RNA
 Secondary Structures

What is secondary structure?

- Set of canonical $\{A U, C G\}$ basepairs that form via hydrogen bonding when the molecule folds.

They are called Watson-Crick basepairs.

- Also basepair $G U$ is possible.
- Each base forms at most one pair
- Depends on temperature, ionic concentration, presence of metabolites, other environmental factors

What is secondary structure?

- There are three possible representations of secondary structure:
- graphical,
- dot-bracket,
- dot-plot

Computational Molecular Biology, COMP 4900/5108. Winter 2006

From Graphical to Dot-Bracket

There is a simple way to convert a Graphical representation to a Dot-bracket representation and vice versa.

- Think of the links in the graphical representation as being formed from elastic band.
- Stretch the outer opening, in this case $A U$, until the whole RNA strand lies flat on a line.
- Stretch the remaining basepairs accordingly.

Stretching: From Graphical to Dot-Bracket

Computational Molecular Biology, COMP 4900/5108. Winter 2006

Dot-Plot Representation

List the bases in a column and a row in the order they occur in the RNA string.

Put a "dot" in positions $(i, j),(j, i)$ if there is a basepair linking bases in positions i and j.

Computational Molecular Biology, COMP 4900/5108. Winter 2006

Stems, Loops, Multiloops

Internal loops containing unpaired bases are called bulges.

RNA structures are essential for

- transcriptional and post-transcriptional regulation (iron response elements in UTRs of eukaryote transcripts, micro-RNAs from genomic sequences)
- expression of HIV genes (rev-response element, TAR hairpin)
- mediation of insertion of selenocysteine (RNA structural element prevents translation termination at a UGA codon and instead inserts selenocysteine)
- splicing
- perhaps helps explain 5% of highly-conserved non-genic sequence observed in vertebrates?

Why Study RNA Structure?

Tools to prediction of RNA structure help us

- gain insight on the genome
- shed insight on RNA 3D structure and ultimately function
- better align RNA sequences
- establish phylogenetic relationships among organisms
- design good microarray probes, or RNA molecules for disease therapy

How Many Secondary Structures?

- Forget about A, U, C, G : and number the bases $1 \ldots n$.
- Let $S(n)$ be the number of secondary structures for the sequence $1 \ldots n$.
- What is $S(n)$? Well, $S(0)=0$.
- From the picture below: $S(1)=S(2)=1$ and $S(3)=2$.

A Recursive Assumption

- Assume that we know $S(k)$, for all $k<n$. Can we compute $S(n)$? There are two cases.
- Either n is not paired with any other element, in which case we count $S(n-1)$ secondary structures.

- Or else n is paired with some other element $t<n$,

and therefore secondary structures are formed in $[1, t-1]$ and $[t+1, n-1]$.

A Recursive Equation

It follows that $S(n)$ satisfies the recursive equation

$$
\begin{aligned}
S(n) & =S(n-1)+S(n-2)+S(n-3) S(1)+\cdots+S(n-3) S(1) \\
& =S(n-1)+S(n-2)+\sum_{t=2}^{n-2} S(t-1) S(n-1-t)
\end{aligned}
$$

- How do you solve this equation and determine $S(n)$?
- Method uses generating functions! Think of $S(n)$ as the coefficients of a continuous function $f(x)$

$$
y:=f(x)=\sum_{n=1}^{\infty} S(n) x^{n}
$$

- Can you find a functional equation satisfied by $f(x)$?

A Functional Equation

Abbreviate $a_{n}:=S(n)$. Recall that $a_{0}=0, a_{1}=a_{2}=1$. We have shown that

$$
a_{n}=a_{n-1}+a_{n-2}+\sum_{t=2}^{n-2} a_{t-1} a_{n-1-t}
$$

Multiply both sides of equation by x^{n} to obtain

$$
a_{n} x^{n}=x a_{n-1} x^{n-1}+x^{2} a_{n-2} x^{n-2}+x^{2} \sum_{t=2}^{n-2} x^{t-1} a_{t-1} x^{n-t-1} a_{n-1-t}
$$

and take sums of both sides from $n=2$ to ∞ and you derive the following equation $y-x=x y+x^{2} y+x^{2} y^{2}$, which implies that

$$
x^{2} y^{2}+\left(x^{2}+x-1\right) y+x=0
$$

Asymptotic Formula

If we define $F(x, y):=x^{2} y^{2}+\left(x^{2}+x-1\right) y+x$ then it follows from Bender's theorem that if (r, s) is the unique solution of the system

$$
\begin{align*}
F(r, s) & =r^{2} s^{2}+\left(r^{2}+r-1\right) s+r=0 \tag{1}\\
\frac{\partial F}{\partial y}(r, s) & =2 r^{2} s+r^{2}+r-1=0 \tag{2}
\end{align*}
$$

then

$$
\begin{equation*}
S(n) \sim \sqrt{\frac{r F_{x}(r, s)}{2 \pi F_{y y}(r, s)}} n^{-3 / 2} r^{-n} \tag{3}
\end{equation*}
$$

It follows that

$$
S(n) \sim \sqrt{\frac{15+7 \sqrt{5}}{8 \pi}} n^{-3 / 2}\left(\frac{3+\sqrt{5}}{2}\right)^{n}
$$

Secondary Structures with Exactly k Basepairs

Define $S_{n, k}$ as the set of secondary strucrures on $[1, n]$ with exactly k basepairs.

Let $S(n, k)$ number of secondary strucrures on $[1, n]$ with exactly k basepairs. So $S(n, k)=\left|S_{n, k}\right|$.

Clearly,

$$
S(n)=\sum_{k=0}^{\lfloor n / 2\rfloor} S(n, k)
$$

and it is easy to show as before that

$$
S(n, k)=S(n-1, k)+\sum_{j=1}^{n-2} \sum_{i=0}^{k-1} S(j-1, i) S(n-1-j, k-1-i)
$$

Can we compute $S(n, k)$?

Recursion

- Either n is not paired with any other element, in which case we count $S(n-1, k)$ secondary structures.

- Or else n is paired with some other element $t<n$. Remove this basepair and you have $k-1$ basepairs left.

Then for some $i \leq k-1, i$ basepairs are formed in $[1, t-1]$ and the remaining $k-1-i$ basepairs in $[t+1, n-1]$.

Equivalence of Trees and Secondary Structures

- A linear tree is a rooted tree along with a linear order on the set of children of each vertex.
- Let $T_{n, k}$ the set of unlabeled linear trees with n vertices and $n-k$ leaves.
- Let $T(n, k):=\left|T_{n, k}\right|$.

Example: The six trees of $T_{5,3}$
Example: The six trees in $T_{5,3}$

Poincare Duality: Trees and Secondary Structures

There is a bijection

$$
S_{n+k-2, k-1} \rightarrow T_{n, k}
$$

The algorithm is as follows:

1. Take a member of $S_{n+k-2, k-1}$ in loop form.
2. Put a node (the root) of the tree above the figure outside all loops.
3. Insert a node inside all loops visible from this node and connect them all to this node.
4. Iterate recursively.

Hence,

$$
S(n+k-2, k-1)=T(n, k)
$$

Example: Equivalence of Trees and Secondary Structures

Computational Molecular Biology, COMP 4900/5108. Winter 2006

Number of Trees

- It can be shown that

$$
T(n, k)=\frac{1}{k-1}\binom{n-1}{k}\binom{n-2}{k-2}
$$

- A well-known argument is being used here (See L. Lovasz, Comb. Prob. and Exercises, NH, 1979, 4.1 and 4.8): Consider n points u_{1}, \ldots, u_{n} and n integers d_{1}, \ldots, d_{n} such that $d_{1}+\cdots d_{n}=2 n-2$. The number of trees on points u_{1}, \ldots, u_{n} in which u_{i} has degree d_{i} is given by the formula

$$
\frac{(n-2)!}{\left(d_{1}-1\right)!\cdots\left(d_{n}-1\right)!}
$$

- Observe that leaves have degree 1.
- Details of the rest of the proof of this are beyond our scope.

Number of Secondary Strauctures

- At least we can use this last formula to derive the number of secondary structures with a given number os basepairs.
- Using the previous bijection

$$
\begin{aligned}
S(n, k) & =T(n-k+1, k+1) \\
& =\frac{1}{k}\binom{n-k}{k+1}\binom{n-k+1}{k-1} .
\end{aligned}
$$

The reality is far more more complex: individual bases are "linked" with a certain energy!

MFE (minimum free energy) approach

Used to predict secondary structure.

- Hypothesis: an RNA molecule will fold into that secondary structure that minimizes its free energy
- Free energy of a structure (at fixed temperature, ionic concentration) is sum of loop energies
- Tables of loop energies are used to calculate energy of a structure

Given an energy table what is the secondary structure with minimum free energy?

Minimum Free Energy

- Given an energy table, E.g., | Basepair | -1 |
| :--- | :--- |
| | Internal Loop |
- Is this an MFE secondary structure?

Naive Algorithm

- Naive Algorithm:

1. Enumerate all possible secondary structures;
2. Calculate energy of each;
3. Output that structure which has lowest energy

- Problem: many structures to enumerate! A 50 mer could have more than 5000 billion structures
- DP (dynamic programming) algorithm: avoids this problem, but minimizes over restricted structure types

Ruth Nussinov and Ann Jacobson, 1980

- One of the first beautiful ideas in CMB!
- Based on the
"more is less" principle: by calculating more than you need, less work is needed overall
- Construct mfe structure for whole strand from mfe structures for substrands

Minimum Free Energy

- Define

$$
\rho(a, b)= \begin{cases}1 & \text { if } a, b \text { can basepair } \\ 0 & \text { otherwise }\end{cases}
$$

- Given a sequence $a_{1} a_{2} \cdots a_{n}$ in $\{A, U, C, G\}^{n}$ let $X_{i, j}$ be the max number of basepairs in $a_{i} a_{i+1} \cdots a_{j}$.
- Observe that $X_{i, j+1}$ is the maximum of $X_{i, j}$ and

$$
\max \left\{\left(X_{i, l-1}+1+X_{l+1, j}\right) \rho\left(a_{l}, a_{j+1}\right): 1 \leq l \leq j-1\right\}
$$

- Time complexity is $\sum_{i<j \leq n}(j-i) \in O\left(n^{3}\right)$.

Other Energy Contributions

Problem is in fact much more complex.
Other energy functions contribute to the free energy of $a_{1} a_{2} \cdots a_{n}$.

- $\alpha(a, b)=$ free energy of basepair $\{a, b\}$
- $\eta=$ stacking energy of adjacent basepairs
- Destabilization energies
$-\xi(k)=$ destabilization free-energy of an end loop of k bases
$-\beta(k)=$ destabilization free-energy of bulge of k bases
$-\gamma(k)=$ destabilization free-energy of an interior loop of k bases

Example: Other Energy Contributions

- $\xi(k)=$ destabilization free-energy of an end loop of k bases
- $\beta(k)=$ destabilization free-energy of bulge of k bases
- $\gamma(k)=$ destabilization free-energy of an interior loop of k bases

MFE for Hairpin Loops

$H_{i, j}$ is min free energy single hairpin structure on $a_{i} a_{i+1} \cdots a_{j}$, for $i<j$, where a_{i} and a_{j} basepair and there is a single end loop. If a_{i} and a_{j} cannot basepair set $H_{i, j}=\infty$. $H_{i, j}$ is minimum of five quantities.
(a) End Loop: $\alpha\left(a_{i}, a_{j}\right)+\xi(j-i+1)$

(b) Helix Extension (stacking bps): $\alpha\left(a_{i}, a_{j}\right)+\eta+H_{i+1, j-1}$

MFE for Hairpin Loops

(c) Bulge: $\min _{k \geq 1}\left\{\alpha\left(a_{i}, a_{j}\right)+\beta(k)+H_{i+k+1, j-1}\right\}$

(d) Bulge: $\min _{k \geq 1}\left\{\alpha\left(a_{i}, a_{j}\right)+\beta(k)+H_{i+1, j-k-1}\right\}$

(e) Interior Loop: $\min _{l, k \geq 1}\left\{\alpha\left(a_{i}, a_{j}\right)+\gamma(l, k)+H_{i+l+1, j-k-1}\right\}$

Computation Time

Time Complexity is $O\left(n^{4}\right)$. Why?
Take each of the five steps previously described.

- Steps (a) \& (b):

$$
\sum_{1 \leq i<j \leq n} 1 \in O\left(n^{2}\right)
$$

- Steps (c) \& (d):

$$
\sum_{1 \leq i<j \leq n}(j-i) \in O\left(n^{3}\right)
$$

- Step (e):

$$
\sum_{1 \leq i<j \leq n}\left(\sum_{i \leq i<j \leq j^{\prime}} 1\right) \in O\left(n^{4}\right)
$$

Dynamic Programming

- Construct a matrix $\left(H_{i, j}\right)$:

	a_{n}	a_{n-1}	\cdots	a_{2}	a_{1}
a_{1}	$H_{1, n}$	$H_{1, n-1}$	\cdots	$H_{1,2}$	$H_{1,1}$
a_{2}	$H_{2, n}$	$H_{2, n-1}$	\cdots	$H_{2,2}$	
\vdots	\vdots	\vdots	\cdots		
a_{n-1}	$H_{n-1, n}$	$H_{n-1, n-1}$			
a_{n}	$H_{n, n}$				

- If a_{i} and a_{j} cannot basepair set $H_{i, j}=\infty$.
- If a_{i} and a_{j} can basepair and $j-i-1 \geq m$ (m is the min endloop size) $H_{i, j}$ to the value computed before.

Dynamic Programming: Reducing Computation Time

Note that interior loops must be of size $\geq m$, for some value m. Now $H_{i, j}$ results from the five situations:

- End Loop: $\alpha\left(a_{i}, a_{j}\right)+\xi(j-i+1)$
- Helix Extension: $\alpha\left(a_{i}, a_{j}\right)+\eta+H_{i+1, j-1}$
- Bulge: $\min _{k \geq 1}\left\{\alpha\left(a_{i}, a_{j}\right)+\beta(k)+H_{i+k+1, j-1}\right\}$
- Bulge: $\min _{k \geq 1}\left\{\alpha\left(a_{i}, a_{j}\right)+\beta(k)+H_{i+1, j-k-1}\right\}$
- Interior Loop: $\min _{l, k \geq 1}\left\{\alpha\left(a_{i}, a_{j}\right)+\gamma(l, k)+H_{i+l+1, j-k-1}\right\}$

	j	$j-1$	$j-2$	\cdots
i	α			
$i+1$		η	β	
$i+2$		β	γ	
\vdots				

Reducing Computation Time to $O\left(n^{3}\right)$

- Given a pair (i, j), consider the set of candidate positions $C d(i, j)=\{(k, l): l-k-1 \geq m, k \geq i+2, j-2 \geq l\}$
- The interior loop has size $s=(j-i-1)-(l-k+1)=(j-i)-(l-k)-2$
- Along lines such that $l-k=$ constant the interior loop destabilization function $\gamma(s)$ is constant.
- For each pair (i, j) store the values $H_{i, j}^{*}(s):=\min \left\{H_{k, l}:(k, l) \in C d(i, j) \& s=(j-i)-(l-k)-2\right\}$
- When moving from $j-i=c$ to $j-i=c+1$ each vector can be updated in time $O(n)$.
- Best interior loop: $\min \left\{\alpha\left(a_{i}, b_{j}\right)+\gamma((j-i)-(k-l))+H_{i, j}^{*}(s)\right\}$

