b) b&mu) = hv(bnew~) = b(d),

(C) Rb,ew = Rb,evl = & - d and & = Rb - d, and

(a) & = i&t - d, for all b’ E B.

The goal of the game is to minimize the score of tree T which is defined
by

smaz(w) = C max{s(l, ~1,. . . ,s@, f~)}
UEV

8.1 The Ball-and-Trap Game 79

where s(c, w) denotes the number of balls of color c at vertex w in T.

Problem 8.2. BALL AND TRAP-OPTIMIZATION
Input: A rooted tree T = (V,E) (L C V is the leafset of T), a set of

balls B, a set of traps D, two coloring functions cg : B + [I : k]
and CD : D + [l : k], two initial attaching functions 1~ : B + VT - L,
10 : D + VT -L, and for each ball b E B a set Rb 2 D where for each
d E & CD(d) = cB(b).

A Round: Each round of the game consists of the player moving any
number of same colored balls up the tree or deciding not to move any
balls (halting move).

Output: The location function 1’(B) generated according to the above
rules which minimizes UFV s,,, (v).

The input is measured as follows: n denotes the size of T, k denotes
the number of colors, r denotes the number of traps, and there are at
most m balls on any vertex of T in the initial configuration. The above
defined game leads to the following decision variant of the problem:

Problem 8.3. BALL AND TRAP-DECISION
Input: A rooted tree T = (V,E) with leafset L C V, a set of balls

B, a set of traps D, two coloring functions cg : B -+ [l : k] and
CD : D -+ [l : k], two initial attaching functions 1~ : B 3 VT - L,
10 : D + VT - L, for each ball b E B a set Rb s D where for each
d E Rb co(d) = cg (b), and a positive integer t.

Question: Can the BALL-AND-TRAP GAME be played on T to achieve
a score of at most t?

Theorem 8.1. MULTIPLE GENE DUPLICATION II reduces to BALL AND
TRAP-DECISION.

Proof. We construct an instance I’ of BALL AND TRAP-DECISION from
an instance of I of MULTIPLE GENE DUPLICATION II. Let S be the
species tree S = (Vs, Es, L). Let T = (Vs, Es) with leafset L C Vs.
Furthermore, let t = c and the number of colors k’ of I’ be equal to
the number of gene trees k from I. Thus, each color corresponds to one
of the input gene trees. Apply M(Gi,S) (cf. Section 5.2) for the least-
common-ancestor mapping Zoc~;,s(u) = Zcas(LS(u)) for all u E V& ,
l<i<k.

80 On the Multiple-Gene-Duplication Problem

We create a ball b with cB(b) = i for every vertex u E Vi such that
ewe?&,s(u) = dup. Let lB(b) = lOQ,s(u). If 10Cci,s(U) # root(S),
then let

?hps(u) = {wlv E vi;, w is an ancestor of u, eVeni&,s(W) = spec}.

For each w E Traps(u) we create a trap d and let ID(d) = lo~,~(w) in
T and co(d) = i. Place v in Rb.
We prove that I’ is a yes-instance of BALL AND TRAP-DECISION if
and only if I is a yes-instance of MULTIPLE GENE DUPLICATION II.
One need only to verify that the legal moves for a ball in the BALL-
AND-TRAP GAME correspond to the legal moves for a duplication event
for MULTIPLE GENE DUPLICATION.

Clearly, each legal move of a duplication corresponds to a move in
the BALL-AND-TRAP GAME. But, what if there is more than one ball
attached to a vertex 2 in the species tree and the balls correspond to
duplication events such that there is a series ‘1~1, us, . . . , uq E VG; and
eventc,,s(u,) = dup, ZOCG~,S(U) = x and up is a direct descendant of
upfl in Gi, for all 1 5 p < q? But then the traps dangerous for these
balls are all equivalent. q

Figure 8.1 shows two BALL AND TRAP instances. Figure 8.1(a) is the
BALL AND TRAP version for the instance shown in Figure 5.3(b) on page
42. Figure 8.1(b) corresponds to the situation in Figure 5.3(c).

Figure 8.1: Two instances of the BALL-AND-TRAP GAME. Notice in
(a) that the red ball located at the vertex which is the least common
ancestor of the leaves A, B and C contains the red Trap 1. If it is moved
upwards to the root, which is decorated by the red Trap 1, an additional
ball will be added to the game (i.e., to the root of the tree) (b).

8.2 Parameterizations of the Ball-and-Tkar, Game 81

8.2 Parameterizations of the Ball-and-Trap
Game

We consider the following parameterizations of BALL AND TRAP.

Problem 8.4. BALL AND TRAP I
Input: A rooted tree T = (V,E) with leafset L c V, a set of balls

B, a set of traps D, two coloring functions cB : B + [l : k] and
CD : D + [I : k], two initial attaching functions 1~ : B + VT - L,
10 : D + VT - L, for each ball b E B a set Rb s D where for each
d E & co(d) = cB (b), and a positive integer t.

Parameters: k = 2, for each b E B let]&,I 5 2, the number of traps r.
Question: Can the BALL-AND-TRAP GAME be played on T to achieve

a score of at most t?

Problem 8.5. BALL AND TRAP II
Input: A rooted tree T = (V,E) with leafset L 2 V, a set of balls

B, a set of traps D, two coloring functions cB : B + [l : k] and
cD : D -+ [l : k], two initial attaching functions lg : B -+ VT - L,
10 : D + VT - L, for each ball b E B a set & C D where for each
d E & CD(d) = cB (b), and a positive integer t.

Parameters: k, r, m, t.
Question: Can the BALL-AND-TRAP GAME be played on T to achieve

a score of at most t?

Problem 8.6. BALL AND TRAP III
Input: A rooted tree T = (V,E) with leafset L C V, a set of balls

B, a set of traps D, two coloring functions cB : B + [l : k] and
CD : D + [I : k], two initial attaching functions 1~ : B + VT - L,
ID : D + VT - L, for each ball b E B a set &, C D where for each
d E Rb CD(d) = cg(b), and a positive integer t.

Parameters: k, r.
Question: Can the BALL-AND-TRAP GAME be played on T to achieve

a score of at most t?

82 On the Multiple-Gene-Duplication Problem

Problem 8.7. BALL AND TRAP IV:
Input: A binary tree T = (VT,&) with leafset L C V, a set of balls

B, a set of traps D, two coloring functions cB : B -+ [l : k] and
CD : D + [l : k], two initial attaching functions 1~ : B -+ VT - L,
10 : D + VT - L, for each ball b E B a set Rb C D where for each
d E &, CD(d) = cB(b), and a positive integer t.

Parameters: k = 2 and the number of traps r.
Conditions:

1. I&, 5 2, for all b E B

2. For a vertex w E VT, let ps(c, w) denote the maximal possible num-
ber of balls of color c attached to vertex v. Then for all w E VT
and each color c, s(c, w) 5 ps(c, w) and

PS(C, w) I PS(C, 4 - s(c, Q) + PS(C, VT) - s(c, VT)
2 if s(c,vl) = s(c,w~) = 0 and wl,w, $ L
1 if either s(c, ‘~1) = 0 or s(c, w,) = 0

+ 1 if s(c, vl) = s(c, w,) = 0 and
either wl E L or wT E L

0 otherwise

3. &, = Rb if lB(b) = lB(b’) and cg(b) = cg(b’).

4. Rb c Rb! if lo is an ancestor of lB(b’) in T.

5. No useless traps are allowed (a trap d is useless if no ball b in the
subtree, where the trap is located, has d E Rb).

6. If b, b’ E B where the vertex lo is a descendant of the vertex
lB(b’), then all the traps d E & - .& are placed at vertices on the
path from b to b’ (inclusive).

Question: Can the BALL-AND-TRAP GAME be played on T to achieve
a score of at most t?

Before we analyze the complexity of BALL AND TRAP I (Problem 8.4)
and BALL AND TRAP IV (Problem 8.7) we want to mention the following
two theorems which we published in [26]. These theorems give us hope
that a reasonable parameterization for the BALL-AND-TRAP GAME can
be found. This would lead to a fixed-parameter tractable algorithm for
a parameterization of MULTIPLE GENE DUPLICATION II.

8.3 Intractability of Ball and Trap 83

Theorem 8.2. [Z’6] For every fixed set of parameter values (k, r, m, t),
the problem BALL AND TRAP II can be solved in time linear in the size
of the tree.

Theorem 8.3. [Z6] BALL AND TRAP III can be solved in time nc where
c = O((k29m).

8.3 Intractability of Ball and Trap

We prove the W[l]-hardness of BALL AND TRAP I and NT-completeness
of BALL AND TRAP by means of a polynomial-time parameterized re-
duction from the W[l]-complete problem ~-CLIQUE (cf. Problem 2.4,
Section 2.3.2). As an intermediate step we prove that the following
parameterized problem is hard for W[l].

Problem 8.8. (r, k)-SMALL UNION
Input: A family F of distinct subsets of { 1, . , . , n}, positive integers r
and k.
Parameter: (r, k)
Question: Is there a subfamily F’ C 7 with 13’1 1 r such that the union

of the sets in F’ has cardinality at most k?

Lemma 8.4. SMALL UNION is NP-complete and hard for W[l] para-
meterized by k and r.

Proof. Let (G, k) be an instance of ~-CLIQUE. We transform (G, k) into

an instance (F, ((i), k)) of (r, k)-S MALL UNION, where F is the family

of 2-element sets corresponding to the edges E of G, with the vertices
of G identified with V = (1,. . . ,n}.

We show that G = (V, E) has a k-clique if and only if 3 has a sub-
family F’ C F with].F’] 2 (t) such that].F 5 k.

+ Let V’ be a k-clique in G. Then each pair (a, b) E V’ x V’ is an edge in
G and therefore {a, b} E T. We define F’ = {{a, b}l(a, b) E V’xV’.
Then].F’] = (!J) and] U F’] = k.

-+ Let F’ c F be a set of]F’[2 (t) elements with I UF] = k. We
define V’ = U 3’. V’ is a k-clique in G, since for any (a, b) E
V’ x V’ (a # b). {a, b} E F’ (Otherwise, there exist x, y with
{a,~}, {b, y} E F’, x,y E V’. Therefore] UF’] 2 k + 2. Contra-
diction.) But then {a, b} E F, that is (a, b) E E.

84 On the Multiple-Gene-Duplication Problem

Theorem 8.5.

1. BALL AND TRAP is N’P-complete.

2. BALL AND TRAP I is W[l]-hard.

Proof. BALL AND TRAP is well-defined for non-binary trees, and, hence,
we describe how SMALL UNION can be reduced to BALL AND TRAP I.
Let (F, (r, k)) be an instance of SMALL UNION. We can assume, by the
reduction from K-Clique to (r, k)-S mall Union (described above), that F
consists of 2-element sets. In order to describe the reduction, we must
describe a tree T with decorations, and the target value t for the game
on T.

The tree T is a star of degree n = 1 U 71 (with the root being the
central vertex). Each leaf of T is associated with an element of T. The
two colors are red and bZue. There are n red traps ~1,. . . , TV,. Each leaf
is decorated with a single red ball labeled with the set of traps {TV, TV}
for the associated (“edge”) set {u, v}. The root is decorated with k + r
blue balls, each labeled with the empty set of traps. The root is also
decorated with all the n red traps. We set t = (n - r) + (k + r) = n + k.
We show if (F, (r, k)) is a yes-instance of SMALL UNION, then the tree
described above is a yes-instance of BALL AND TRAP I. Initially, the
score is n + k + r. The only possible move is to move a red ball from a
leaf to the root. If r balls can be moved up to the root from the leaves,
with the r balls chosen so that the union of their trap-label sets has
cardinality k, then the result is a total of k + r red balls at the root
(where there are k + r blue balls, so the cost of the root in the final score
remains k + r). Thus the score at the end is t.

Conversely, if a score of t is achieved by a game g, then necessarily
at least r red balls must be moved up from the leaves. Let g’ denote the
truncated game consisting of the first r moves. There are two cases to
consider:

Case 1 g’ also achieves a score of at most t, and

Case 2 the score for the game g’ is greater than t.

In Case 1, exactly r red balls are moved to the root and consequently
the score for the root vertex is at most k + r, which implies that the
union of the trap label sets for the balls moved up has cardinality at

8.3 Intractability of Ball and TraD 85

most k. This implies that (F, (r, k)) is a yes-instance for the SMALL
UNION problem.
In Case 2, there are more than k+r red balls at the root after the moves
of g’. Since the number of red balls now exceeds the number of blue balls
at the root, each further move of g is of no advantage in decreasing the
total score, contradicting that g is a game that achieves a score of at
most t. 0

The next theorem shows that BALL AND TRAP remains W[l]-hard even
if restricted to BALL AND TRAP IV.

Theorem 8.6. BALL AND TRAP IV is W[l]-hard.

Proof. We use the following modified construction from the proof of
Theorem 8.5. Again, we reduce from SMALL UNION. Let (F, (r, k)) be
an instance of SMALL UNION. As in the proof of Theorem 8.5 we assume,
by the reduction described above, that F consists of 2-element sets. We
build a tree T’, a preliminary stage of T. The tree T’ is a tree isomorphic
to a binary caterpillar tree of].F[+ n leaves, where n = 1 U F] and one
child of root(T’) is a leaf. Let u be the internal vertex of T’ where T’(u)
has exactly 131 leaves. Each leaf of T’(u) corresponds to an element
of 3. The colors are red and blue. There are n red traps 71,. . . ,rn.
Each leaf of T’(u) is decorated with a single red ball labeled with the set
of traps {rU,rU} for the associated edge (u,w) (i.e., the corresponding
element {u, w} E F). The internal vertices of T’(u) receive neither balls
nor traps. The n red traps are placed on the n internal nodes of T’, who
are not elements of the vertex set of T’(u). To construct T we extend
T’ such that each leaf of T’ becomes an internal vertex of T with two
children, each of these children having two leaves. That is, T is a binary
tree over 4(F + n) leaves. Finally, the root of T is decorated with k + r
blue balls. Figure 8.2 illustrates the construction of T by means of an
example. Let t = n + k.
We show that (F’, (r, k)) is a yes-instance of SMALL UNION if and only if
the tree described above is a yes-instance of BALL AND TRAP IV.

+ Initially, the score is n + k + r. The red balls are the only possible
balls to move. Moving up red balls towards U, which is the ver-
tex inducing the subtree of T having exactly 4lFl balls, does not
change the score. If r red balls can be moved up to the root of T,
with the r balls chosen so that the union of their trap-labeled sets
has cardinality k, then the result is a total of k + r blue balls at

86 On the Multiple-Gene-Duplication Problem

Figure 8.2: An example for the construction of a BALL AND TRAP IV
instance for a (r, k)-SMALL UNION instance. Here n = 4, Ic = 3, and
r = 3.

the root, the score at root(T) is k + r, and therefore the score in
total is t.

+ analogous to this direction in the proof of Theorem 8.5 on page 84.

8.4 Intractability of Multiple Gene Dupli-
cation

The following theorem proves W[l]-hardness and NP-completeness of
MULTIPLE GENE DUPLICATION II.

Theorem 8.7. BALL AND TRAP IV reduces to MULTIPLE GENE Du-
PLICATION 11 [%I.

Proof. We construct an instance I' of MULTIPLE GENE DUPLICATION
II from an instance I of the W[l]-hard problem BALL AND TRAP IV
(cf. Theorem 8.6). Our reduction builds a species tree S = (V,, E,y,L)
and gene trees G1 and Gs. I is restricted to two colors; we associate color

8.4 Intractability of Multiple Gene Duplication 87

1 with Gi and color 2 with Gs. We give S the topology of T = (V, E),
the tree of instance I. That is, Vs = V, Es = E, and L C V is the
leafset of T identified with a set of leaf labels.
W.1.o.g. we restrict our attention to balls and traps of only one color
c. We describe the construction of gene tree G, in two steps. In Step I
we build the contradictory topology r of G,. That is, r = (V,, E,, L7)
is a leaf-labeled tree with r c G,. Attached to the vertices of T are
sets of vertices which help us embed the leaves without influencing the
differences between G, and S (Step II).

Step I: We build the contradictory topology r = (VT, E,, L7) such that
r C G,. For each vertex Y E V one of the following three cases:

Case 1. w E L. We set free(v) := {U}.

Case 2. u E V -L and v is decorated by a ball but not by a trap.

1. Pick a leaf 11 E L from free(q).
2. Pick a leaf Zs E L from free(q).
3. Create a new vertex w in 7.
4. w := parent,(w := parent,

5. fi := free(v) - {II>, fi := free(w) - {&I,)
6. For each ball b at o:

l If there is an element in fi U fs, which is an internal
vertex in 7, then pick such an internal vertex e E
fi U fs. Otherwise pick a leaf e E fi U fi, e E L.

l If e E fi then fi := fi - e, otherwise fs := fi - e.
0 Create a new vertex w’ in 7-.
0 w’ := parent,(w),w := parent,(w).
l Rename w’ by w.

7. free(w) := fi U fi U {w}.

Case 3. v E V - L and u is decorated by a trap.

1. If there exists an internal vertex of r in free(q) and T(q)
has a ball b with d E &,, then pick such an internal vertex
el, el E free(w).

2. If there exists an internal vertex of r in free(w,) and T(v,)
has a ball b with d E &,, then pick such an internal vertex
el, el E free(v,).

Note that at least one element of ei and es is an internal
vertex of r (cf. Condition 5, Problem 8.7).

88 On the Multiple-Gene-Duplication Problem

3. Create a new vertex w in r.
4. w := parent,(w := parent,(
5. For each ball b at v do:

l If there is an element in fi U fi which is an internal
vertex in r then pick such an internal vertex e E
fi U fi, otherwise pick a leaf e E fi U fi, e E L.

l If e E 11 then fi := fi - e, otherwise fi := fi - e.
0 Create a new vertex w’ in r.
l w’ = parent,(w), w’ = parent, (w).

l Rename w’ by w.
6. free(v) := fi U fi U {w}.

Case 4. v E V - L and v is not decorated. We set free(v) :=
free(w) Ufree(v,).

It, is easy to verify that now free(root(T)) = L - L,.

Step II: For embedding the leaves L - L, in G,, we complete G,
from 7 by embedding the remaining leaves free(root(T)) in ac-
cordance to the topology of T. We build the maximal subtrees
T, = (VT,, ET,, LT,) of T over the elements of free. For each such
tree T,, we compute the sibling w of v in S and specify p, the least
common ancestor of the leaves of LT, in T. Then we subdivide
edge (p,parent,(p)) in (p,p’) and (p’,parent,(p)) and add T, as
the sibling of p in T.

The proof that 1’ is a yes-instance from MULTIPLE GENE DUPLICATION
II if and only if 1 is a yes-instance from BALL AND TRAP IV follows
directly from the fact that the moves for a ball correspond to the legal
moves of a duplication. 0

Part III

Resolving Conflicting
Sequences Using

Vertex Cover

91

In this part we study the resolution of conflict graphs using the problem
VERTEX COVER (cf. Problems 2.1 and 2.3). We motivate the problem
with an application in computational biology, namely the fundamental
problem of constructing Multiple Sequence Alignments (MSAs). The
problem is, for a given set of biological sequences (e.g., DNA or pro-
tein sequences) to determine whether the sequences display sufficient
similarity to justify the inference of homology (i.e., the existence of a
common ancestor of the sequences). Therefore the goal is to find a good
alignment of the sequences. Given a perfect MSA, one can predict the
evolution of the sequences.

The known algorithms computing MSAs usually fail to produce an
exact solution corresponding to the underlying model due to the A@-
hardness of the problem [13, 34, 39, 44, 711. The main problem, from
a biological point of view, is the misplacement of gaps (i.e., insertion
and deletion events during evolution). Therefore we can view the pro-
blem of computing MSAs as the problem of inserting gaps at the correct
places [48, 491. Assuming that all the input sequences to the multiple-
sequence-alignment problem are homologous, there exists an evolution-
ary tree corresponding to the MSA. We further assume that we can
construct the tree directly from a (biologically) perfect MSA of the in-
put sequences (cf. Figure 9.0).

1. KETAAAKFQRQHMDSSTSSASSSN-YCNQMMKSRNM_SDRC
2. KES-FERQHIDSSTSSVSSSN-YCNQkZ.,TSmLeQDRC
3. KESA?+AKFERQHMDPSPSSASSSNpYCNQMNQSDRLTQDRC
4. -QDWSSFQNKHIDYPETSASNPNAYCDLMMQRRNLNPTKC
5. -TRYEKFLRQHVDYPKSSAPDSRTYCNQMMQRRGMTSPVC

1 fi 2 3 4 5

Figure 9.0: The upper part of this figure depicts an MSA for five amino-
acid sequences whereas the lower figure depicts its corresponding evo-
lutionary tree. The sequences correspond to the leaves of the tree, the
internal nodes represent the ancestry. The gaps are represented as ‘-‘.

92

Once we are given an MSA with misplaced gaps, it is possible that con-
flicts prevent the tree construction. A gap in a sequence of a computed
MSA M is defined by its location in the sequence. Two sequences in M
share a common gap if both sequences have a gap at the same location.

1. KETAPAKFQRQHMDSSTSSASSSN-YCNQMMKSRNM-SDRC
2. KESAAAKFERQHIDSSTSSVSSSN-YCNQMMTSRNL-QDRC
3. KESAAAKFERQHMDPSPSSASSSN-YCNQMMQSDRLTQDRC
4. -QDWSSFQNKHIDYPETSASNPNAYCDLMMQRRNLNPTKC
5. -TRYEKFLRQHVDYPKSSAPDSRTYCNQMMQRRGMTSPVC

g1 g2 g3

l.KETAAAKFQRQHMDSSTSSASSSN-YCNQIfMKSRNb-SDRC
2.KESAAAKFERQHIDpSTSSVSSSN-YCNQMMTSRNL-QDRC
3.KESAAAKFERQHMD-SPSSASSSN-YCNQmQSDRLTQDRC
4 .-QDWSSFQNKHIDYPETSASNPNAYCDLMMQRRNLNPTKC
5. -TRYEKFLRQHVDYPKSSAPDSRTYCNQMMQRRGMTSPVC

g1 g2 83 g4

Figure 9.1: The MSA from Figure 9.0 contains three different gaps as
shown in the upper figure: gr is shared by sequences 4 and 5, g2 by
sequences 1,2, and 3 and gs by sequences 1 and 2. An MSA with four
different gaps is depicted in the lower figure: gr is shared by sequences
4 and 5, g2 by sequences 2, and 3, g3 by sequences 1,2, and 3, and g4 by
sequences 1 and 2.

Let gr and g2 be two gaps in a given MSA M. We assume gap g1 appears
in the set of sequences A, and gap g2 appears in the set of sequences
B. We say gr and g2 have a conflict with respect to MSA M if A g B,
(M-4 !ZB,ACL (M-B), and (M - A) g (M - B). In other words
the two gaps overlap in the MSA.

One way to resolve this problem is to compute the minimum num-
ber of gaps such that the MSA ignoring these gaps is conflict free and
therefore a tree construction corresponding to the MSA is possible.

Representing the gaps as vertices and the conflicts as edges between
the vertices corresponding to the conflicting gaps, we model the pro-

93

1 fi 2 3 4 5

2 fi 3 14 5

Figure 9.2: Two possible evolutionary trees corresponding to the MSA
in Figure 9.1, lower figure. In the one tree (upper figure) sequences 1
and 2 are closer related to each other (corresponding to gap gs) than
sequence 3 to one of them; in the other tree sequences 2 and 3 are siblings
(corresponding to gap 94.)

blem by means of a conflict graph. We compute the minimum number
of vertices covering all edges (cf. Figure 9.3). Thus, we have the pro-
blem transformed into VERTEX COVER (Problem 2.1) [49]. Note that
the size of the input graph in this application of vertex cover is bounded
by approximately 20 vertices due to the small number of gaps appearing
in a realistic VISA.

VERTEX COVER is also useful when the problem is to compute the min-
imum number of sequences in a given database representing all domains
appearing in the sequences [50]. We represent the sequences as vertices
and two vertices are adjacent if and only if they have a common domain.
The corresponding graph problem to solve is the A@-complete problem
DOMINATING SET [31]. We introduce the parameterized version

Problem 9.0. ~DOMINATING SET
Input: A graph G = (V, E), a positive integer k.
Parameter: k
Question: Does G have a dominating set of size 5 k (i.e., does there

94

g10

/

g4

g2
0
g3

Figure 9.3: The conflict graph corresponding to the MSA in Figure 9.1,
lower figure. The conflict between gaps gs and g4 is represented by edge
(92794).

exist a subset V’ c V, IV’1 5 k, such that for each vertex w E V:
v E V’ or N(w) fl V’ # Q)?

Since ~-DOMINATING SET is known to be W[2]-complete [16] and every
vertex cover in a graph is also a dominating set, it might be a useful
method to compute a minimum vertex cover as a first step of a heuristic
for solving DOMINATING SET. (Note that every graph has a dominating
set of size IF].)

In Part III we develop a new fixed-parameter-tractable algorithm for
~-VERTEX COVER, the parameterized version of VERTEX COVER (cf.
Problem 2.3, 15). We first describe the basic ideas of the known fixed-
parameter-tractable algorithms of ~-VERTEX COVER (Chapter 9). The
best algorithm so far by Niedermeier and Rossmanith runs in time
0(k]V]+(1.29175)“.rC2) [58]. W e p resent a new improved fixed-parameter
tractable algorithm with a time complexity of O(klVl +r”lc), r M 1.2906
(Chapter 10). We improve the lclam value of 143 by 16 to 157. Besides a
further improvement of the search tree and a better analysis of the run-
ning time, we also developed a better kernelization. In Chapter 11, we
compare an implementation of our fixed-parameter-tractable algorithm
with two algorithms based on heuristics for VERTEX COVER.

Chapter 9

Known .FP’T Algorithms
for k-Vertex Cover

In Section 2.3.2, we introduced the ~-VERTEX COVER problem (Pro-
blem 2.3) which was one of the first problems shown to be fixed-parameter
tractable [19, 281. In this section, we describe the basic ideas of the
known fixed-parameter-tractable algorithms for ~-VERTEX COVER. The
first of those algorithms was presented by Fellows with a bounded search-
tree algorithm and a running time of O(akn) (cf. Section 2.3.2, page 16
and [24]). The algorithm due to S. Buss has an O(lcn + k2Lf2) time
complexity [II]. Papadimitriou and Yannakakis, while proving that k-
VERTEX COVER is in P when k is restricted to O(logn), provided an
O(3”n) algorithm [60]. Though this algorithm does not have a bet-
ter complexity, by using an observation due to Buss, Downey and Fel-
lows improved the running time of this algorithm to O(kn + 3”k2) [19].
Downey and Fellows present a different algorithm that runs in time
O(kn + 2”Ic2) [18]. Balasubramanian, Fellows, and Raman improved
the running-time bound to O(lcn + r”lc2), r M 1.3247, with an improved
search-tree algorithm [4]. This algorithm has been improved by Downey,
Fellows, and Stege by using a better kernelization of the input graph to
obtain a running time of O(kn+r” . k2), r M 1.3195 [21]. The algorithm
by Niedermeier and Rossmanith runs in time O(lcn+rk.IC2), r M 1.2917,
using a further improved search tree [58].

96 Known 377 Algorithms for k-Vertex Cover

9.1 Buss’ Algorithm

This section describes the algorithm by Buss which runs in O(kn+/~~“+~)
[ll]; the klam value of this algorithm is 9. Given a graph G = (V,E)
and a positive integer /c, it checks whether it has a vertex cover of size Ic.
The algorithm is based on the method of reduction to a problem kernel
(cf. 2.3.3, page 17). The following algorithm assumes that the instance
graph G = (V, E) is given in the adjacency-list representation.

Step 1 Find the set H of all vertices of degree more than L in G. Let
]H] = b. If b > k then answer no. Otherwise include H in the
vertex cover, remove H and the edges incident to H from G. Let
k’ = Ic - b. Remove any resulting isolated vertices.

Step 2 If the resulting graph has more than Ic. k’ edges, then answer
no.

Step 3 Find by brute-force whether the resulting graph has a vertex
cover of size Ic’. If so then answer yes. Otherwise answer no.

9.2 The Algorithm by Papadimitriou and
Yannakakis

This algorithm has a running time of O(3”n) [60]. Papadimitriou and
Yannakakis investigated the complexity of some NP-hard problems when
the parameter Ic is restricted to be logarithmic in the input size and
designed the following algorithm to show that the ~-VERTEX COVER
problem is in P when k is restricted to O(logn).

Step 1 Find a maximal matching in the graph (A matching is a subset
of the edges of the graph such that no two elements have a common
vertex). Let the size of the matching be m. If m > Ic answer no.
If 2m 5 Ic, then answer yes. The 2m vertices form a vertex cover.

Step 2 Let U be the set of the endpoints of the m edges of the maximal
matching. For every edge of the matching, either one of the end
points or both are in any vertex cover of G. Furthermore, once a
subset of U is picked in a vertex cover, the rest of the vertex cover
is uniquely determined: a vertex in V - U is included in the vertex
cover if and only if there is an edge incident with it whose other

9.3 The Algorithm by Balasubramanian et al. 97

end point (which is in U) has not been picked in the vertex cover.
Thus, cycle through the 3” subsets of U (by picking either one or
both of the endpoints of each edge in the matching) and check, for
each subset whether it, along with its unique extension to V, is
of size at most Ic. If it is so for any subset, answer yes, otherwise
answer no.

By preprocessing the entire graph by applying Steps 1 and 2 of Buss’
algorithm (cf. Section 9.1), we can assume that the resulting graph G
has O(Ic2) vertices and edges after spending O(lcn) time, ignoring the
singletons in G since none of them has to be included in a minimum
vertex cover.’ Thus, the bound for the algorithm reduces to O(lcn+3”k2)
PI.

9.3 The Algorithm by Balasubramanian,
Fellows, and Raman

This algorithm has a running time O(kn+(1.324718)“b2) [4] and consists
of two steps: a preprocessing step, based on the method of reduction to
a problem kernel (cf. Section 2.3.3, page 16) and a step based on the
method of bounded search trees (cf. Section 2.3.3, page 17). The klam
value of this algorithm is 129.

Step 1 Additionally to Steps 1 and 2 of Buss’ algorithm (cf. Section
9.1) included in the vertex cover are

l all neighbors of vertices with degree 1

l Let v be a vertex of degree 2 and y and .z be the neighbors of
w. Then we include y and z in the vertex cover if (y,z) E E.

l Let z,y,z be vertices of degree 2, and let N(z) = {y,z},
N(y, z) = (2, a}. Then we include {z, a} in the vertex cover.

The number of vertices and edges of the resulting graph is O(k2).

lTo verify the size of O(k2) of the kernel, assume that G has more than k2 + k
vertices. Then there is a vertex 21 in each k-vertex cover of G and u must be incident
to more than k vertices; but then deg(v) > k. Therefore, IEl 5 k2 and IV1 5 k(l+k).
The running time of the preprocessing comes from the fact, that we only need include
at most k vertices of degree more than k in a k-vertex cover (otherwise we can answer
no and thus we can delete each of the at most k vertices in time O(n) from G,
assuming an adjacency-list representation of the graph.

98 Known F?T Algorithms for &Vertex Cover

Step 2 The search tree is built as follows. The root consists of the
kernelized graph problem (G, Ic). Note that we treat the last case
after the others, that is, the graph left is 4-regular.

1. If deg(w) = 2, let N(w) = {y, z}. Since (y, Z) $ E, w.1.o.g. ei-
ther v and N(y, Z) or y and z are in a minimum vertex cover.
Therefore we branch in (G’,lc - IN(y,z)j) and (G”,k - 2).
G’ is the graph resulting from G by including N(y, Z) in the
vertex cover, for G” y and z are included in the vertex cover.

2. If deg(v) 2 5 then either w or all it’s neighbors are included
in the vertex cover. The branches are accordingly.

3. If deg(w) = 3, let N(v) = {z, y,z}.

(a) (~,y) E E. Include either {z, y,z} or N(z) in the vertex
cover.

(b) There is a common neighbor w, v # w, between a pair of
the vertices x, y, and Z. Either x, y, and z or w and w
are included in the vertex cover.

(c) There are no edges among x, y, and Z, and x has at least
three neighbors other than v. We include either {x, y, z},
N(x) or WY, ~1 U {x>.

(d) There are no edges among x, y, and z and each of x,
y, and z has, apart from v, exactly two private neigh-
bors. Let N(x) = {w,a,b}. Either {x,y,z}, {v, a, b}, or
N(y, Z, a, b) are included in the vertex cover.

4. Let N(w) = {a, b, c, d}.

(a) If (a, b) E E, then we include in the vertex cover either
{a, 4 c, 4, N(c), or {c> U N(d).

(b) If there is no edge among a, b, c, and d, and a, b, and c
share a common neighbor w # u then we include in the
vertex cover either {a, b, c, d} or {w, w}.

(c) If there is no edge among a, b, c, and d, each one of
them has three neighbors other than Y, and no three of
them have a common neighbor other than v, then either
{a, b,c,d}, N(b), {b} U N(d) or {b,d} U N(u,c) are in-
cluded in the vertex cover.

The running time of O(kn + (1.324718)“1c2) is obtained as follows. As
a preprocessing, we can do Step 1 (the kernelization and reduction) in

9.4 The Algorithm by Downey et al. 99

time O(lcn). After applying Step 1 we are left with a graph of size IGI =
O(k’). The complexity determining a &vertex cover of the kernelized
graph consists of the size of the search tree times O(k2), because O(lc2)
is the work to do for finding a vertex to branch at and the branching
itself. The size f(lc) of the search tree we obtain from the most expensive
branching rule 3 (b), which implies that f(k) 5 f(Ic--3)+f(lc-2)+1 (i.e.,
3 or 2 vertices are included in the vertex cover via the branching). The
polynomial corresponding to this recurrence equation is x3 - x - 1 = 0
with the solution x M 1.3247.2

9.4 The Algorithm by Downey, Fellows and
Stege

The main idea here is an improved kernelization, which is not only ap-
plied as a preprocessing step, but also reapplied after each branching in
the search tree. The graph is reduced to a graph having no vertices of
degree less than four and no vertices having a degree of more than k.
These rules are described more explicitly (but also generalized) in Sec-
tion 10. Thus, we build the search tree from branching at vertices of
degree at least four as described below. We published his algorithm in
Pll.

Following Observation 10.1, we perform this branching if there is a
vertex of degree at least 6. By repeating this branching procedure, at
each step reapplying the reduction rules, we can assume, that at each leaf
of the resulting search tree we are left with considering a graph where
every vertex has degree 4 or 5. If there is a vertex u of degree 4, then
the following branching rules are applied. Suppose that the neighbors of
a vertex w are N(w) = {a, b, c, d}. We consider various cases according
to the number of edges present among the vertices a, b, c, d.

Note that, if not all of the vertices in {a, b, c, d} are in a vertex cover,
then we can assume that at most two of them are.

Case 1. GIN(V) has an edge, say (a, b). Then it is not possible that
c and d are in a minimum vertex cover at once, unless all four
vertices of a, b, c, d are there. We can conclude that one of the
following cases is necessarily a subset of the vertex cover C and we
branch accordingly:

ZFor further information about recurrence equations cf. [47].

100 Known F’P7 Algorithms for k-Vertex Cover

1. {u,b,c,d} E C

2. N(c) E c

3. (c} u N(d) c c.

Case 2. The subgraph GI,v(Vl is empty. We consider three subcases.

Subcase 2.1 Three of the vertices (say a, b, and c) have a common
neighbor y other than v.

If not all elements of {a, b, c, d} are in a k-vertex cover, v and y
must be. We can conclude that one of the following is a subset of
vertex cover C and branch accordingly:

1. {a, b, c, d} c C

2. {%Y> c c.

Subcase 2.2 If Subcase 2.1 does not hold, then there may be a pair of
vertices who has a total of six neighbors other than w, suppose a
and b. If all of a, b, c, d are not in the vertex cover C then c $ C,
or c E C and d $ C, or both c,d E C (in which case a, b $ C).
We can conclude that one of the following sets is a subset of the
vertex cover C and branch accordingly:

1. {u,b,c,d} EC

2. N(c) g c

3. {c} u N(d) c C

4. {c, d} u N(a, b) & C.

Subcase 2.3 If Subcases 2.1 and 2.2 do not hold, then the graph must
have the following structure in the vicinity of v:

(1) IJ has four neighbors a, b, c, d and each of these has degree four.

(2) There is a set E of six vertices such that each vertex in E is
adjacent to exactly two vertices in {a, b, c, d}, and the sub-
graph induced by E U {a, b, c, d} is a subdivided K4 with each
edge subdivided once.3

In this case we can branch according to:
3’ lx., w.1.o.g. GIEU{a,b,c,d) has the edge set {(a,~), (vl,b), (b,vz), (‘uz, c), (c,v3),

(o3,d), (d,~Uq), (u4,a), (a,%), (u5,C)> @,%)I (v6,@1

9.5 The Algorithm by Niedermeier and Rossmanith 101

1. {a, b, c, d} c C

2. (E u {v}) c C.

If the graph G is regular of degree 5 (that is, there are no vertices
of degree 4 to apply one of the above branching rules to) and none
of the reduction rules can be applied, then we choose a vertex v
of degree 5 and do the following. First, we branch from (G, Ic) to
(G -v, k - 1) and (G - A$], Ic - 5). Then we choose a vertex u of
degree 4 in G - v and branch according to one of the above cases.
The net result of these two combined steps is that from (G, k) we
have created a subtree where one of the following cases holds:

1. There are four children with parameter values k - 5, from
Case 1.

2. There are three children with parameter values Ici = k - 5,
lcs = k - 5 and Its = Ic - 3, from Subcase 2.1.

3. There are five children with parameter values ki = lc - 5,
lo = k - 5, IEs = Ic - 5, kq = Ic - 6 and Its = k - 9, from
Subcase 2.2.

The bottleneck recurrence comes from the degree 5 situation which pro-
duces four children with parameter values k - 5. The total running time
of the algorithm is therefore O(r”k2+IEn), where T = 4115, or r M 1.3195
approximately. The klam value is 130.

9.5 The Algorithm by Niedermeier and
Rossmanit h

This algorithm [58] is an extension of the algorithm by Balasubramanian,
Fellows, and Raman (cf. Section 9.3, [4]). As done in [4] (cf. Section 9.3),
the reduction to a problem kernel is used as a preprocessing step only.
The search tree is improved; here the main idea is that in each branch
of the search tree there is at most one graph being c-regular for each c,
and therefore the most expensive branching leads to a running time of
0(/m + rk . k2), r z 1.2917, and a klam value of 141.

Since in Section 10 we make only use of branching rules using ver-
tices of degree 4, 5 and 6, we skip the exact description of the more
complicated branching rules in the search tree for the vertices of degree
3 end refer to [58].

102 Known FPT Algorithms for k-Vertex Cover

Case 1 If there is a vertex v with degree 1, then branch according to
N(v) (and nothing else).

Case 2 If there is a vertex v with degree 6 or more, then branch ac-
cording to v and N(v).

Case 3 If there are no vertices with degree 1 or at least 6, but there is
a vertex with degree 2 then proceed as follows.

1. If the graph is 2-regular, an optimal vertex cover is easy to
construct in linear time.

Otherwise let v be a vertex with degree 2 and a, b its neighbors,
where a has degree 2 3. The algorithm chooses the first case that
applies.

1. If there is edge (a, b) E E or if there is a path of length two
from a to b not including v and therefore a cycle [v, b, c, a, v].
Furthermore, let deg(c) = 2. Then include {a, b} in the vertex
cover (no branching is necessary).

2. If]N(u, b)\ > 4, then branch according to {a, 6) and N(u, b).

3. Assume there is exactly one cycle of length four containing
v. Say the cycle is [w, a, y, b, a, v]. Then branch according to
N(y) and N(u).

4. Assume there are two cycles of length 4 containing v. W.1.o.g.
let [v, a, y, b, v] and [v, a, z, b, v] be these cycles. Then branch
according to N(y) and {v, y, z}.

Case 4 If the above cases do not apply and if the graph is regular, then
choose some vertex v and branch according to w and N(v).

Case 5 If the above cases do not apply and if there is a vertex v with
deg(v) = 3 then let N(v) = {a, b, c} and proceed as follows.

1. If there is a cycle [o, y, Z,U] then assume y = a and .z = b.
Branch according to N(v) and N(c).

2. If there are at least two different cycles [v, ~1, xi, wi, v] and
[v, u2, x2, w2, v], then branch according to N(v) and {v, 21, x2).

3. If there is exactly one cycle [v, U, x, w, v], then assume u =
a and w = b. Furthermore assume deg(u) = 3. Branch
according to N(v) and N(u).

9.5 The Algorithm by Niedermeier and Rossmanith 103

4. If there is exactly one cycle [w, u, z, w, U] and the case above
does not apply, we again assume u = a and w = b. Branch
according to N(w),N(a), {a, V} U N(b, c).

5. If none of the cases above applies in the whole graph, but
there is a vertex w with neighbors N(w) = {a, b, c}, we distin-
guish as follows.

(a) Assume at least two vertices of {a, b, c} have degree at
least four, say a and b. Then we branch according to
N(w), {w)UN(a, b), -lw, alUN(b, 4 and {w,b)UN(a, 4.

(b) Otherwise, we can assume that there is a vertex w in G
with deg(w) = 3, N(w) = {a, b, c}, and exactly one of
{a, b, c} have degree at least 4. In this case we refer to
[58] due to the complicated branching in this case. We
do not use of this case in our algorithm described in the
next chapter.

Case 6 If the above cases do not apply all the vertices in G have either
degree 4 or 5. Let w be a vertex with deg(w) = 4. Let y E N(v)
and deg(y) = 5. We proceed as follows.

1. Assume there is a cycle [w, a, b, w].

(a) a, 6 # y. Let c 4 {a, b, y} be another neighbor of w.
Branch according to N(w), N(y), and {w, y} U N(c).

(b) a = y. W.1.o.g. let c,d E N(w), c,d $ {a, b} and (c,d) is
not an edge. Branch according to N(w), N(c), {w,c} U

N(d).

2. If the above case does not apply and there is no vertex w with
degree 4 that has the following two properties at once

l w has a neighbor x with degree 5.
l there are at least two different cycles w is contained in

but not x.

Let N(w) = {y, b, c,d}. B ranch according to N(y), N(w),
iv, Y> U NC4 4, {w, Y, 4 U N(b, 4, and {w, Y, b) U NC, 4.

3. If the above case does not apply pick a vertex w having these
2 properties at once.

l w has a neighbor y with degree 5,
l there are at least 2 different cycles w is contained in but

not y

104 Known FIT Algorithms for k-Vertex Cover

branch according to N(y), N(w).

Since later (cf. Section 10.3) we use Case 6 of this algorithm, we mention
the recurrence equations following from the subcases. Subcases 6 (a) i,
6 (a) ii, and 6 (c) imply the recurrence equation f(k) < f (k - 5) +
2f(k - 4) + 1; the recurrence equation following from 6 (b) is f(k) 2
f(k-9)+2f(k-8)+f(k-5)+f(k-4)+1. Thesolutioncorresponding
to the resulting polynomials x 5-2x-1=Oandxg-2x-x4-x4-l=0
is x M 1.2906.

Chapter IO

An Improved .WT
Algorithm

In this chapter, we present an improved fixed-parameter-tractable al-
gorithm for ~-VERTEX COVER with a time complexity of O(kn + r”k),
where T M 1.2906. We achieve a klam value of 157.

A preliminary version of our algorithm was published in [67] (joint
work with Fellows). The algorithm described here is a combination of
the algorithm by Downey, Fellows, and Stege (cf. Section 9.4 and [al])
and the algorithm by Niedermeier and Rossmanith (cf. Section 9.5 and
[58]). The main improvement is a better kernelization, which is achieved
by new reduction rules and an improved structure of the search tree.

The main idea for the new reduction rules is the concept of adding
edges; the instance (G, k) is transformed into (G’, k’), by deleting ver-
tices and adding edges such that G has a k-vertex cover if and only if
G’ has a k’-vertex cover.

We restate Observation 2.1 (cf. page 15).

Observation 10.1. Given a graph G = (V,E). Then for each v E V
and each vertex cover VC of G

v E vc or N(w) c vc.

106 An Improved FP‘T Algorithm

10.1 Reduction to a Problem Kernel

Starting with (G, k), we apply each of the following reduction rules until
no further application is possible. The justifications for the reductions
are given below (cf. page 108-113). For the sake of completeness, we give
also the proofs for the rules we took over from the algorithms described
in the previous chapter.

(R 1) If G has a vertex v with deg(v) > k then replace (G, k) with
(G-v,k-1). Fu th r ermore, v is contained in every k-vertex cover
of G.

(R 2) If G has an edge (u, w) with deg(u) = 1, then replace (G, k) with
(G - {u, w}, k - 1).

Due to complexity reasons, we apply the following rules (R 3), (R 4),
and (R 5) only for vertices w of degree at most y for a given constant
y E N.

(R 3) If G has two adjacent vertices u and v such that N(u) C N[v],
then replace (G, k) with (G - w, k - 1) (cf. Figure 10.3, page 109).

(R 4) If G has a vertex v with even degree, G]N(V) has exactly

f dedw)(dedv) - 2) dg e es, and none of the other cases applies,
then (up to renaming vertices) G(N(Vl has the following form.

Let N(w) = {xi,xs,... ,~~s(~)}. Then the edges in the comple-
mentary graph of G]NcUl are

(cf. Figure 10.1).

Replace (G, k) with (G’, k - i deg(v)). G’ is obtained from G by

l adding all the possible edges between x&s(U) and N(xi);

l adding all the possible edges between x&g(v)-1 and N(xs),

l adding all the possible edges between X; &s(V)+i and

N(x+ de.&;

l deleting the vertices w, ~1, x2, . . . , Xi &s(v).

Cf. Figure 10.4 on page 111 as an example.

10.1 Reduction to a Problem Kernel 107

Figure 10.1: (R 4): Every configuration not having a perfect matching
[9] (shown by the red edges) in its complement would imply case (R 3).

(R 5) If G has a vertex w with odd degree, GIN(~) has exactly
($ deg(w)(deg(w) - 2) - i) e d ges, and none of the other cases ap-
plies, then GIN(~) has (up to renaming vertices) the following form.
Let N(v) = {x1,x2,. . . ,~d~s(~)}. Then the edges in the com-
plementary graph of GIN(~) are (xl, xdeg(v)h (~2, xdeg(u)--l), . . . ,

(x~(deg(v)--l)~x~(deg(v)+3))t and (x+(deg(v)--l),x$(deg(u)+l)) ccf. Fig-

ure 10.2).

Replace (G, k) with (G’, k - 3 deg(w) + $). G’ is obtained from G
by

l adding all the possible edges between x$(deg(v)+s) and

N(X$(de,(,)-1))
l adding all the possible edges between x&(&g(v)+s) and

N(x;(de&+-3))

l adding all the possible edges between x&s(U) and N(xi)

l adding all the possible edges between x~%(+~(~)+i) and

N(x$(de,(+l));

108 An Improved F?T Algorithm

Figure 10.2: (R 5): Every configuration not having such a configuration
of red edges in its complement would imply case (R 3).

l deleting the vertices v, x1, 22,. . . , x&(&g(v)-l).

Cf. Figure 10.5 on page 112 as an example.

(R 6) If G has a vertex w with deg(w) = 3 and N(w) = {a, b, c}, and
none of the above cases applies, then Gla,b,e contains no edge.
Replace (G, k) with (G’, k). G’ is obtained from G by

l deleting the vertex w from G,

l adding all the possible edges between c and the vertices in
N(a),

l adding all the possible edges between a and the vertices in
N(b)>

. adding all the possible edges between b and the vertices in

N(c)>
l adding the edges (a, b) and (b, c).

Cf. Figure 10.6 on page 114 as an example. Note that this reduc-
tion rule is not symmetric.

The reduction rules described above are justified as follows.

10.1 Reduction to a Problem Kernel 109

(R 1) Any k-vertex cover in G must contain v, since otherwise it would
be forced to contain N(w), but IN(w)] > k.

(R 2) If G has a k-vertex cover VC with w $ VC, then u E VC. But
then (VC - {u}) U {v} is also a k-vertex cover. Thus, G has a
k-vertex cover if and only if it has one containing v. That is, G
has a k-vertex cover if and only if G - {u, w} has a (k - l)-vertex
cover.

(R 3) If a k-vertex cover VCdoes not contain v, then it would be forced
to contain N(v) and therefore it must contain N[u] - {w}. But then
(VC- {u}) U {w} is also a k-vertex cover (cf. Figure 10.3). Thus,

Figure 10.3: Reduction rule (R 3).

G has a k-vertex cover if and only if it has one containing v.

(R 4) If G has a k-vertex cover, then there is a k-vertex cover VC
having one of the following forms.

1. N(w) E VC

2. VEVC

In the second case we can assume that at most deg(v) - 2 vertices
of N(v) belong to the vertex cover. v is redundant, if all vertices

110 An Improved FIT Algorithm

of N(w) belong to the vertex cover. If deg(w) - 1 of the vertices
belong to VC, then we can exchange w by the vertex in N(w) not
being in the vertex cover.

Thus, we can assume VC has one of the following forms.

. N(w) c VC

l N(x+ deg(u)+l> x& deg(u)) c VcT

. N(x+ deg(v)+2, x+deg(v)-l) c vc

l N(Xdeg(v),Xd c vc

Similarly, if G’ has a k/-vertex cover, then there is a k/-vertex cover
VC’ having one of the following forms.

l lx+ deg(v)+lT . . . 1 xdeg(v) > c vc+

l N(xgdeg(,)+l) c I%’

. N(z+deg(,)+,) & vc’

l Nhieg(u)) c vc’.

We show G has a k-vertex cover if and only if G’ has a k/-vertex
cover. If G has a k-vertex cover of the first form, then G’ has
a (k - i deg(v))-vertex cover containing {XL deg(vl+l,. . . ,x&s(U)}
and vice versa. If G has a k-vertex cover L%’ of the form w E VC,
N(v) - {Xi, xdeg(v)--i+l > c vc, Wvdeg(v)--i+l -) C VCfor some
i (1 5 i 5 i deg(w)),. then there is a k/-vertex cover Vc/ in G’
containing N(xdeg(u)--i+l) C Vc. Clearly, in G’

ix; deg(u)+l> . . . P %deg(u) > - @deg(v)--if11 c N(Xdeg(u)--i+l).

Furthermore, the vertices adjacent to xdeg(u)--i+l in G’ agree with
the neighbors of xi and x&s(v)--i+l in G. Finally a k/-vertex cover
VC’ in G’ of the form N(Zdeg(u)--i+i) C Vc implies a k-vertex
cover in G of the form v E VC, N(w) - {x~,x~~~~~~-~+~} C VC
(1 5 i 5 ideg(w)).

(R 5) If G has a k-vertex cover, then there is a k-vertex cover VC
having one of the following forms.

10.1 Reduction to a Problem Kernel 111

Figure 10.4: Reduction rule (R 4) for deg(w) = 2.

1. N(w) c VC

2. VEVC

In the second case we can assume that at most deg(w) - 2 vertices
of N(w) belong to the vertex cover. Thus, we can assume VC has
one of the following forms.

. N(w) c VC

’ N(x+(de,(u)+3), “+(deg(u)-1)) E vc

l N(x+(deg(u)+5)r “$(deg(v)-3)) c vc

. N(x;deg(t,),Xd E vc

l N(x$(de,(v)-l), “$(deg(v)+l)) c vc

If G’ has a k - (i(deg(v) - l)-vertex cover VG’, then there is one
having one of the following forms.

l {x$(deg(v)+l) > “+(deg(v)+3) i . . . 7 xdeg(v)) c vc’

l N(x$(deg(v)+l)) E vc

112 An Improved FP7 Algorithm

Figure 10.5: Reduction rule (R 5) for deg(v) = 3.

We show G has a k-vertex cover if and only if G’ has a V-vertex
cover. If G has a k-vertex cover of the first form, then Vc =
vc- {z1722,‘.~ ~z~(deg(v)--l)~ is a vertex cover of G’ and vice
versa.

If G has a k-vertex cover VC of the form N(zdeg(v)--i+l, Q) c VC
forsomei(l<i<$(deg(v)-3))then VC’= VC-{z~,Q,...,
z$(&g(v)-l)} is k/-vertex cover in G’. (All the vertices covered
from N(Q) in G are also covered in G’ because of the added edges
between zd,,g(U)--i+l and N(Q) in G’.) Conversely, if G’ has a
vertex cover VG’ of the form N(zi(&g(u)-l)) C VG then VC =

Vc/ U ({51,x2,. . , x+f(deg(u)-l)} - {xi}) is a vertex cover for G.

Finally, if G has a vertex cover of the form

N(z$(de,(+l), “;(deg(v)+l)) c vc~

then VC’ = VC- {%1,x2,. . . , “+(deg(v)-l)} is vertex cover in G’.

10.1 Reduction to a Problem Kernel 113

(R 6) We show that for deg(v) = 3 and N(w) = {a, b, c}, we can apply
(R 2) if G]{a,b,cl contains more than one edge. Assume G]la,b,cl
contains two edges. Then the two edges must have a vertex in
common, say a. But then N(v) c N[a]. We can assume that
there is no edge in G]NcV), because otherwise we can apply (R 3)
or (R 5) (cf. Figure 10.6). Let VC denote a k-vertex cover in G.
We can assume that VC has one of the following forms.

1. {u,b,c} c VC

2. WE vc

In the second case, we can assume that at most one of the vertices
of {a, b, c} belongs to VC.

We show that G’ has a k-vertex cover. If VC has form 1 then VC
is also a k-vertex cover of G’. Let’s consider form 2. If none of
the vertices of {a, b, c} belongs to VC, then (VC- {w}) U {b} is a
k-vertex cover of G’.

Now assume there is exactly one vertex of {a, b, c} in VC.

l If a E VC then (VC - {v}) U {c} is a k-vertex cover of G’.

l If b E VC then (VC - {w}) U {a} is a k-vertex cover of G’.

l If c E VC then (VC- {w}) U {b} is a k-vertex cover of G’.

Conversely suppose G’ has a k-vertex cover VC. Then we can
assume VC has one of the following forms:

1. {a,b,c} & VC

2. be VC

3. {u,c} c vc

4. {a, b} c VC

5. {b,c} c VC

Clearly, if VC has form 1 then it is also a vertex cover of G. If
VC has form 2, then N(u, b, c) C VC and (VC - {b}) U {w} is a
k-vertex cover of G’. If VC has form 3 then N(b, c) C VC and
(VC- {b}) U {w} is a k-vertex cover of G. If VC has form 4 then
N(a, c) 2 VC and (VC- {u}) U {w} is a k-vertex cover of G.

114 An Improved FPT Algorithm

Figure 10.6: Reduction rule (R 6).

10.2 Time-Complexity Analysis of the Re-
duction to a Problem Kernel

Simply because of reduction rule (R 1) we can conclude, after spending
time O(kn), that the answer of input (G, k) is no if the number of vertices
in G’ is larger than lc2 + k (cf. footnote page 97).

To analyze the the running time of the other reduction rules we need
to consider a graph of size O(k2) only. With the exception of (R 6),
applying a reduction rule leads to decreasing the parameter by at least
one. Therefore, we can apply each of (R l)-(R 5) in time O(k3).

In the case of reduction rule (R 6), the parameter Ic is not decreased
and we consider the running time of applying (R 6) seperately. We can
assume that deg(w) > 2 for all w in G and for each w in G with deg(v) = 3
there is no edge in GINcV) (otherwise one rule of (R 2) - (R 5) can be
applied). Let w be a vertex in G with deg(w) = 3 and N(w) = {a, b, c}.
After applying (R 6) to w, we obtain graph G’ with deg(z) 2 4 for all
2 E {a, b, c} U N(a, b, c). We distinguish two cases.

1. There is no vertex z E {a, b, c} UN(a, b, c) with deg(z) > k. In this
case, we either apply (R 6) to another vertex in G, or no further
reduction rule applies. When looking for the next vertex where

10.3 A Better Search Tree 115

(R 6) can be applied, we do not have to reconsider the vertices
we checked to find the former one (because only the degree of
the vertices {a, b, c} U N(u, b, c) changes). Therefore, all possible
applications of (R 6) for a certain k can be done in time O(Ic3).

2. There is a vertex z E {a, b, c}UN(u, b, c) with deg(z) > Ic. Then we
apply (R 1) to 2 and the parameter k is reduced by one. Because
we can find x, after applying (R 6) to w, in constant time, here
(R 1) does need O(k) time additionally.

Thus, the whole kernelization step can be done in time O(kn + k3) or
simply 0 (kn) .

At the end of this kernelization step we have reduced (G, Ic) to (G’, k’).
G’ has minimum degree 4 if we have not already answered the question.
If we still have no answer about the original input (G, k), then we are
left with considering (G’, k’) where IV’1 5 k2 + k and k’ 5 k.

Combined with a search tree, in the next section we present a further
kernelization of the graph s.t.]G] = O(k).

10.3 A Better Search Tree

In this phase of the algorithm we build a search tree of height at most k.
The root of the tree is labeled with the output (G’, k’) of the kerneliza-
tion. We describe how to build the search tree in three steps. Compared
to the algorithms described in the previous chapter, we start branching
at vertices of degree 7. This leads us to a smaller graph size of O(k)
after applying this first branching step.

Step 1. Following Observation 10.1, we create for every vertex of de-
gree at least 7 two children, one labeled with (G’ - w, k’ - l), and the
other one labeled with (G’ - N[w], k’- deg(v)). We repeat this branching
procedure, at each step reapplying the reductions of the kernelization.

After Step 1, we can assume that at each leaf of the resulting search tree
we are left with an instance (G”, k”) consisting of a graph where every
vertex has degree four, five or six, and none of the above cases of the
reduction rules of the kernelization applies.

116 An Improved FPT Algorithm

What does Step 1 mean to the size of the graph of such an instance?
We consider the following graph-theoretical result by Bollobas [9].

Theorem 10.2. Suppose we are given a graph G = (V,E), IV1 = n,
with 6 5 deg(v) 5 A for all w E V. Furthermore 6 < A - 2 and
n > A + 6. Then the number of independent edges in G (two edges are
independent if they have no vertex in common) is at least r&l.

For 6 = 4 and A = 6, we obtain the following corollary.

Corollary 10.3. Suppose we are given a graph G = (V,E), IV1 = n
and n 2 10, with 4 5 deg(w) < 6 for all v E V. Then each vertex cover
of G has a size of at least gn.

Thus, we can answer no to the question whether G” has a k/‘-vertex
cover if k” < $n, and therefore we can assume G” does contain at most
2.5k vertices (i.e., IG”] = O(n)).

Step 2. For every vertex of degree at least 6 we create two chil-
dren, one labeled with (G’ - w, k” - l), and the other one labeled with
(G” - N[w], k” - deg(w)) and repeat this branching procedure, at each
step reapplying the reductions of the kernelization.

At each leaf of the search tree we are left with an instance (Gc3), kc3)),
Gc3) having vertices of degree 4 and 5.

Step 3. We apply Case 4 (in the case where Gc3) is regular) and Case 6
(in the case where there is a vertex of degree 4 with a neighbor having
degree 5) of the algorithm by Niedermeier and Rossmanith (cf. Section
9.5) and repeat this branching, until neither Case 4 nor Case 6 can be
applied in Gc3), at each step reapplying (R l), (R 2), and (R 3) and the
following branching variants of reduction rules (R 4), (R 5), and (R 6).

These branching variants of the reduction rules are necessary to avoid
a repetition of the 4- or 5 regularity of the graph in a branch when
applying the algorithm, since in (R 4), (R 5), and (R 6) edges are added
to the graph. Of course we only have to apply this variant in the case
the graph has been 4 or 5 regular already. In each variant, we combine
the reduction rule with a branching such that the resulting recurrence
equation for this branching rule in total a polynomial with solution r 5
1.290648801 (i.e., the new branching rules are not more expensive than
the Case 6 in the algorithm by Niedermeier and Rossmanith).

10.3 A Better Search Tree 117

We consider (R 4) for a vertex of degree 2 and (R 5) for a vertex of
degree 3 only.

(B 4) Let (G, k) be an instance where each vertex in G has degree at
most 5. Suppose G has a vertex of degree 2 and (Rl)-(R3) do
not apply to a vertex in G. Let N(w) = {a, b}. We can assume
(a, b) $ E (otherwise (R 3) applies). We first reduce the graph and
do a subsequent branching (cf. Figure 10.7). We reduce as follows.

l delete w

l add all the possible edges between b and N(u)

l Include a in the vertex cover VC and delete a.

Consider the resulting instance (G’, k - 1). For every neighbor w
of b in G’ we have dega, (w) = deg, (w), that is only the degree of
6 may be changed. If deg(w) < 4 we are done, because G’ contains
vertices of degree smaller than 4 and thus, G’ is neither 4- nor
5-regular.

If deg,,(b) > 4 we branch according to (G’ - b, k - 2) and
(G’ - N(b), k - (1 + IN(b)I IN(2 4. Clearly, no resulting
graph G” is 4- or 5-regular. The vertex in G” of highest degree
has at most the degree of a vertex with the highest degree in G.

(B 5) Suppose G has a vertex of degree 3 and (R 1)-(R 4) and (B 4)
do not apply in G (i.e., we can assume that every vertex in G is
of degree at least 2 and at most 5). Let N(v) = {a, b, c}. We
can assume that (a, b) E E, but there is no other edge in Gl{a,b,cl
(otherwise (R 3) applies).

We apply (R 5) to v and as a result we obtain graph G’. Only the
degrees of a, b and N(c) in G might have changed their degrees in
G’.

If G has vertices of degree 5, in G’ both a and b have a degree of
at least 3 and at most 7. If all the vertices of {a, 6) U N(u) have a
degree of 5, we branch according to a and N(u). Otherwise, as long
as there are vertices of degree higher than 5 in G’ branch according
to w and N(v). The reduction and the first branching results in a
recurrence equation of the form f(k) 5 f (k - 2) + f (k - 6) + 1.

If there is no vertex of degree 5 in G, in G’ both a and b have
a degree of at least 3 and at most 5. If a or b have a degree of
at least 4, we branch according to a and N(u). If both a and b

118 An Immoved FPT Algorithm

Figure 10.7: Branching rule (B 4).

have a degree of 3 but there is a neighbor u of a and b having a
degree of 5, we branch according to v and N(v). The reduction
and the first branching result in a recurrence equation of the form
f(k) 5 f(k - 2) + f(k - 5) + 1.

(B 6) Suppose G has a vertex of degree 3 and (R 1)-(R 5), (B 4), and
(B 5) do not apply in G. Let N(w) = {a, b, c}. We assume that
there is no edge in Glta,b,c). We distinguish 3 cases.

1. There are two vertices of {a, b, c}, say a, b, such that N(a) C
N(b).

2. The first case does not apply and there is a vertex w of degree

10.4 Time-Complexity Analysis 119

3 having a neighbor of degree at least 4.

3. The first case does not apply and the graph is 3-regular.

In the first case we first apply (R 6) at vertex w. The resulting
graph is G’. Now we can reduce G’ by b applying (R 3). If the
graph is S-regular, we can further assume that (B 5) does not apply
in G. Then we pick a vertex u and branch according to IJ and N(v).
Consider G-w. Now there are at least 3 vertices of degree 2 and we
apply (B 4). In G - N(v) there are at least two vertices of degree
2 and thus we apply (B 4) to them. The resulting recurrence
equation is f(L) 5 f(k-6)+f(k-7)+2f(Ic-8)+2f(Ic-lO)+l.

In the second case let deg(b) = 4. We apply (R 6). In the resulting
graph G’ w.1.o.g. c has at least 2 neighbors U,W $ N(b) in G.
Branching on c first and then on b (and if necessary also on a)
results in a graph being neither 4- nor 5-regular, the recurrence
equation is either f(k) 5 f(/c - 6) + f(lc - 1) + 1 or f(lc) 5 3f(Ic -
7) + f(k - 3) + 1.

Finally, branching a 3-regular graph G can be done via branching
once, at a vertex v, according to Observation 10.1, and then in the
resulting graphs we apply (B 4) at the vertices of degree 2. The
resulting recurrence equation is of the form f(k) 5 Sf(lc - 15) +
3f(b -12)-t f(k - 9)+f(k - 6)+f(k - 3)+1.

10.4 Time-Complexity Analysis

In Step 1, branching a vertex with degree 7 or higher implies the recur-
rence equation of the form f(lc) 5 f(k - 7) + f(k - 1) + 1. The resulting
polynomial r7 - r6 - 1 = 0 has the root r M 1.2554. The graph size is
bounded by O(lc’) vertices and therefore so far we have a running time
of O(lcn + rk . k2), T M 1.2554, for Ic > 189 .

The recurrence equation resulting from Step 2 is f(lc) 5 f(k - 6) +
f(k - 1) + 1. The root of its resulting polynoial is T M 1.2852. The
bottleneck recurrence equation resulting from Step 3, Step 4 and Step 5
comes from Case 6 in the algorithm by Niedermeier and Rossmanith
(Section 9.5, [58]). The root of the resulting polynomial is r M 1.2906.
Because of Corollary 10.3, the graph size is bounded by 2.51c vertices.
Thus, the overall time complexity of our algorithm of O(lcn + @lc),
r M 1.2906.

120 An Improved FIT Algorithm

The klam value of 157 is obtained from max{(rr)‘IC2, (~3)’ 2.5k} > 102’,
n M 1.2554 and 13 M 1.2906, for k 2 157.0818. We want to remark, that
independently from this result Chen, Kanj, and Jia recently published
an algorithm which solves ~-VERTEX COVER in time O(kn + 1.271”1e2)

P41.

lo.5 Ideas for Future Work

Taking into account that VERTEX COVER is N’P-complete, we presented
a very efficient XV- algorithm solving ~-VERTEX COVER. However,
difficulties in practice can appear when the input graph is large. One
problem is due to memory requirements, since we have to keep copies
of the graph for each branch of the search tree. An other reason is the
longer practical running time due to the large size of the search tree.
Therefore, in the case of large input graphs, it is useful to spend more
time in the kernelization step.

For example, in the case of degree-4 vertices, some more reduction
rules were found. Because we were not able to find reduction rules for
all the degree-4 vertices, this does not help improving the running time.

(R ‘7) If G has a vertex w with deg(v) = 4 and N(v) = {a, b, c, d}, none
of the above cases applies, and if one of the following cases is ful-
filled, then Glfa,b,c,dl contains at most three edges. Replace (G, k)
with (G’, Ic’) according to one of the following cases depending on
the graph Glfa,b,c,dl (up to renaming of the vertices a, b, c, cl).

(R 7.1) There are exactly three edges in Glfa,b,c,~l which we assume
to be the edges (a, b), (b, c), and (c, d). In this case, ,V = k and G’
is obtained from G by

l deleting the vertex w from G,

l adding all the possible edges between d and the vertices in
N(a, 4 4

l adding all the possible edges between a and the vertices in
N(d),

l adding the edges (a,~), (a,d), and (b,d).

(R 7.2) There are exactly three edges in Glfa,b,c,dl which we assume to
be the edges (a, b), (a, c), and (b, c). In this case, L? = Ic - 2 and
G’ is obtained from G by

10.5 Ideas for Future Work 121

l adding all possible edges between {a, b, c} and N(d),

l deleting vertices ZI and d.

The rectification is as follows.

(R 7) We show that if G]{a,b,c,dI has more than four edges we can apply
CR 2). Let Gl{a,b,c,d) have five edges. But then at least three of
them share a common vertex, say a. Then N(v) C N[a]. We can
assume there are at most three edges in GIN(~), since otherwise we
can apply (R 3) or (R 5).

(R 7.1) If there exist a k-vertex cover in G then there exists a k-vertex
cover VC of one of the following forms:

1. {a, b, c, d} c VC

2. {v,a,c} C VC

3. {v,b,c} c VC

4. {v,b,d} c VC

Clearly, in the first case VCis a vertex cover of G’. In the second,
third, and fourth case (VC- {v}) U {d} is a k-vertex cover of G’.

Conversely, if G’ has a k-vertex cover VC, then VC has one of the
following forms:

1. {a, b, c,d} G VC

2. {a,c,d} C VC

3. {a, b,d} g VC

4. {b, c, d} c VC

5. {a, b,c} G VC

In the first case VC is a vertex cover of G. If VC has form 2 then
N(b, d) 2 VC and (VC- {d}) U {v} is a k-vertex cover of G. In
the third case N(a, c) C VC and (VC - {a}) U {v} is a k-vertex
cover of G. In the fourth case, N(a, d) C VC and (VC- {d}) U {v}
is a k-vertex cover of G. In the fifth case, N(a, b, c, d) C VC and
(VC- {b}) U {v} is a k-vertex cover of G.

122 An Improved FP7 Algorithm

Figure 10.8: Reduction rule (R 7.1).

R 7.2) Let VCdenote a k-vertex cover in G. If v 4 VC, then necessar-
ily {a, b, c, d} c VC. In this case, VC- {d} is a (k- l)-vertex cover
of G’. Assume that VCcontains v. To cover the edges (a, b), (a, c),
and (b, c) at least two vertices of {a, b, c} belong to VC. That is, in
this case we assume d $ VC (otherwise w.1.o.g. {a, b, c, d} G Vc).
Now VC - {v} is a (k - 1)-vertex cover of G’.

Conversely, if G’ contains a (k - l)-vertex cover then it must con-
tain one of the following forms.

1. {a, b, c} & VC

2. {a, b} G VC

3. {u,c} c vc

4. {b,c} c VC

10.5 Ideas for Future Work 123

In the first case VCU {d} is a k-vertex cover of G. In the other
cases VCU {v} does it.

Reduction rules (R 3), (R 4), and (R 5) should be applied for vertices
with high degree y (cf. page 106).

Even though if it results in squaring the running time of the kernel-
ization step, another useful reduction rule might be:

(R 8) If G has two nonadjacent vertices u and v such that]N(‘LL, v)] > k,
then replace (G, Ic) with (G + (u, v), k).

The rectification of (R 8) is as follows. It is impossible that a &vertex
cover of G does not contain at least one element of {u,v}, because oth-
erwise the vertex cover must contain all of the vertices of N(zl, v). This
allows us to add edge (u, v).

Because the kernelization step is independent of the branching rules and
the kernelization is possible in polynomial time, kernelization might be
a useful preprocessing step for any general method for VERTEX COVER.

The presented fixed-parameter-tractable algorithm returns just one so-
lution of a k-vertex cover. But note, that reduction rule (R 1) is appli-
cable for any vertex cover of size k. And since after applying (R 1) we
are left with a kernel of size O(Ic2) vertices, we can compute all possi-
ble solutions for a k-vertex cover in time O(/XZ + ($Ic2) naively. This
means also computing all solutions of a k-vertex cover of a given graph
is fixed-parameter tractable. To improve on this naive method is left
as an open problem, but a good starting point might be the search-tree
technique by Fernau and Niedermeier [30] in the case of computing all
(Icr + Its)-vertex covers for a given bipartite graph.

Chapter 11

Experiments

We compare our implementation of the fixed-parameter-tractable algo-
rithm (cf. Section 9.4) with two VERTEX COVER algorithms based on
heuristics. That is, we are interested not only in the existence of a
&vertex cover for a fixed Ic, but in a minimal vertex cover (i.e., the solu-
tion of the optimization version of Problem 2.1) for a given input graph
G = (V,E), IV1 = n and]E(= m . The first heuristic algorithm is based
on the greedy heuristic and the second algorithm is based on a heuristic
by Gonnet which we describe below. These vertex cover algorithms’
have been integrated into the Darwin system (Version 2.0) [35].

Greedy Heuristic. The greedy heuristic always takes the vertex with
the highest degree, put it in the vertex cover and removes it from the
graph. The greedy heuristic approximates the optimal vertex cover
within 1 + log(k) where Ic is the minimal vertex-cover size [45]. The
running time is O((n + m)n).

Gonnet’s Heuristic. This heuristic first computes a lower bound of
the size of the vertex cover. Therefore it looks for 3-cliques in the graph,
enlarges them as much as possible and removes them. The algorithm
then attempts O(n”) iterations in the complete search tree, afterwards
the greedy heuristic is applied. If the lower bound coincides with the size
of the answer, then one can conclude that the answer is optimal. Em-
pirical evidence shows that this algorithm is O(n3) for random graphs

lThe two heuristics have been implemented by G. Gonnet.

125

with about n In n edges.

FP’T-Implementation. The fixed-parameter-tractable algorithm which
solves ~-VERTEX COVER in running time O(lcn+(1.31951)“.k2) (cf. Sec-
tion 9.4 and [21]) has been implemented by the author.

The main idea of the implementation for solving VERTEX COVER
consists of choosing a “good” Ic as a starting value. Then we check with
our algorithm for &VERTEX COVER if a solution exists. Depending on
whether the answer is yes or no we decrease or increase the value k and
repeat the checking of the procedure until an optimal Ic is computed.

Due to practical reasons this implementation is focused on input
graphs with no more than IV1 In jV[+ 4% edges. This limit is quite
reasonable since dense graphs are rather unlikely as input for conflict
graphs. Experiments show, that in random graphs with IV1 In IV1 edges
more than half of the vertices are contained in the vertex cover (Figure
11.1-11.9).

As a preprocessing step, we first compute an upper bound using the
greedy heuristic. Thus, we exploit its excellent performance for graphs
up to IV1 In IV1 edges, as shown in Figures 11.1-11.9.

Using Darwin, we produced a set of 1000 random graphs for 100 vertices
with varying number of edges. The vertex-cover sizes, computed with
the different methods, and the corresponding CPU times are shown in
the following figures. We observed that the greedy heuristic failed to
produce an exact solution for approximately 15% of the input graphs
whereas the Gonnet heuristic only failed for approximately 1% of the
graphs. We obtained similar performance figures for random graphs
with 200 vertices. The experiments ran on one processor 336 MHz SUN
Enterprise 3500 with 6 processors and 3 GByte RAM.

126 Experiments

Figure 11.1: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 100 and 200 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black. If the blue line is not visible then the
black and the blue coincide.

127

Figure 11.2: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 200 and 300 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black. If the blue line is not visible then the
black and the blue coincide.

128 Experiments

Figure 11.3: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 300 and 400 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black. If the blue line is not visible then the
black and the blue coincide.

129

Figure 11.4: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 400 and 500 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black. If the blue line is not visible then the
black and the blue coincide.

130 Experiments

Figure 11.5: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 500 and 600 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black.

131

Figure 11.6: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 600 and 700 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black.

132 ExDeriments

Figure 11.7: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 700 and 800 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black.

133

Figure 11.8: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 800 and 900 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black.

134 Experiments

Figure 11.9: The computed size of the vertex covers (i.e., ordinate) for
graphs of 100 vertices with an edge number between 900 and 1000 (i.e.,
abscissa). The results of the algorithm based on the greedy heuristic
are displayed with red lines, the algorithm based on the heuristic by
Gonnet with blue lines, and the results of the fixed-parameter-tractable
algorithm are presented in black.

135

Figure 11.10: The computed CPU times (i.e., ordinate) for graphs of 100
vertices with an edge number between 100 and 200 (i.e., abscissa). The
results of the algorithm based on the greedy heuristic are displayed with
red lines, the algorithm based on the heuristic by Gonnet with blue lines,
and the results of the fixed-parameter-tractable algorithm are presented
in black.

136 Experiments

Figure 11.11: The computed CPU times (i.e., ordinate) for graphs of 100
vertices with an edge number between 200 and 300 (i.e., abscissa). The
results of the algorithm based on the greedy heuristic are displayed with
red lines, the algorithm based on the heuristic by Gonnet with blue lines,
and the results of the fixed-parameter-tractable algorithm are presented
in black.

137

Figure 11.12: The computed CPU times (i.e., ordinate) for graphs of 100
vertices with an edge number between 300 and 400 (i.e., abscissa). The
results of the algorithm based on the greedy heuristic are displayed with
red lines, the algorithm based on the heuristic by Gonnet with blue lines,
and the results of the fixed-parameter-tractable algorithm are presented
in black.

138 Experiments

Figure 11.13: The computed CPU times (i.e., ordinate) for graphs of 100
vertices with an edge number between 400 and 500 (i.e., abscissa). The
results of the algorithm based on the greedy heuristic are displayed with
red lines, the algorithm based on the heuristic by Gonnet with blue lines,
and the results of the fixed-parameter-tractable algorithm are presented
in black.

139

Figure 11.14: The computed CPU times (i.e., ordinate) for graphs of 100
vertices with an edge number between 500 and 600 (i.e., abscissa). The
results of the algorithm based on the greedy heuristic are displayed with
red lines, the algorithm based on the heuristic by Gonnet with blue lines,
and the results of the fixed-parameter-tractable algorithm are presented
in black.

140 ExDeriments

Figure 11.15: Here we compare the CPU time (i.e., ordinate) of the
F’IV--implementation with the greedy heuristic as preprocessing (green)
and Gonnet’s heuristic (red) as a preprocessing step for dense graphs
(900 < [El 5 1000; i.e., abscissa). The differences in the running time is
attributed to the different starting values resulting from the heuristics.
Though the red line looks more stable in the running time, the average
is worse. The average CPU time of the algorithm which uses the greedy
heuristic as a preprocessing step is 62.256, the average CPU time of
the algorithm which uses Gonnet’s heuristic as a preprocessing step is
67.087.

Part IV

Conclusions and Open
Questions

Chapter 12

Conclusions

The main goal of this research has been to investigate mathematical
models and algorithms for conflict resolution in molecular sequence data.
Constructing evolutionary trees from DNA sequence data is an impor-
tant and timely topic in computational biology.

Part I of this thesis provided motivation for this research and intro-
duced definitions and terms from graph theory, classical computational
complexity, and parameterized computational complexity used in sub-
sequent chapters. Part II investigated how to resolve inconsistencies
between gene trees and species trees. In Part III we developed a new
fixed-parameter-tractable algorithm for VERTEX COVER to resolve con-
flict graphs. ’

12.1 Summary of Contributions

The main contributions from this thesis are as follows:

l a survey of mathematical models for contradictory trees

l development of the explanation-tree model

l a survey and development of models for gene duplication events

l definition and complexity analysis of the SMALLEST COMMON Su-
PERTREE problem

l a fixed-parameter-tractable algorithm for the GENE DUPLICATION
problem

144 Conclusions

l definition of the BALL-AND-TRAP GAME and complexity analysis
of parameterizations of the BALL-AND-TRAP GAME

l complexity analysis of the MULTIPLE GENE DUPLICATION pro-
blem using the -AND-TRAP GAME

l definition of a conflict graph model for multiple sequence align-
ments

l a survey of known fixed-parameter-tractable algorithms for the Ic-
VERTEX-COVER problem

l an improved kernelization and search tree for the ~-VERTEX-COVER
problem

l a time complexity of O(kn + r”k), T M 1.2906, for our L-VERTEX
COVER algorithm

l an implementation of our ~-VERTEX COVER algorithm and com-
parison

12.1.1 A Survey of Mathematical Models for Con-
tradictory Trees

Chapters 4 and 5 present a survey of known methods-consensus me-
thods, agreement methods, and the duplication-loss approach-for com-
puting trees summarizing the common properties of a given set of con-
tradictory trees over a leafset. The most popular consensus tree is the
Adams consensus tree [l, 2, 53, 54, 70, 721. The most famous agree-
ment tree is the Maximum Agreement Subtree (MAST) [70]. While
consensus and agreement subtrees preserve mathematical properties of
trees, they provide little intuitive biological interpretation. In contrast,
the duplication-loss approach [36] explains the differences between a
given gene tree and a species tree with the minimum number of gene-
duplication events and gene losses necessary to rectify the gene tree
with respect to the species tree and, thus, affords an easy to interpret
biological explanation.

12.1.2 Development of the Explanation-Tree Model

Chapter 5 surveys and develops models for counting evolutionary events.
In Section 5.1 we model the history of a gene tree for a given species tree

12.1 Summary of Contributions 145

by means of a cost function. This function assigns a value reflecting the
number of evolutionary events in the history of the gene tree with respect
to the species tree. The whole history of the gene tree with respect to
a given species tree can be viewed by means of the explanation tree.
The event function and a tree-stable location function determine the
explanation tree. Section 5.1 showed that an explanation tree is leaf-
labeled isomorphic to its gene tree.

12.1.3 A Survey and Development of Models for Gene-
Duplication Events

Sections 5.2-5.4 formalize the DUPLICATION-AND-LOSS MODEL, the
GENE-DUPLICATION MODEL, and the MULTIPLE-GENE-DUPLICATION
MODEL. The basis for each model is a cost function, an event function,
and a tree-stable location function. Each model results in a problem
statement, namely, DUPLICATION AND Loss, GENE DUPLICATION, and
MULTIPLE GENE DUPLICATION.

12.1.4 Definition and Complexity Analysis of the
Smallest-Common-Supertree Problem

The smallest common supertree of a set of gene trees implies a lower
bound for the number of gene-duplication events necessary to rectify
the gene trees with respect to a species tree (cf. Section 6.1). In Section
6.2 we show that the SMALLEST COMMON SUPERTREE problem is NP-
complete and W[l]-hard when parameterized by the number of input
trees. The hardness is shown by reduction from the SHORTEST COM-
MON SUPERSEQUENCE problem. The problem becomes fixed-parameter
tractable if we allow a bounded number of additional leaves (cf. Theorem
6.5) [25, 271.

12.1.5 An Fixed-Parameter-Tractable Algorithm for
the Gene-Duplication Problem

Section 7.2 develops our fixed-parameter tractable algorithm for a para-
meterized version of the GENE DUPLICATION problem. This algorithm
was implemented as a C program and tested using small samples of data.

146 Conclusions

12.1.6 Definition of the Ball-and-Trap Game and
Complexity Analysis of Parameterizations of
the Ball-and-Trap Game

Section 8.1 defines the BALL-AND-TRAP GAME, which is a combinatorial
game played on a rooted tree decorated with traps and balls. The score
of the tree is defined as the sum of the scores over all vertices. The score
of a vertex is defined as the maximum number of balls colored with
the same color. The goal of the game is to execute defined moves such
that the score of the tree is minimized. Several parameterizations of the
BALL-AND-TRAP GAME are formalized in Section 8.2. In Section 8.3
the BALL-AND-TRAP GAME is shown to be N’P-complete. Furthermore,
two parameterizations of the BALL-AND-TRAP GAME are shown to be
W[l]-hard.

12.1.7 Complexity Analysis of the Multiple-Gene-
Duplication Problem using the Ball-and-Trap
Game

The BALL-AND-TRAP GAME is a simplification of the MULTIPLE GENE
DUPLICATION problem. We show a reduction from a restricted form of
MULTIPLE GENE DUPLICATION to BALL-AND-TRAP (cf. Section 8.1).
We then show in Section 8.4 a reduction from a W[l]-hard parameteriza-
tion of BALL AND TRAP back to a parameterization of MULTIPLE GENE
DUPLICATION thereby showing that the MULTIPLE GENE DUPLICATION
problem is NP-complete and W[l]-hard [26].

12.1.8 Definition of a Conflict Graph Model for Mul-
tiple Sequence Alignments

Constructing Multiple Sequence Alignments (MSAs) is a fundamental
problem in computational biology. The known algorithms computing
MSAs usually fail to produce an exact solution corresponding to the
underlying model due to the NP-hardness of the problem [13, 34, 39,
44, 711. The main problem is the misplacement of gaps. Therefore
we can view the problem of computing MSAs as a problem of inserting
gaps at the correct places [48,49]. We model this problem by means of a
conflict graph where the vertices and edges represent gaps and conflicts,
respectively. The goal is to identify the the minimum number of gaps

12.1 Summary of Contributions 147

which prevent the construction of a unique evolutionary tree. Hence, we
have transformed the problem into the VERTEX COVER problem [49].

12.1.9 A Survey of Known Fixed-Parameter-Tractable
Algorithms for the k-Vertex-Cover Problem

Chapter 9 presents a survey of known fixed-parameter-tractable algorithms
for the ~-VERTEX COVER problem, where k is the size of the vertex cover
to be determined. The table below is a summary of this survey.

Authors Refs Approach Time Klam

Fellows [24] Bounded
Complexity Value

W”n) -
search tree

Buss & Goldsmith [ll] Reduction to a O(kn + kzk+‘) 9
problem kernel

Papadimitriou & [60] Maximal matching OWn) -
Yannakakis
Downey & Fellows [19] Combining [ll]

and [60]
O(kn + 3”k”) 35

Downey & Fellows [18] Combining [24] O(kn + 2”k2) 54

Balasubramanian,
Fellows & Raman

Downey, Fellows
& Stege

Niedermeier &
Rossmanith
Chapter 10 of
this thesis

and [11]
[41 Combining [18] O(kn + r”k’)

with an improved I- zz 1.3247
search tree

[21] Better kernelization O(kn + r”k2)
and improved T M 1.3195
search tree

[58] Improved O(kn + r”k”)
search tree r M 1.2917
Combining [21] O(kn + r”k)
and [58] and an T M 1.2906
improved
kernelization and
search tree

129

130

141

157

12.1.10 An improved Kernelization and Search Tree
for the k-Vertex-Cover problem

The main approach to reducing the time complexity of algorithms for
~-VERTEX COVER is to improve on the problem kernel and the search

148 Conclusions

tree. In Chapter 10 we presented an improved kernelization, which is
accomplished by new reduction rules and an improved structure of the
search tree. The main idea of the new kernelization is to bound the
degree at each vertex of the search tree to a fixed range (i.e., 4-6).
This is accomplished by introducing additional reduction rules and the
branching in the search tree. The new reduction rules use the concept of
adding edges. The instance (G, t?) is transformed into an instance (G’, k’)
by adding edges and deleting vertices, such that G has a k-vertex cover
if and only if G’ has a /?-vertex cover. The main idea of the improved
search tree is to branch at degree 7, which leads to a graph size linear
in k. The result is a new fixed-parameter-tractable algorithm for the
~-VERTEX COVER problem.

Section 10.5 presents further reduction rules, which could be applied
if the graph input size is dense or large.

12.1.11 A Time Complexity of O(kn + r”k), where
T M 1.2906, for our k-Vertex-Cover Algorithm

The time complexity of the algorithm is basically determined by Rule 1
of the kernelization phase and Step 3 of the search-tree-building phase.
Because we were able to bound the degree of each vertex to a fixed range,
we were able to apply a theorem by Bollobas [9] to show that the graph
size, after this step, is linear in k. The overall time complexity of our
~-VERTEX COVER algorithm is O(lcn + r”lc), where r M 1.2906. The
klam value for this algorithm is 157, which is an improvement of 16 over
the algorithm by Niedermeier and Rossmanith [58].

12.1.12 An Implementation of our k-Vertex-Cover
Algorithm and Comparison

We implemented our new fixed-parameter-tractable algorithm for VER-
TEX COVER and integrated it into the Darwin system [35]. The main
idea is to choose a “good” Ic as a starting value and then use our al-
gorithm to check whether the solution is optimal. If it is not optimal,
decrement Ic until an optimal solution is found. The implementation is
designed for input graphs with at most IIf In IV1 + 4g edges, which is
a reasonable assumption since conflict graphs are usually sparse.

Using Darwin, we conducted selected experiments to compare our al-
gorithm with respect to optimality and CPU-time with two algorithms

12.2 Ouen Problems and Future Work 149

which employ the greedy heuristic and the Gonnet heuristic, respec-
tively, to compute the vertex cover of the input graph. We used 1000
random graphs with a fixed number of 100 vertices and a number of edges
in the range of 100 to 1000. Of course our fixed-parameter-tractable
algorithm produces an exact solution for every input graph. We ob-
served that the greedy heuristic failed to produce an exact solution for
approximately 15% of the input graphs, whereas the Gonnet heuristic
only failed for approximately 1% of the graphs. For sparse graphs, our
fixed-parameter-tractable algorithm performs better than the algorithms
based on heuristics.

12.2 Open Problems and Future Work

In this section we formulate open problems for three of the research
topics this dissertation investigated: GENE DUPLICATION, MULTIPLE
GENE DUPLICATION, and VERTEX COVER.

12.2.1 Open Problems in the Area of Gene Duplica-
tion

l The fixed-parameter-tractable algorithm solving GENE DUPLICA-
TION is based on a bounded search tree only. Since a kernelization
for each fixed-parameter-tractable problem exists [al], it is worth-
while to investigate an efficient kernelization as a preprocessing
step.

l Moreover, the search tree used in the fixed-parameter-tractable
algorithm for GENE DUPLICATION can probably be further im-
proved.

l Conduct extensive experiments using real DNA data sets.

12.2.2 Open Problems in the Area of Multiple Gene
Duplication

l We did not find reasonable tractable parameterizations of the NP-
complete problem MULTIPLE GENE DUPLICATION. One approach
worth pursuing is the question whether there is a reasonable trac-
table parameterization of the BALL-AND-TRAP GAME to develop

150 Conclusions

an algorithm for MULTIPLE GENE DUPLICATION. Another ap-
proach is to investigate a more relaxed formulation of this model.

l If no reasonable fixed-parameter-tractable algorithm is found, heur-
istics could be developed for the MULTIPLE GENE DUPLICATION
PROBLEMin order to conduct extensive experiments using real DNA
data sets.

12.2.3 Open Problems in the Area of k-vertex Cover

l Because several reduction rules to get rid of special cases of degree
4 vertices are known, it is an interesting question whether one
can develop further reduction rules such that all of the degree 4
vertices can be eliminated. This would further improve the running
time of our fixed-parameter-tractable algorithm solving ~-VERTEX
COVER.

l The efficiency of our current implementation of the fixed-param-
eter-tractable VERTEX COVER algorithm could be improved by
storing intermediate results and reusing them in other branches of
the tree using clever bookkeeping or hashing schemes.

l The implementation could also be improved for dense graphs. For
dense graphs both the greedy algorithm and the Gonnet heuristic
algorithm deviate more from the optimal solution than for sparse
graphs. Thus, the amount of work to be done for the ~-VERTEX
COVER algorithm to find an optimal is prohibitive. Better upper
bounds for dense graphs are also needed.

l Moreover, the additional reduction rules presented in Section 10.5
could be applied if the graph input size is dense and/or large. In
this cases, it would pay off to spend more time preprocessing to
reduce the size of the search tree.

Bibliography

[l] Edward N. Adams. Consensus techniques and the comparison of
taxonomic trees. In Syst. Zool., volume 21, pages 390-397, 1972.

[2] Edward N. Adams. N-trees are nestings: Complexity, similarity,
and consensus. Journal of Classification, 3:299-317, 1986.

[3] Amihood Amir and Dmitry Keselman. Maximum agreement sub-
trees in a set of evolutionary trees -metrics and efficient algorithms.
In 35th Annual Symposium on Foundations of Computer Science,
pages 758-769, 1994.

[4] R. Balasubramanian, Michael R. Fellows, and Venkatesh Raman.
An improved fixed-parameter algorithm for Vertex Cover. Infor-
mation Processing Letters, 65:163-168, 1998.

[5] Jean-Pierre BarthClemy. Thresholded Consensus for n-Trees. Jour-
nal of Classification, 5:229-236, 1988.

[6] Jean-Pierre Barthklemy, Bruno Leclerc, and Bernard Monjardet.
On the use of ordered sets in problems of comparison and consensus
of classifications. Journal of Classlification, 3:187-224, 1986.

[7] Jean-Pierre Barthklemy and F.R. McMorris. The median procedure
for n-trees. Journal of Classification, 3:329-334, 1986.

[8] Steven Benner and Andrew Ellington. Evolution and structural the-
ory. The frontier between chemistry and biochemistry. Bioorganic
Chemistry Frontiers, l:l-70, 1990.

[9] Bbla Bollobbs. Extremal Graph Theory. Academic Press, London,
1978.

152 Bibliography

[lo] David Bryant. Building Trees, Hunting for trees, and Comparing
Trees-Theory and Methods in Phylogenetic Analysis. PhD thesis,
University of Canterbury, 1997.

[ll] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P.
SIAM Journal of Computing, 22:560-572,1993.

[12] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fel-
lows. The parameterized complexity of the short computation and
factorization. Arch. for Math. Logic, 36:321-337, 1997.

[13] Humberto Carillo and David Lipman. The multiple sequence align-
ment problem in biology. SIAM J. Appl. Math., 48(5):1073-1082,
1988.

[14] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex Cover: Fnr-
ther observations and further improvements. In 25th Interna-
tional Workshop on Graph-Theoretical Concepts in Computer Sci-
ence (WG’99), LNCS, 1999.

[15] Rodney G. Downey and Michael R. Fellows. Fixed parameter in-
tractability. In IEEE Proc. Structure in Complexity Theory, pages
36-50, 1992.

[16] Rodney G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness. Congressus Numerantium, 87:161-
187, 1992.

[17] Rodney G. Downey and Michael R. Fellows. Fixed parameter
tractability and completeness I: Basic theory. SIAM Journal of
Computing, 24:873-921, 1995.

[18] Rodney G. Downey and Michael R. Fellows. Fixed parameter
tractability and completeness II: Completeness for W[l]. Theo-
retical Computer Science A, 141:109-131, 1995.

[19] Rodney G. Downey and Michael R. Fellows. Parameterized Com-
plesity. Springer-Verlag, 1998.

[20] Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. Com-
putational tractability: A view from Mars. Bulletin of EATCS,
September 1999.

Bibliography 153

[21] Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. Con-
temporary Trends in Discrete Mathematics: From DIMACS and
DIMATIA to the Future, volume 49 of AMS-DIMACS, chapter
Parameterized Complexity: A Framework for Systematically Con-
fronting Computational Intractability, pages 49-99. AMS, 1999.

[22] Oliver Eulenstein, Boris Mirkin, and Martin Vingron. Duplication-
based measures of difference between gene and species trees. Journal
of Computational Biology, 5(1):135-148, 1998.

[23] Martin Farach, Teresa Przytycka, and Mikkel Thorup. On the
agreement of many trees. Information Processing Letters, 55:297-
301, 1990.

[24] Michael R. Fellows. On the complexity of vertex set problems.
Technical report, Computer Science Department, University of New
Mexico, 1988.

[25] Michael R. Fellows, Michael T. Hallett, Chantal Korostensky, and
Ulrike Stege. Analogs & duals of the MAST problem for sequences
& trees. In 6th Annual. European Sympoium on Algorithms (ESA
981, volume 1461 of LNCS, pages 103-114,1998.

[26] Michael R. Fellows, Michael T. Hallett, and Ulrike Stege. On the
Multiple Gene Duplication problem. In Algorithms and Compu-
tation, 9th International Symposium, ISAAC’SB, volume 1533 of
LNCS, pages 347-356. Springer-Verlag, 1998.

[27] Michael R. Fellows, Michael T. Hallett, and Ulrike Stege. Analogs &
duals of the MAST problem for sequences & trees. journal version,
unpublished, 1999.

[28] Michael R. Fellows and Michael A. Langston. Nonconstructive ad-
vances in polynomial-time complexity. Inform. Process. Letters,
28:157-162,1987/88.

[29] Joseph Felsenstein. Phylogenies from molecular sequences: Infer-
ence and reliability. Annu. Rev. Genet, 22:521-565, 1988.

[30] Henning Fernau and Rolf Niedermeier. An efficient exact algorithm
for constraint bipartite Vertex Cover. In MFCS’QS, 1999.

154 Bibliography

[31] Michael R. Garey and David S. Johnson. Computers and Intrac-
tability-A guide to the Theory of NP-Completeness. A Series of
Books in the Mathematical Sciences. W.H. Freeman and Company,
New York, 1979.

[32] Fred W. Glover, editor. Journal of Heuristics. Kluwer Academic
Publishers, 1995.

[33] W. Goddard, E. Kubicka, G. Kubicki, and F.R. Morris. The agree-
ment metric for labelled binary trees. Mathematical Biosciences,
123:215-226,1994.

[34] Gaston H. Gonnet and Steven A. Benner. Probabilistic ancestral se-
quences and multiple alignments. In Fifth Scandinavian Worlcshop
on Algorithm Theory, Reykjeuik, 1996.

[35] Gaston H. Gonnet and Michael T. Hallett. The Darwin manual. to
be published, 1999.

[36] M. Goodman, J. Czelusniak, G.W. Moore, A.E. Romero-Herrera,
and G. Matsuda. Fitting the gene lineage into its species lineage:
A parsimony strategy illustrated by cladograms constructed from
globin sequences. Syst. Zool., 28:132-163, 1979.

[37] J.P. Grime and M.A. Mowforth. Variation in genome size and eco-
logical interpretation. Nature, 299:151-153, 1982.

[38] R. Guigo, I. Muchnik, and T.F. Smith. Reconstruction of an-
cient molecular phylogeny. Molecular Phylogenetics and Evolution,
6(2):189-213, 1996.

[39] Sandeep K. Gupta, John Kececioglu, and Alejandro A. Schaffer.
Improving the practical space and time efficiency of the shortest-
paths approach to sum-of-pairs multiple sequence alignment. In J.
Computational Biology, 1996.

[40] David Hare1 and Robert Tarjan. Fast algorithms for finding nearest
common ancestors. SIAM Journal of Computing, 13:338-355,1984.

[41] Jotun Hein, Tao Jiang, Lusheng Wang, and Kaizhong Zhang. On
the complexity of comparing evolutionary trees. In Z. Galil and
E. Ukkonen, editors, Proceedings of the 6th Annual Symposium on
Combinatorial Pattern Matching, number 937 in LNCS, pages 177-
190. Springer-Verlag, Berlin, 1995.

Bibliography 155

[42] D.M. Hillis, C. Moritz, and B.K. Mable, editors. Molecular System-
atics. Sinauer Associates, Inc., 2nd edition, 1996.

[43] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard
Problems. PWS Publishing Company, Boston, MA, 1996.

[44] Xiaoqiu Huang. On global sequence alignment.
10(3):227-235, 1994.

CABIOS,

[45] David S. Johnson. Approximation algorithms for combinatorial
problems. Journal of Computer and System Sciences, 9:256-278,
1974.

[46] Richard M. Karp. Reducibility Among Combinatorial Problems,
pages 85-103. Plenum Press, NY, 1972.

[47] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art
of Computer Programming. Addison-Wesley, 3rd edition, 1997.

[48] Chantal Korostensky. Algorithms for multiple sequence alignments
and evolutionary trees. PhD-thesis draft, 2000.

[49] Chantal Korostensky, Ulrike Stege, and Gaston Gonnet. Using
insertion and deletion events for improving multiple sequence
alignments and building the corresponding evolutionary tree.
manuscript, September 1999.

[50] Jens Lagergren, 1999. personal communication.

[51] When-Hsiung Li. Molecular Evolution. Sinauer Associates, 1997.

[52] B. Ma, M. L’ I, and L. Zhang. On reconstructing species trees from
gene trees in term of duplications and losses. In Proceedings of the
Second Annual International Conference on Computational Molec-
ular Biology(Recomb 98), 1998.

[53] T. Margush and F.R. McMorris. Consensus n-trees. Bulletin of
Mathematical Biology, 43(2):239-244, 1981.

[54] F.R. McMorris, D.B. Meronk, and D.A. Neumann. Numerical Tax-
onomy, chapter A View of Some Consensus Methods for Trees,
pages 122-125. Springer-Verlag, Berlin Heidelberg, 1983.

156 Bibliography

[55] F.R. McMorris and M.A. Steel. The complexity of the median
procedure for binary trees. In Proceedings of the International Fed-
eration of Classification Societies, 1993, New York, 1993.

[56] B. Mirkin, I. Muchnik, and T.F. Smith. A biologically consistent
model for comparing molecular phylogenies. Journal of Computa-
tional Biology, 2(4):493-507, 1995.

[57] D.A. Neumann. Faithful consensus methods for n-trees. Mathemat-
ical Biosciences, 63:271-287, 1983.

[58] Rolf Niedermeier and Peter Rossmanith. Upper bounds for Vertex
Cover further improved. In Proceedings of the 16th Symposium on
Theoretical Aspects in Computer Science (STACS’99), LNCS, 1999.

[59] R.D.M. Page. Maps between trees and cladistic analysis of historical
associations among genes, organisms, and areas. Syst. Biol., 43:58-
77, 1994.

[60] C.H. Papadimitriou and M. Yannakakis. On limited nondetermin-
ism and the complexity of the V-C dimension. Journal of Computer
and System Sciences, 53(2):161-170, 1996.

[61] Cynthia A. Phillips and Tandy Warnow. The asymmetric median
tree-A new model for building consensus trees. In Combinatorial
Pattern Matching, 7th Annual Symposium, volume 1075 of LNCS,
pages 234-252, Laguna Beach, California, lo-12 June 1996.

[62] Teresa Przytycka. Sparse dynamic programming for maximum
agreement subtree problem. Mathematical Hierarchies and Biology
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 1997.

[63] H. Rees and R.N. Jones. The origin of the wide species variation in
nuclear DNA content. Int. Rev. Cytol., 32:53-92, 1972.

[64] B. Schieber and U. Vishkin. On finding lowest common ancestors:
simplifications and parallelizations. SIAM Journal of Computing,
17:1253-1262,1988.

[65] Mike Steel and Tandy Warnow. Kaikoura tree theorems: Com-
puting the maximum agreement subtree. Information Processing
Letters, 48(2):77-82, November 1993.

Bibliography 157

[66] Ulrike Stege. Gene trees and species trees: The Gene-Duplication
problem is fixed-parameter tractable. In 6th International Work-
shop on Algorithms and Data Structures (WADS’99), volume 1663
of LNCS, 1999. (For a long version see: Tech. Rep. 319, Department
of Computer Science, ETH Ziirich).

[67] Ulrike Stege and Michael R. Fellows. An improved fixed-parameter-
tractable algorithm for Vertex Cover. Technical Report 318, De-
partment of Computer Science, ETH Ziirich, April 1999.

[68] Ralph Stinebrickner. s-consensus trees and indices. Bulletin of
Mathematical Biology, 46:923-935, 1984.

[69] Ralph Stinebrickner. s-consensus index methods: An additional
axiom. Journal of Classification, 3:319-327, 1986.

[70] D.L. Swofford. Phylogenetic analysis of DNA sequences, chapter
When are phylogeny estimates from molecular and morphological
data incongruent?, pages 295-333. Oxford University Press, 1991.

[71] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W:
improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, positions-specific gap penalties
and weight matrix choice. Nucleic Acids Research, 22:4673-4680,
1994.

[72] M. Wilkinson. Common cladistic information and its consensus rep-
resentation: reduced Adams and reduced cladistic consensus trees
and profiles. Systematic Biology, 43(3):343-368, 1994.

[73] L. Zhang. On a Mirkin-Muchnik-Smith conjecture for comparing
molecular phylogenies. Journal of Computational Biology, 4(2),
1997.

Curriculum Vitae
1969, May 1 Born in Mannheim, Germany

1975-79 Grundschule (Wilhelm-Leuschner-Schule) in

Ludwigshafen am Rhein

1979-88 Staatliches Theodor-Heuss-Gymnasium in

Ludwigshafen am Rhein (Abitur)

1988-94 Albert-Ludwigs-Universitat Fkeiburg im Breisgau:
Diploma in Mathematics

1994-97 Ph. D. student and teaching assistent in the group
of Prof. P. Widmayer (Institute of Theoretical
Computer Science), Department of Computer
Science, ETH Ziirich, Switzerland

1997-99 Ph. D. student and teaching assistent in the
Computational Biochemistry Research Group
(Head: Prof. G. Gonnet), Department of Computer
Science, ETH Ziirich, Switzerland

