
1

RNA

Secondary Structures

Computational Molecular Biology, COMP 4900/5108. Winter 2006



2

What is secondary structure?

• Set of canonical {AU,CG} basepairs that form via hydrogen
bonding when the molecule folds.

They are called Watson-Crick basepairs.

• Also basepair GU is possible.

• Each base forms at most one pair

• Depends on temperature, ionic concentration, presence of
metabolites, other environmental factors
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What is secondary structure?

• There are three possible representations of secondary structure:

– graphical,

– dot-bracket,

– dot-plot
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RNA Graphical and Dot-Bracket Representations
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From Graphical to Dot-Bracket

There is a simple way to convert a Graphical representation to a
Dot-bracket representation and vice versa.

• Think of the links in the graphical representation as being
formed from elastic band.

• Stretch the outer opening, in this case AU , until the whole
RNA strand lies flat on a line.

• Stretch the remaining basepairs accordingly.
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Stretching: From Graphical to Dot-Bracket
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Dot-Plot Representation

List the bases in a column and a row in the order they occur in the
RNA string.

U UCGCAAAUGGGGCGCCCACACA G C G
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Put a “dot” in positions (i, j), (j, i) if there is a basepair linking
bases in positions i and j.
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Another Example
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Stems, Loops, Multiloops
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Internal loops containing unpaired bases are called bulges.
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Basepair
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RNA structures are essential for

• transcriptional and post-transcriptional regulation (iron
response elements in UTRs of eukaryote transcripts,
micro-RNAs from genomic sequences)

• expression of HIV genes (rev-response element, TAR hairpin)

• mediation of insertion of selenocysteine (RNA structural
element prevents translation termination at a UGA codon and
instead inserts selenocysteine)

• splicing

• perhaps helps explain 5% of highly-conserved non-genic
sequence observed in vertebrates?
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Why Study RNA Structure?

Tools to prediction of RNA structure help us

• gain insight on the genome

• shed insight on RNA 3D structure and ultimately function

• better align RNA sequences

• establish phylogenetic relationships among organisms

• design good microarray probes, or RNA molecules for disease
therapy
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How Many Secondary Structures?

• Forget about A,U, C, G: and number the bases 1 . . . n.

• Let S(n) be the number of secondary structures for the
sequence 1 . . . n.

• What is S(n)? Well, S(0) = 0.

• From the picture below: S(1) = S(2) = 1 and S(3) = 2.

1 2

1 2

1

1 2 33
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A Recursive Assumption

• Assume that we know S(k), for all k < n. Can we compute
S(n)? There are two cases.

• Either n is not paired with any other element, in which case we
count S(n− 1) secondary structures.

1 2 n−1 nt

• Or else n is paired with some other element t < n,

1 2 n−1 nt

and therefore secondary structures are formed in [1, t− 1] and
[t + 1, n− 1].
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A Recursive Equation

It follows that S(n) satisfies the recursive equation

S(n) = S(n− 1) + S(n− 2) + S(n− 3)S(1) + · · ·+ S(n− 3)S(1)

= S(n− 1) + S(n− 2) +
n−2∑
t=2

S(t− 1)S(n− 1− t)

• How do you solve this equation and determine S(n)?

• Method uses generating functions! Think of S(n) as the
coefficients of a continuous function f(x)

y := f(x) =
∞∑

n=1

S(n)xn.

• Can you find a functional equation satisfied by f(x)?
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A Functional Equation

Abbreviate an := S(n). Recall that a0 = 0, a1 = a2 = 1. We have
shown that

an = an−1 + an−2 +
n−2∑
t=2

at−1an−1−t

Multiply both sides of equation by xn to obtain

anxn = xan−1x
n−1 + x2an−2x

n−2 + x2
n−2∑
t=2

xt−1at−1x
n−t−1an−1−t

and take sums of both sides from n = 2 to ∞ and you derive the
following equation y − x = xy + x2y + x2y2, which implies that

x2y2 + (x2 + x− 1)y + x = 0
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Asymptotic Formula

If we define F (x, y) := x2y2 + (x2 + x− 1)y + x then it follows from
Bender’s theorem that if (r, s) is the unique solution of the system

F (r, s) = r2s2 + (r2 + r − 1)s + r = 0 (1)
∂F

∂y
(r, s) = 2r2s + r2 + r − 1 = 0 (2)

then

S(n) ∼

√
rFx(r, s)

2πFyy(r, s)
n−3/2r−n. (3)

It follows that

S(n) ∼

√
15 + 7

√
5

8π
n−3/2

(
3 +

√
5

2

)n

.
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Secondary Structures with Exactly k Basepairs

Define Sn,k as the set of secondary strucrures on [1, n] with exactly
k basepairs.

Let S(n, k) number of secondary strucrures on [1, n] with exactly k

basepairs. So S(n, k) = |Sn,k|.

Clearly,

S(n) =
bn/2c∑
k=0

S(n, k)

and it is easy to show as before that

S(n, k) = S(n− 1, k) +
n−2∑
j=1

k−1∑
i=0

S(j − 1, i)S(n− 1− j, k − 1− i)

Can we compute S(n, k)?
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Recursion

• Either n is not paired with any other element, in which case we
count S(n− 1, k) secondary structures.

1 2 n−1 nt

• Or else n is paired with some other element t < n. Remove this
basepair and you have k − 1 basepairs left.

1 2 n−1 nt

Then for some i ≤ k − 1, i basepairs are formed in [1, t− 1] and
the remaining k − 1− i basepairs in [t + 1, n− 1].
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Equivalence of Trees and Secondary Structures

• A linear tree is a rooted tree along with a linear order on the
set of children of each vertex.

• Let Tn,k the set of unlabeled linear trees with n vertices and
n− k leaves.

• Let T (n, k) := |Tn,k|.
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Example: The six trees of T5,3

Example: The six trees in T5,3

2 31 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3
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Poincare Duality: Trees and Secondary Structures

There is a bijection
Sn+k−2,k−1 → Tn,k.

The algorithm is as follows:

1. Take a member of Sn+k−2,k−1 in loop form.

2. Put a node (the root) of the tree above the figure outside all
loops.

3. Insert a node inside all loops visible from this node and
connect them all to this node.

4. Iterate recursively.

Hence,
S(n + k − 2, k − 1) = T (n, k).
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Example: Equivalence of Trees and Secondary Structures

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13
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Number of Trees

• It can be shown that

T (n, k) =
1

k − 1

(
n− 1

k

)(
n− 2
k − 2

)
• A well-known argument is being used here (See L. Lovasz,

Comb. Prob. and Exercises, NH, 1979, 4.1 and 4.8): Consider
n points u1, . . . , un and n integers d1, . . . , dn such that
d1 + · · · dn = 2n− 2. The number of trees on points u1, . . . , un

in which ui has degree di is given by the formula

(n− 2)!
(d1 − 1)! · · · (dn − 1)!

• Observe that leaves have degree 1.

• Details of the rest of the proof of this are beyond our scope.
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Number of Secondary Strauctures

• At least we can use this last formula to derive the number of
secondary structures with a given number os basepairs.

• Using the previous bijection

S(n, k) = T (n− k + 1, k + 1)

=
1
k

(
n− k

k + 1

)(
n− k + 1

k − 1

)
.

The reality is far more more complex: individual bases are
“linked” with a certain energy!
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MFE (minimum free energy) approach

Used to predict secondary structure.

• Hypothesis: an RNA molecule will fold into that secondary
structure that minimizes its free energy

• Free energy of a structure (at fixed temperature, ionic
concentration) is sum of loop energies

• Tables of loop energies are used to calculate energy of a
structure

Given an energy table what is the secondary structure with
minimum free energy?
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Minimum Free Energy

• Given an energy table, E.g.,
Basepair −1

Internal Loop +1.1

• Is this an MFE secondary structure?
C

G

A

A

G

C

A

C
C G
C G

A C

U G

G U

C A

G

A U

C
GC

Computational Molecular Biology, COMP 4900/5108. Winter 2006



27

Naive Algorithm

• Naive Algorithm:

1. Enumerate all possible secondary structures;

2. Calculate energy of each;

3. Output that structure which has lowest energy

• Problem: many structures to enumerate! A 50mer could have
more than 5000 billion structures

• DP (dynamic programming) algorithm: avoids this problem,
but minimizes over restricted structure types

Computational Molecular Biology, COMP 4900/5108. Winter 2006



28

Ruth Nussinov and Ann Jacobson, 1980

• One of the first beautiful ideas in CMB!

• Based on the

“more is less” principle: by calculating more than you
need, less work is needed overall

• Construct mfe structure for whole strand from mfe structures
for substrands
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Minimum Free Energy

• Define

ρ(a, b) =

 1 if a, b can basepair

0 otherwise

• Given a sequence a1a2 · · · an in {A,U, C, G}n let Xi,j be the
max number of basepairs in aiai+1 · · · aj .

• Observe that Xi,j+1 is the maximum of Xi,j and

max{(Xi,l−1 + 1 + Xl+1,j)ρ(al, aj+1) : 1 ≤ l ≤ j − 1}

li j+1ji+1 i+2

• Time complexity is
∑

i<j≤n(j − i) ∈ O(n3).

Computational Molecular Biology, COMP 4900/5108. Winter 2006



30

Other Energy Contributions

Problem is in fact much more complex.

Other energy functions contribute to the free energy of a1a2 · · · an.

• α(a, b) = free energy of basepair {a, b}

• η = stacking energy of adjacent basepairs

• Destabilization energies

– ξ(k) = destabilization free-energy of an end loop of k bases

– β(k) = destabilization free-energy of bulge of k bases

– γ(k) = destabilization free-energy of an interior loop of k

bases
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Example: Other Energy Contributions
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A
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• ξ(k) = destabilization free-energy of an end loop of k bases

• β(k) = destabilization free-energy of bulge of k bases

• γ(k) = destabilization free-energy of an interior loop of k bases
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MFE for Hairpin Loops

Hi,j is min free energy single hairpin structure on aiai+1 · · · aj , for
i < j, where ai and aj basepair and there is a single end loop.

If ai and aj cannot basepair set Hi,j = ∞.

Hi,j is minimum of five quantities.

(a) End Loop: α(ai, aj) + ξ(j − i + 1)

j

i

(b) Helix Extension (stacking bps): α(ai, aj) + η + Hi+1,j−1

j

i

j−1

i+1
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MFE for Hairpin Loops

(c) Bulge: mink≥1{α(ai, aj) + β(k) + Hi+k+1,j−1}

j

i

j−1

i+k+1

(d) Bulge: mink≥1{α(ai, aj) + β(k) + Hi+1,j−k−1}

j

i i+1

j−k−1

(e) Interior Loop: minl,k≥1{α(ai, aj) + γ(l, k) + Hi+l+1,j−k−1}

j

i

j−k−1

i+l+1
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Computation Time

Time Complexity is O(n4). Why?

Take each of the five steps previously described.

• Steps (a) & (b): ∑
1≤i<j≤n

1 ∈ O(n2)

• Steps (c) & (d): ∑
1≤i<j≤n

(j − i) ∈ O(n3)

• Step (e): ∑
1≤i<j≤n

 ∑
i′≤i<j≤j′

1

 ∈ O(n4)
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Dynamic Programming

• Construct a matrix (Hi,j):

an an−1 · · · a2 a1

a1 H1,n H1,n−1 · · · H1,2 H1,1

a2 H2,n H2,n−1 · · · H2,2

...
...

... · · ·
an−1 Hn−1,n Hn−1,n−1

an Hn,n

• If ai and aj cannot basepair set Hi,j = ∞.

• If ai and aj can basepair and j − i− 1 ≥ m (m is the min
endloop size) Hi,j to the value computed before.
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Dynamic Programming: Reducing Computation Time

Note that interior loops must be of size ≥ m, for some value m.
Now Hi,j results from the five situations:

• End Loop: α(ai, aj) + ξ(j − i + 1)
• Helix Extension: α(ai, aj) + η + Hi+1,j−1

• Bulge: mink≥1{α(ai, aj) + β(k) + Hi+k+1,j−1}
• Bulge: mink≥1{α(ai, aj) + β(k) + Hi+1,j−k−1}
• Interior Loop: minl,k≥1{α(ai, aj) + γ(l, k) + Hi+l+1,j−k−1}

j j − 1 j − 2 · · ·
i α

i + 1 η β

i + 2 β γ
...
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Reducing Computation Time to O(n3)

• Given a pair (i, j), consider the set of candidate positions
Cd(i, j) = {(k, l) : l − k − 1 ≥ m, k ≥ i + 2, j − 2 ≥ l}

• The interior loop has size
s = (j − i− 1)− (l − k + 1) = (j − i)− (l − k)− 2

• Along lines such that l − k = constant the interior loop
destabilization function γ(s) is constant.

• For each pair (i, j) store the values
H∗

i,j(s) := min{Hk,l : (k, l) ∈ Cd(i, j)&s = (j − i)− (l − k)− 2}

• When moving from j − i = c to j − i = c + 1 each vector can be
updated in time O(n).

• Best interior loop: min{α(ai, bj) + γ((j− i)− (k− l)) + H∗
i,j(s)}
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