
Chapter 2

Records and Random Binary Search

Trees

In this hapter we examine the use of reords in analyzing the running times of operations on random-ized data strutures. The reords we are talking about are not reords in a database, but rather bestresults so far, like Olympi reords. In partiular, let A1, . . . An be a random permutation of the integers
1, . . . , n. Then Ak is a reord if Line 4 of the following pseudoode exeutes when i = k.1: m← −∞2: for i = 1, . . . , n do3: if Ai > m then4: m← Ai5: end if6: end forMore preisely, Ai is a reord if and only Ai = max{A1, . . . , Ai}. As an example, the reords inthe sequene

S = 2, 7, 5, 4, 9, 8, 3, 1, 6are underlined.The probability that Ai is a reord is exatly 1/i sine A1, . . . , Ai has only one maximum and itis equally likely to our at any of the i positions. What is the expeted number of reords in a randompermuation of n elements? De�ne the indiator variable
Ii =

{ 1 if Ai is a reord0 otherwise .Then the expeted value of Ii is E[Ii] = 0 � Pr{Ai is not a reord} + 1 � Pr{Ai is a reord} = 1/i. So theexpeted number of reords is given by
1

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 2
E

"
n∑

i=1

Ii

#
=

n∑

i=1

E[Ii] (2.1)
=

n∑

i=1

1/i (2.2)
= Hn , (2.3)Where Hn =

∑n

i=1 1/i is alled the nth harmoni number. The value of Hn has reeived onsiderableattention. Bounding Hn using integrals [4, Setion 3.2℄ shows that lnn � Hn � lnn + 1 for all n > 1.Thus, the expeted number of reords in a random sequene is O(lgn). This very simple fatan be used to give very short proofs about the running times of many randomized algorithms.
2.1 Random Binary Search TreesA binary searh tree T is either the symbol nil, or onsists of an integer key, key(T), and two hildren,left(T) and right(T), that are both binary searh trees. Additionally, a binary searh tree satis�es thefollowing searh property
Property 1 (Searh Property). If left(T) 6= nil then key(left(T)) � key(T) and if right(T) 6= nil thenkey(T) � key(right(T))For an integer k, the searh path of k in T , denoted path(k, T) is given the following reursivesearh proedure path(k, T) =

nil if T = nil

T if k = key(T)

T,path(k, left(T)) if k < key(T)

T,path(k, right(T)) if k > key(T)

.A random binary searh tree T of size n is a binary searh tree onstruted by inserting theelements {1, . . . , n} into T in random order. Assuming that the key k is not already ontained in the tree
T , we insert k into T by making a new tree T 0 with key(T 0) = k and making T 0 a hild of the last non-niltree in path(k, T). This results in a sequene of trees T0, . . . , Tn = T where Ti is the tree resulting fromthe insertion of the �rst i elements. See Figure 2.1 for an example of a binary tree onstruted by asequene of insertions.One question we might ask about a random binary searh tree is how muh it osts to onstrutone. Most of us will have seen bad examples where onstruting a binary searh tree on n elements byrepeated insertion takes Ω(n2) time. One obvious example of this ours when the elements form aninreasing sequene, in whih ase the tree is just a sorted list.Sine we are assuming that the elements of T are inserted in random order, what we would reallylike to know is the expeted ost of reating T . One way to takle this is to �nd the expeted ost ofinserting the ith element and then summing this over all i. In other words, if Ci is the ost of the ith

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 3

1 2 3 4 5 6 7 8 9Figure 2.1: A binary searh tree onstruted by inserting the elements 2, 7, 4, 1, 8, 5, 9, 6, and 3 in thatorder.insertion then
E[Cost of building T] = E

"
n∑

i=1

Ci

#
=

n∑

i=1

E[Ci] .It is lear that Ci is proportional to the length of path(ki, T), where ki is the ith value inserted.To bring things to an even �ner level of detail, let path(ki, T) = U1, . . . , Um. We all Uj a left turn if
Uj+1 = left(Uj), otherwise we all Uj a right turn. Let Li and Ri denote the number of left and rightturns, respetively, in path(ki, T). We will analyze the expeted values of Li and Ri seperately.To get some intuition about Li and Ri we should look at an example from Figure 2.1. In thisexample, path(6, T) = 2, 7, 4, 5, 6. This searh path takes a left turn at node 7 and right turns at nodes2, 4 and 5. The insertion sequene at the time node 6 is inserted is

S = 2, 7, 4, 1, 8, 5, 9, 6 .Consider the sequene ontaining only those elements that are less than 6, i.e.,
S 0 = 2, 4, 1, 5 .Note that the reords in the sequene S 0 are underlined and that these reords orrespond to the rightturns in path(6, T). We might also onsider the sequene of elements larger than 6, i.e.,
S 00 = 7, 8, 9 .If we modify the de�nition of reords to use the minimum instead of the maximum, then the left turnsin path(6, T) all orrespond to reords in the sequene S 00.Is this always the ase? The answer to this question is yes. To see this, let Tj denote the tree

T after insertion of the �rst j elements. The j keys inserted into Tj divide the real line up into j + 1intervals, and ki lies in one of these intervals [a, b]. When we insert the (j + 1)-st element, one of twothings happens, either path(ki, Tj) = path(ki, Tj+1) or not, in whih ase the path of ki inreases by one.The key observation is that the latter ase only happens if the newly inserted key lies in the interval
[a, b]. If the newly inserted key is less than ki then it is a reord in S 0. If it is greater than ki then it isa reord in S 00.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 4By splitting the insertion sequene into two sequenes S 0 and S 00 we get two new sequenes,whih are both random. That is, the elements of S 0 (and S 00) are equally likely to our in any order.Therefore, the expeted number of reords in S 0 is
E[Ri] = H|S 0| � Hi ,and a symmetri argument shows that E[Li] � Hi. Therefore, the expeted ost of building a randombinary searh tree by repeated insertions is

n∑

i=1

E[Ci] = c

n∑

i=1

(E[Li] + E[Ri]) � c

n∑

i=1

2Hi = O(n logn) ,where c is a positive onstant.Thus, given n distint keys, we an randomly permute them and then insert them into a binarysearh tree. An in-order traversal of the resulting tree an then be used to output the elements in sortedorder. This gives us a sorting algorithm whose expeted running time is O(n logn). In fat, the famousQuiksort algorithm is atually just an eÆient implementation of this proedure.One we have onstruted a random binary searh tree we an use it as a data struture forsearhing. The expeted ost of searhing for some key k is proportional to the length of path(k, T).There are two ases to onsider. If k is not stored in T then the above argument shows that the expetedost of searhing for k is
E[|path(k, T)|] = Hi + Hn−i , (2.4)where i is the rank, i.e., the number of elements less than k, of k in T .If k is stored in T then the upper bound
E[|path(k, T)|] � Hi + Hn−i ,still holds, sine path(k, T) only visits the reords in S 0 and S 00. However, it does not visit all the reordsin S 0 and S 00 sine it never visits any node that was inserted after the insertion of k. Therefore, if wewant a more exat result we must aount for the time at whih k was inserted into T .The expeted number of elements of S 0 visited while searhing for k is

E[R] =

|S 0|∑
j=1

Hj � Pr{k appears at position j in S 0}
=

1

|S 0| |S 0|∑
j=1

Hj

=
1

|S 0| �0BBBBB� 1 +

1 + 1/2 +

1 + 1/2 + 1/3 +... +
... +

... +
. . .

1 + 1/2 + 1/3 + 1/4 + � � � + 1/|S 0|
1CCCCCA

=
1

|S 0| ��|S 0| + |S 0| − 1

2
+

|S 0| − 2

3
+

|S 0| − 3

4
+ � � �+ 1/|S 0|�

= 1 + 1/2 + 1/3 + 1/4 + � � �+ 1/|S 0| − 1

2|S 0| −
2

3|S 0| −
3

4|S 0| − � � �− |S 0| − 1

|S 0|2� H|S 0| − 1 .

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 5
T

T ′

α

β γ

Left-Rotate(T)

=⇒Right-Rotate(T 0)
⇐=

T

T ′

α β

γ

Figure 2.2: Left and right rotations.A symmetri argument shows that the expeted number of elements of S 00 visited while searhing for kis
E[L] � H|S 00| − 1 .Thus, the expeted length of the searh path for k when k is stored in T is

Hi + Hn−i � E[|path(k, T)|] � Hi + Hn−i − 2 , (2.5)where i is the rank of k in T .
Theorem 1. The expeted ost of onstruting a random binary searh tree on n elements is
O(n logn). One suh a tree is onstruted it an be used to searh for any key in O(logn)expeted time.
2.2 TreapsNext we show how randomization an be used to implement ditionary operations. A ditionary D isan abstrat data type supporting the following operations on a set of real-valued keys.1. Insert(k, D). Insert the key k into D. This assumes that k is not already stored in D.2. Delete(k, D). Delete the key k from D. This assumes that k is already stored in D.3. Searh(k, D). Return the smallest key k 0 ontained in D suh that k 0 � k. If no suh k 0 existsthen return ∞.The reason we an not just use random binary trees to implement ditionary operations is thatthey are a stati data struture. One we build a random binary searh tree on a set of keys we an notperform insertion or deletions into them and still maintain the expeted operation times of O(logn).Traditionally, this problem is overome by introduing a balaning sheme like those used in red-blak[7℄ or AVL [1℄ trees. These balaning shemes use rotations to ensure that every root to leaf path in Thas length in O(logn). A rotation swaps a tree and one of its hildren in suh a way that the order inwhih keys appear in an in-order traversal is maintained. An example of a rotation is given in Figure 2.2.In this setion we present a simple balaning sheme that uses randomization. A treap is asearh tree in whih eah subtree T also has a unique priority priority(T) 2 [0, 1]. In addition to havingthe sorted property (Property 1), every non-nil treap also has the following heap property.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 6

1 2 3 4 5 6 7 8 9

1/9

2/9

3/9

4/9

5/9

6/9

7/9

8/9

9/9Figure 2.3: We obtain a treap by setting priority(T i) = i/n.
Property 2 (Heap Property). If left(T) 6= nil then priority(T) < priority(left(T)) and if right(T) 6= nilthen priority(T) < priority(right(T))The link between treaps and random binary searh trees is the following: If ki was the key thatreated the subtree T i in a random binary searh tree, then we obtain a treap by setting priority(T i)←
i/n. Essentially, we are setting priority(T i) to be the time at whih ki was inserted. See Figure 2.3.The interesting thing about this relationship is that it works both ways. If we assign prioritiesuniformly and independently at random from [0, 1] to all keys then the resulting treap is a randombinary searh tree on the keys. It's as if we've inserted the keys in random order. We all suh a treapa random treap. Thus, the nie properties of searh paths on random binary searh trees also apply torandom treaps. It follows immediately that the expeted ost of searhing for a key k in a random treapis O(logn).To insert the key k into a random treap, we �rst insert it the way we normally would into abinary searh tree. We then assign the key a priority p seleted uniformly at random from [0, 1] andapply left and right rotations (as appropriate) to move the new subtree upwards until the heap property(Property 2) is restored. See Figure 2.4 for an example.What is the expeted ost of inserting the key k into a random treap T? Sine a random treaphas all the properties of a random binary searh tree, the expeted ost of performing the basi insertionis proportional to the expeted length of path(k, T). From (2.4) we see that E[|path(k, T)|] = Hi +Hn−i.Next, the algorithm performs rotations to restore the heap property. Equation (2.5) show that afterperforming these rotations, E[|path(k, T)|] � Hi + Hn−i − 2. Sine eah rotation redues |path(k, T)| byone, it follows that the expeted number of rotations is at most 2.To perform deletion of the key k from a treap, we �nd the subtree T 0 having k as its key andrepeatedly perform a rotation that moves T 0 towards the hild of T 0 that has minimum priority. Thatis, we perform a left or right rotation (as appropriate) on the hild of T 0 that has smaller priority. Werepeat this until T 0 beomes a leaf, at whih point it is deleted by setting a pointer in its parent to nil.For an example of deletion, look at Figure 2.4 starting at the bottom right.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 7

4, .15

1, .25

3, .4 6, .5

5, .3

2, .2

7, .1

1, .25

3, .4

6, .5

5, .3

2, .2

7, .1

4, .15

1, .25

3, .4

2, .2

7, .1

4, .15

6, .5

5, .3

1, .25 3, .4

2, .2

7, .1

4, .15

6, .5

5, .3

Figure 2.4: Inserting the key k = 4 with priority p = .15 into a treap.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 8At �rst the analysis of deletion seems somewhat more ompliated than that of insertion. How-ever, the following observation makes it trivial. Let T� be the treap that would have existed if the key khad never been inserted. Then T� is a random treap with n−1 nodes and the expeted ost of inserting
k into T� is O(logn). Now, note that the rotations performed while deleting k from T are exatly thesame rotations performed while inserting k into T�, only they are done in reverse order. Therefore,the expeted number of rotations performed while deleting k is Θ(1), so the overall ost of deletion is
O(logn). (Note that, if a pointer to the node ontaining k is given then the expeted ost of deletion is
O(1).)
Theorem 2. Random treaps support the operations Insert, Delete and Searh in O(logn)expeted time per operation, where n is the number of keys stored in the treap at the time of theoperation. The expeted number of rotations performed during an insert or delete operation is
O(1). Another lass of operations that treaps support very well are the Split andMerge operations.A Split operation takes a value k not in the treap and splits the treap into two treap T1 and T2 suhthat T1 ontains all keys less than k and T2 ontains all keys greater than k. To implement a splitoperation we simply observe that we an insert k and then perform rotations until k beomes the rootof the treap. At this point, the two treaps T1 and T2 that we want are the left and right hildren of theroot. The ost of this is proportional to |path(k, T)|, and so the split operation an be done in O(logn)time. The inverse of a Split operation is a Merge operation. This is where we take two treaps T1and T2 suh that all keys in T1 are less than k and all keys in T2 are greater than k and we merge T1and T2 into a single treap. The implementation of merge is the exat inverse of split: We make a newroot k whose left and right hildren are T1 and T2, respetively, and then we delete k from the treap.Again, the expeted ost of this is O(logn).
Theorem 3. Random treaps support the operations Split and Merge in O(logn) expeted timeper operation.
2.3 HeatersIn the previous setion we showed that by assigning random priorities to the nodes of a binary searhtree we get a balaned binary searh tree. In this setion we will see that this trik also works the otherway. If we assign random keys to the nodes of a priority queue, we get a balaned priority queue.A priority queue Q is an abstrat data type supporting the following operations on a set ofreal-valued priorities.1. Insert(p, Q). Insert the priority p into Q. This assumes that p is not already stored in Q.2. FindMin(Q). Return the smallest priority p� stored in Q. This assumes Q is not empty.3. DeleteMin(Q). Delete the smallest priority p� stored in Q from Q. This assume Q is not empty.To implement a priority queue we an use a randomized binary tree as in the previous setion.When we use a randomized binary tree in this way, we all it a heater. The di�erene from the previous

BIBLIOGRAPHY 9setion is that now instead of using random priorities, we will use random keys to obtain a randomheater. Note that swithing from random priorities to random keys makes no di�erene in how theshape of the underlying tree is distributed. In either ase, the shape of the tree is distributed in thesame way as the shape of a random binary searh tree.To insert the priority p into a heater H, we hoose a random real number k 2 [0, 1] and insertthe key/value pair (k, p) as desribed in the previous setion. The ost of this insertion is proportionalto the length of path(k, H). Sine the expeted length of path(k, H) is O(logn), the expeted ost ofinsertion is O(logn).Finding the minimum priority p� stored in a heater H is trivial sine the heap property ensuresthat the p� is stored at the root of H. Thus, FindMin an be implemented in onstant time using aheater. To delete the minum priority p� from a heater H, we simply delete the root of H using thedeletion algorithm desribed in the previous setion. Let k� be the key assoiated with p� and let H�be the heater obtained after deletion of p�. Then, as with treaps, the ost of deletion is proportional tothe length of path(k�, H�). Sine H� is a random treap, the expeted length of path(k�, H�) is O(logn)and the expeted ost of deletion is O(logn).
Theorem 4. Random heaters support the operations Insert and DeleteMin in O(logn) expetedtime and FindMin in onstant time per operation, where n is the number of priorities stored inthe heater at the time of the operation.
2.4 Discussion and ReferencesThe use of reords to analyze random binary searh trees was introdued by Devroye [5℄. His leturenotes [6℄ use reords to give ultra-short proofs about many random phenomena. Randomized trees(treaps and heaters) are introdued by Vuillemin [8℄. Aragon and Seidel [2℄ reinvestigate randomizedtrees and are responsible for the name treap. Bash et al [3℄ study the use of heaters in the ontextof kineti priority queues. These are priorities queues in whih the priorities are hanging ontinuouslyover time.
Bibliography[1℄ G. M. Adel'son-Vel'skii and Y. M. Landis. An algorithm for the organization of information. SovietMathematis. Doklady, 3:1259{1263, 1962.[2℄ C. R. Aragon and R. Seidel. Randomized searh trees. Algorithmia, 16(4):464{497, 1996.[3℄ J. Bash, L. Guibas, and G. D. Ramkumar. Reporting red-blue intersetions between two sets ofonneted line segments. Leture Notes in Computer Siene, 1136:302{314, 1996.[4℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to Algorithms. MIT Press, CambridgeMA, 1990.[5℄ L. Devroye. Appliations of the theory of reords in the study of random trees. Ata Informatia,26:123{130, 1988.

BIBLIOGRAPHY 10[6℄ L. Devroye. Probabilisti analysis of algorithms and data strutures (leture notes). Manusript,2001.[7℄ L. J. Guibas and R. Sedgewik. A dihromati framework for balaned trees. In Proeedings of the19th Annual Symposium on Foundations of Computer Siene (FOCS'78), pages 8{21, 1978.[8℄ J. Vuillemin. A unifying look at data strutures. Communiations of the ACM, 23(4):229{239,April 1980.

