
Chapter 8

Bounded Universes

Until so far, most of the data stru
tures des
ribed in this book have been 
omparison based. Althoughthey've been des
ribed as storing real-valued keys, the only operations performed on keys have been
omparisons, so they 
ould just as easily store keys from any total order. In this 
hapter we study theissue of what happens when the keys are integers and we 
an do operations other than 
omparisons, likeaddition, subtra
tion, integer division, and using the number to index arrays.More spe
i�
ally, our keys 
ome from the universe U = {0, . . . , N − 1} and we assume a modelthat allows us to do most 
ommon mathemati
al operations on integers and gives integer results bytrun
ating (taking the 
oor of) the results of operations when ne
essary. The results of operations 
analso be used as indi
es into arrays.We are interested in data stru
tures that support insertion, deletion, membership queries andnext element queries on keys from U. The meanings of insertion and deletion are obvious. A membershipquery takes as input a key k and determines whether k is 
urrently stored in the data stru
ture. Annext element query takes a key k and returns the smallest value k 0 stored in the data stru
ture su
hthat k 0 � k.As a �rst attempt, we might 
onsider using an array A1, . . . , AN of boolean values. On 
reation,every array entry is initialized to false. When an element k is inserted, we simply set Ak to true.Similarly, when an element k is deleted we set Ak to false. To do a membership query on the key kwe just 
he
k the value of Ak. Unfortunately, this is where this approa
h breaks down. The only wayto do a next element query on key k is to 
he
k the values of Ak, Ak+1, Ak+2, and so on until we �ndthe �rst value Ak 0 that is set to true. Thus, with this approa
h the �rst three operations 
an be donein 
onstant time, but the fourth (next element sear
h) operation takes Ω(N) time in the worst 
ase.
50



CHAPTER 8. BOUNDED UNIVERSES 51
8.1 Van Emde Boas TreesAn interesting (and old) method of doing sear
hes on bounded universes was proposed by Peter Van Emde Boas.It is based on the re
urren
e

TN =

{
O(1) + TpN if N � 2

O(1) otherwise (8.1)whi
h solves to O(log logN) (be
ause N1/ logn = 2). Essentially, the above re
urren
e says that if we
an, in 
onstant time, redu
e the sear
h spa
e to the square root of its original size and then re
urse wewill get a running time of O(log logN).The data stru
ture we use to a
hieve this is 
alled a VEB-tree. Assume N = 22m for some integer
m.1 The root of the VEB-tree for U has pN 
hildren that are stored in an array. Ea
h 
hild of the rootis also a VEB-tree, and the ith 
hild 
orresponds to a VEB-tree for elements i

p
N, . . . , (i + 1)

p
N − 1.The root of the VEB-tree also stores two integer values 
alled min and max, whi
h 
ontain the smallestand largest element 
urrently 
ontained in the tree. If no values are stored in the tree then min and maxare set to some value not in U, say −1. A 
ru
ial point to remember about a VEB-tree is that the minand max values at the root are only stored at the root. Be
ause of this, we 
an insert into an initiallyempty tree or delete the last element from a tree in 
onstant time.The root of the VEB-tree also 
ontains another VEB-tree|and this is the truly 
lever part|forthe universe {0, . . . ,

p
N − 1}. This auxilliary tree is used to keep tra
k of whi
h 
hildren of the root
ontain data. That is, the tree 
ontains the element i if the ith 
hild of the root 
ontains some key.From this de�nition, it follows that the storage used by a VEB-tree is given by the re
urren
e

SN = (
p

N + 1)SpN +
p

Nwhi
h solves to O(N). (The extra +1 
omes from the auxilliary VEB-tree.)Although VEB-trees are not extremely 
ompli
ated, their implementation requires some 
are.In the following three se
tions we sket
h the implementations of the algorithms for sear
hing, insertingand deleting in VEB-trees, and provide more pre
ise pseudo
ode. In the pseudo
ode, W is a VEB-treenode, W[i] is the ith 
hild of W, 
hild(k, W) is the index of the 
hild of W that stores the key k, andaux(W) is the auxilliary VEB-tree stored at W.
8.1.1 SearchingTo do a next element sear
h for the key k in a VEB-tree, we �rst 
he
k if k is less than the min valuestored at the root. If so, then we simply report the min value. Otherwise, we need to determine whi
h
hild of the root stores the key k. This 
an be done in 
onstant time sin
e it is the i = bk/

p
N
th 
hildand the 
hildren are stored in an array. We then inspe
t the max value for the ith 
hild. If it is largerthan k, then we 
an be sure that the key k 0 we are looking for is in the subtree rooted at the ith 
hildand we re
urse on the ith 
hild.1We only make this assumption so that N1/2i is an integer for all integers i < m. This allows us to avoid the need for
oors, 
eilings, and spe
ial 
ases. The modi�
ations required when N is not of this form should be 
lear.



CHAPTER 8. BOUNDED UNIVERSES 52Otherwise, the key we are looking for is 
ontained in the jth 
hild of the root, where j is thesmallest value greater than i su
h that the jth 
hild of the root 
ontains some key. In fa
t, the key k 0we are looking for is the min value the jth 
hild of the root. Therefore, we 
an use the auxilliary tree atthe root to �nd the value of j and then report the min value in 
onstant time.In both 
ases, the algorithm makes one re
ursive sear
h 
all and does O(1) work. The re
ursivesear
h 
all is on a VEB-tree for a universe of size pN. Thus, the running time of the sear
h algorithmis given by the re
urren
e (8.1) and is O(log logN).Su

essor(k, W)1: if k < min(W) then2: output min(W) fk is smaller than every elementg3: else if k > max(W) then4: output ∞ fk is larger than every elementg5: end if6: i← 
hild(k, W)7: if max(W[i]) > k then8: Su

essor(k, W[i]) fk 0 is stored in W[i]g9: else10: j← Su

essor(i, aux(W)) fk 0 is in �rst non-empty sibling of W[i]g11: output min(W[j])12: end if

8.1.2 InsertingTo insert the key k into a VEB-tree we pro
eed as follows. If the root of T is empty then we simply setthe min and max values at the root to be k. Otherwise, we 
he
k if k is less than (respe
tively greaterthan) the min value (respe
tively max value) at the root. If so, we swap the values of k and the minvalue (respe
tively max value) before 
ontinuing. Next, we �nd the 
hild of the root that should 
ontainthe key k using the formula i = bk/
p

N
. If the ith 
hild of the root 
ontains no elements then we insert
i into the root's auxilliary VEB-tree and insert k into the ith 
hild of the root. Otherwise (the ith 
hildalready 
ontains some element) we only insert k into the ith 
hild of the root.Observe that, be
ause we expli
itly 
he
k this 
ondition, inserting into an empty VEB-treetakes 
onstant time. This is very important, be
ause the VEB-tree algorithm may make two re
ursiveinsertion 
alls; on
e to insert k and on
e to insert i into the auxilliarly VEB-tree. However, in this 
ase,the re
ursive 
all to insert k takes only 
onstant time. Thus, no matter what happens, the running timeof the insertion algorithm satis�es the \rootish" re
urren
e (8.1) and therefore runs in O(log logn) time.Insert(k, W)1: if min(W) = max(W) = −1 then2: min(W)← max(W)← k ftree is emptyg3: else if min(W) = max(W) then4: min(W)← min{k,min(W)} ftree 
ontains 1 elementg5: max(W)← max{k,max(W)}6: else7: if k < min(W) then8: swap k↔ min(W) fk is the new min, insert the old ming



CHAPTER 8. BOUNDED UNIVERSES 539: else if k > max(W) then10: swap k↔ max(W) fk is the new max, insert the old maxg11: end if12: i← 
hild(k, W)13: Insert(k, W[i])14: if max(W[i]) = min(W[i]) = k then15: Insert(i, aux(W)) fW[i] just went from empty to non-emptyg16: end if17: end if

8.1.3 DeletingDeleting the key k from a VEB-tree is similar to insertion. If the tree 
ontains only the element k, it isstored as the min and max values of the root and we 
an delete it in 
onstant time. Otherwise, if k isequal to the min (respe
tively max) value at the root then we swap k and the min (respe
tively max)value at the root. We then re
ursively delete k from the 
hild of the root that 
ontains it and, if this
hild be
omes empty we delete the 
hild's index from the auxiliary VEB-tree.As with insertion, although there may be two re
ursive 
alls, only one of them takes more than
onstant time. Thus, the running time of the deletion algorithm is given by re
urren
e (8.1) and runsin O(log logn).Delete(k, W)1: if min(W) = max(W) = k then2: min(W)← max(W)← −1 f k is the last element g3: else if min(aux(W)) = −1 then4: if min(W) = k then5: min(W)← max(W)6: else7: max(W)← min(W)8: end if9: else if k = min(W) then10: j← min(aux(W))11: min(W)← min(W[j])12: k← min(W)13: else if k = max(W) then14: j← max(aux(W))15: max(W)← max(W[j])16: k← max(W)17: end if18: i← 
hild(k, W)19: Delete(k, W[i])20: if min(W[i]) = max(W[i]) = −1 then21: Delete(i, aux(W))22: end if

Theorem 23. Van Emde Boas trees support insertion, deletion, and su

essor queries for elementsin the universe U = {0, . . . , N − 1} in O(log logN) time and require O(N) storage.



BIBLIOGRAPHY 54
8.2 Reducing Storage

8.3 Willard’s X- and Y-Fast TreesLu
's notes go here.
8.4 Discussion and ReferencesThe Van Emde Boas tree (VEB-tree) was introdu
ed by van Emde Boas [1, 2℄. The des
ription herewas 
onveyed to us by Mi
hael Bender. Sin
e then, several variants have been introdu
ed, most withthe goal of redu
ing the storage. . .
Bibliography[1℄ P. van Emde Boas. An O(n logn) on-line algorithm for the insert-extra
t min problem. Te
hni
alReport TR-74-221, Department of Computer S
ien
e, Cornell University, De
ember 1974.[2℄ P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an eÆ
ient priorityqueue. Mathemati
al Systems Theory, 10:99{127, 1977.


