RNA

Secondary Structures
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What is secondary structure?

Set of canonical { AU, CG} basepairs that form via hydrogen

bonding when the molecule folds.

They are called Watson-Crick basepairs.
Also basepair GU is possible.
Each base forms at most one pair

Depends on temperature, ionic concentration, presence of

metabolites, other environmental factors




What is secondary structure?

e There are three possible representations of secondary structure:

— graphical,
— dot-bracket,
— dot-plot




RNA Graphical and Dot-Bracket Representations
C
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From Graphical to Dot-Bracket

There is a simple way to convert a Graphical representation to a
Dot-bracket representation and vice versa.

e Think of the links in the graphical representation as being

formed from elastic band.

e Stretch the outer opening, in this case AU, until the whole
RNA strand lies flat on a line.

e Stretch the remaining basepairs accordingly.




Stretching: From Graphical to Dot-Bracket
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Dot-Plot Representation

List the bases in a column and a row in the order they occur in the
RNA string.

A GCGUCACACCCGCGGGGUAAACGCU

A
G
C
G
u
C
A
C
A
C
C
c
G
C
G
G
G
G
U
A
A
A
C
G
C
U

Put a “dot” in positions (4, 7), (4, %) if there is a basepair linking

bases in positions ¢ and j.




Another Example

C




Stems, Loops, Multiloops

Basepair
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RNA structures are essential for

transcriptional and post-transcriptional regulation (iron
response elements in UTRs of eukaryote transcripts,
micro-RNAs from genomic sequences)

expression of HIV genes (rev-response element, TAR hairpin)

mediation of insertion of selenocysteine (RNA structural
element prevents translation termination at a UGA codon and
instead inserts selenocysteine)

splicing

perhaps helps explain 5% of highly-conserved non-genic
sequence observed in vertebrates?
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Why Study RNA Structure?
Tools to prediction of RNA structure help us

gain insight on the genome

shed insight on RNA 3D structure and ultimately function

better align RNA sequences
establish phylogenetic relationships among organisms

design good microarray probes, or RNA molecules for disease

therapy
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How Many Secondary Structures?
Forget about A, U, C,G: and number the bases 1...n.

Let S(n) be the number of secondary structures for the

sequence 1...n.

What is S(n)? Well, S(0) = 0.

From the picture below: S(1) = S5(2) =1 and S(3) = 2.
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A Recursive Assumption

Assume that we know S(k), for all £k < n. Can we compute
S(n)? There are two cases.

Either n is not paired with any other element, in which case we

count S(n — 1) secondary structures.

and therefore secondary structures are formed in [1,¢ — 1] and
t+1,n—1].
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A Recursive Equation

It follows that S(n) satisfies the recursive equation

Sn) = Snh—-1)+S5n—-2)+5Sn—-3)S1)+---+S(n—3)5(1)

Sn—1)+Sn—-2)+» St—-1)Sn—1-1)

t=2
e How do you solve this equation and determine S(n)?

e Method uses generating functions! Think of S(n) as the

coefficients of a continuous function f(x)

y:= f(x) = Z S(n)x".

e Can you find a functional equation satisfied by f(x)?
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A Functional Equation

Abbreviate a,, := S(n). Recall that ag = 0,a; = as = 1. We have
shown that

n—2

Ap = Gp—1 + Ap—2 + E At—10p—1—t
t=2

Multiply both sides of equation by ™ to obtain

n—2

- - - —t—1
"™ = xap_12" " 4+ 224y _ox" " + 2? E a2 ey

t=2
and take sums of both sides from n = 2 to oo and you derive the

following equation y — = = zy + 2%y + z%y?, which implies that

2y 4+ (22— Dy+x=0




Asymptotic Formula

If we define F(x,y) := 2%y + (22 + 2 — 1)y + x then it follows from
Bender’s theorem that if (7, s) is the unique solution of the system

F(r,s) = r*s*+(*+r—1s+r=0

OF
a—(fr,s) 22s+r°4+r—1=0
(2

rFy(r, s) ~3/2,.—n
S(n) \/QWFyy(T,S)n "o

It follows that
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Secondary Structures with Exactly k£ Basepairs

Define S,, i as the set of secondary strucrures on [1,n| with exactly
k basepairs.

Let S(n, k) number of secondary strucrures on [1,n] with exactly k
basepairs. So S(n, k) = |Sp k|-

Clearly,

[n/2]
S(n) =Y S(n,k)
k=0

and it is easy to show as before that

n—2k—1

Sn,k)=S(n—1,k)+ ) > SG-1i)Sn—1-jk—1-1)

j=1 i=0

Can we compute S(n, k)?




Recursion

e Either n is not paired with any other element, in which case we

count S(n — 1, k) secondary structures.

e Or else n is paired with some other element ¢ < n. Remove this

basepair and you have k — 1 basepairs left.

Then for some i < k — 1, i basepairs are formed in [1,¢ — 1] and

the remaining k — 1 — ¢ basepairs in [t + 1,n — 1].
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Equivalence of Trees and Secondary Structures

e A linear tree is a rooted tree along with a linear order on the
set of children of each vertex.

o Let T), 1 the set of unlabeled linear trees with n vertices and

n — k leaves.

o Let T(n, k) := |Tp |-

19



Example: The six trees of 75 3

Example: The six trees in T5 3

I 2 3 I 2 3 I 2 3
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Poincare Duality: Trees and Secondary Structures

There is a bijection
Sn+k—2k—-1 — LTn k.

The algorithm is as follows:
. Take a member of S, yx_2,—1 in loop form.

. Put a node (the root) of the tree above the figure outside all

loops.

. Insert a node inside all loops visible from this node and

connect them all to this node.
4. Tterate recursively.

Hence,

Stn+k—2,k—1)=T(n,k).
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Example: Equivalence of Trees and Secondary Structures

Y )
9 10 11 12 13

0 N

9 10 11 12 13
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Number of Trees

e It can be shown that

o= () ()

e A well-known argument is being used here (See L. Lovasz,
Comb. Prob. and Exercises, NH, 1979, 4.1 and 4.8): Consider
n points uq,...,u, and n integers dq,...,d, such that
di +---d,, = 2n — 2. The number of trees on points uq,...,u,
in which u; has degree d; is given by the formula

(n —2)!
(dy — D)+ (dy — 1)!

e Observe that leaves have degree 1.

e Details of the rest of the proof of this are beyond our scope.




Number of Secondary Strauctures

e At least we can use this last formula to derive the number of

secondary structures with a given number os basepairs.

e Using the previous bijection

S(n, k) Tn—k+1,k+1)

1 n—k\ /n—k-+1
E\Ek+1 Ek—1 )

The reality is far more more complex: individual bases are

“linked” with a certain energy!
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MFE (minimum free energy) approach

Used to predict secondary structure.

e Hypothesis: an RNA molecule will fold into that secondary

structure that minimizes its free energy

e Free energy of a structure (at fixed temperature, ionic

concentration) is sum of loop energies

e Tables of loop energies are used to calculate energy of a

structure

Given an energy table what is the secondary structure with

minimum free energy?

A"l Computational Molecular Biology, COMP 4900/5108. Winter 2006 "%
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Minimum Free Energy

Basepair

e Given an energy table, E.g.,

Internal Loop

e Is this an MFE secondary structure?
C
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Naive Algorithm

e Naive Algorithm:
1. Enumerate all possible secondary structures;
2. Calculate energy of each;
3. Output that structure which has lowest energy

e Problem: many structures to enumerate! A 50mer could have
more than 5000 billion structures

e DP (dynamic programming) algorithm: avoids this problem,

but minimizes over restricted structure types

27
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Ruth Nussinov and Ann Jacobson, 1980
e One of the first beautiful ideas in CMB!

e Based on the

“more is less” principle: by calculating more than you

need, less work is needed overall

e Construct mfe structure for whole strand from mfe structures

for substrands

"% Computational Molecular Biology, COMP 4900/5108. Winter 2006 "’



Minimum Free Energy

1 if a,b can basepair
pla,b) = ,
0 otherwise

e Given a sequence ajas---a, in {A,U,C,G}"™ let X, ; be the

max number of basepairs in a;a;41 - - a;.

e Observe that X; ;11 is the maximum of X; ; and

max{(Xi;—1 + 1+ Xiy15)p(a, a541) : 1 <1< j—1}

e Time complexity is ) _,_ j<n( 7] —
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Other Energy Contributions
Problem is in fact much more complex.

Other energy functions contribute to the free energy of aias - - - a,.

e «a(a,b) = free energy of basepair {a, b}

e 1 = stacking energy of adjacent basepairs

e Destabilization energies
— &(k) = destabilization free-energy of an end loop of k bases
— B(k) = destabilization free-energy of bulge of k£ bases

— ~v(k) = destabilization free-energy of an interior loop of k
bases

A"l Computational Molecular Biology, COMP 4900/5108. Winter 2006 "%
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Example: Other Energy Contributions

Haipin Loop

Multiloop
Y (3)

o {(k) = destabilization free-energy of an end loop of k bases
e ((k) = destabilization free-energy of bulge of k bases

e (k) = destabilization free-energy of an interior loop of k bases
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MFE for Hairpin Loops

H; ; is min free energy single hairpin structure on a;a;y1 ---a;, for

1 < j, where a; and a; basepair and there is a single end loop.
If a; and a; cannot basepair set H; ; = oo.

H; ; is minimum of five quantities.

(a) End Loop: «f(a;,a;)+&(j —i+1)

32



MFE for Hairpin Loops

(C) Bulge: minkzl{a(ai, a,j) -+ 5(]6) -+ .Hf];_i_k_I_l’j_]_}
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Computation Time
Time Complexity is O(n?*). Why?
Take each of the five steps previously described.
e Steps (a) & (b):

Z 1 € O(n?)

1<i<g<n

e Steps (c) & (d):

Y. - eom?)

1<i<g<n

Z Z 1| €O
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Dynamic Programming

e Construct a matrix (H; ;):

Hn,n

e If a; and a; cannot basepair set H; ; = oo.

e If a; and a; can basepair and j — i —1 > m (m is the min

endloop size) H; ; to the value computed before.
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Dynamic Programming: Reducing Computation Time

Note that interior loops must be of size > m, for some value m.
Now H; ; results from the five situations:

e End Loop: «a(a;,a;)+&(j—i+1)
Helix Extension: a(a;,a;) +n+ Hip1 -1

Bulge: ming>i{a(a;,a;) + 8(k) + Hitkt1,i—1}
Bulge: ming>i{a(a;,a;) + 8(k) + Hiy1,j—k—1}
Interior Loop: min; y>i1{a(ai,a;) +v(L, k) + Hivi41,j—k—1}
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Reducing Computation Time to O(n?)

Given a pair (i, 7), consider the set of candidate positions

Cd(i,j) ={k,):l—k—1>mk>i+2,j—2>1}

The interior loop has size

s=(G—i-1)—(-k+1)=@G—i)—(1—Fk) —2

Along lines such that [ — k = constant the interior loop

destabilization function vy(s) is constant.

For each pair (¢, ) store the values

H?(s) :==min{Hy, : (k,1) € Cd(i,j)&s = (j —1) — (I — k) — 2}

When moving from 5 —¢ = c to j — ¢ = c+ 1 each vector can be
updated in time O(n).

Best interior loop: min{«a(a;, b;) +v((7 —4) — (k—1)) + H; ;(s)}
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