
Chapter 5

Entropy, Working Sets and

Doubly-Exponential Series

Until now, we have studied data stru
tures that had good worst-
ase behaviour. That is, for anysequen
es of queries the data stru
tures o�er good query times, usually O(logn), where n is the numberof elements stored in the data stru
ture. In the usually a

epted 
omparison-tree model of 
omputation,
O(logn) is optimal if the distribution of queries is uniform, that is ea
h query is equally likely. However,when the distribution of queries is not uniform data stru
tures may take advantage of this to performoperations in o(logn) time. This 
hapter is about su
h data stru
tures.
5.1 EntropyLet S = {k1, . . . , kn} be a set of obje
ts let D = p1, . . . , pn be a probability distribution, so that pi > 0is the probability asso
iated with ki. The entropy of D is de�ned as

H(D) = −

n∑

i=1

pi logpi =

n∑

i=1

pi log(1/pi) . (5.1)Entropy is used in the 
ontext of 
oding theory. Imagine we have a sender and a re
eiver and thesender wants to sent a sequen
e s1, . . . , sm where ea
h element sj is 
hosen randomly and independentlya

ording to D, so that sj = ki with probability pi. The main result of 
oding theory is Shannon'sTheorem, whi
h states that for any proto
ol the sender and re
eiver might use, the expe
ted number ofbits required to transmit s1, . . . , sm using that proto
ol is at least mH(D).As an example, 
onsider the uniform distribution pi = 1/n for all 1 � i � n. Then (5.1)be
omes H(D) =
∑n

i=1(1/n) logn = logn. In this 
ase, Shannon's theorem says that, on average, werequire logn bits to en
ode ea
h symbol, whi
h 
an be a
hieved using a standard binary en
oding. Atthe other extreme, we 
ould 
onsider the geometri
 distribution pi = 1/2i for all 1 � i < n and
pn = 1/2n−1. In this 
ase, (5.1) be
omes H(D) =

∑n

i=1(i/2i) � 2. Shannon's theorem only gives alower bound of 2 bits per symbol. In this 
ase a lot of bits 
an be saved by an en
oding s
heme thata
hieves H(D) bits per symbol. 24



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 25Shannon's Theorem has had a profound impa
t in many areas, in
luding data stru
tures. Imag-ine k1, . . . , kn are taken from some total order, so that we 
an 
ompare any two values ki and kj. Thenthe sender and re
eiver use the following proto
ol: Initially, the sender and re
eiver both store theelements k1, . . . , kn in some 
omparison-based data stru
ture that is agreed on before hand.When the sender wants to transmit s1, he performs a sear
h for s1 in the data stru
ture. Thisresults in a sequen
e of 
omparisons of the form a opb, where op 2 {<, >,�,�, =} whi
h are either trueor false. This gives a sequen
e of 1s (for true) and 0s (for false) that the sender sends to the re
eiver.On the re
eiving end, the re
eiver runs the sear
h algorithm without knowing the value of s1. There
eiver 
an do this, be
ause she is doing exa
tly the same 
omparisons that the sender did, and knowsthe results of those 
omparison be
ause the sender has sent them. After doing this, the re
eiver dedu
esthat the element sent is s1 sin
e it has just 
ompleted a sear
h for s1. The sender and re
eiver then
ontinue in this manner to transmit s2, . . . , sm.Note that the sender and re
eiver 
an use any data stru
ture they like, and 
an modify thedata stru
ture as they are transmitting. However, Shannon's Theorem says that no matter whi
h datastru
ture they use, and no matter whi
h rules they use to reorganize this data stru
ture, the expe
tednumber of bits sent is still at least mH(D). However, the number of bits sent when sending si isexa
tly the same as the number of 
omparisons performed while sear
hing for si. Therefore, Shannon'sTheorem implies that the expe
ted number of 
omparisons while sear
hing for si is Ω(H(D)) and theexpe
ted number of 
omparisons required to handle the request sequen
e s1, . . . , sm is Ω(mH(D)), forany 
omparison-based data stru
ture.In the remainder of this 
hapter, we study data stru
tures that 
an a

ess the sequen
e s1, . . . , smin 
lose to O(mH(D)) expe
ted time, and are thus optimal by Shannon's Theorem. In fa
t, some ofthese data stru
tures work without even knowing the probability distribution D. In studying these datastru
tures, it sometimes helps to �x a spe
i�
 sequen
e s1, . . . , sm. Let mi be the number of times thesymbol i o

urs in s1, . . . , sm. Then, the empiri
al entropy of s1, . . . , sm is given by
H(s1, . . . , sm) = −

n∑

i=1

(mi/m) log(mi/m) =
1

m

n∑

i=1

mi/ log(m/mi) .Some of the data stru
tures des
ribed in this se
tion will be able to a

ess the sequen
e s1, . . . , smin 
lose to O(mH(s1, . . . , sm)) time. If ea
h of the si are 
hosen independently a

ording to distribution
D, then

H(s1, . . . , sm)
L
= H(D)as m goes to in�nity. Thus, for suÆ
iently large m (
ompared to n), the expe
ted time of the datastru
ture to a

ess s1, . . . , sm is O(mH(D)).

5.2 Nearly-Optimal Search TreesSuppose we are given they keys k1, . . . , kn, with ki < ki+1 for ea
h i 2 {1, . . . , n − 1} and with ea
h key
ki we are also given its a

ess probability pi. A 
ommon tool in the design of entropy-sensitive datastru
tures is probability splitting. One way to implement this idea is to �nd a key ki su
h that

i−1∑

j=1

pj � (1/2)

n∑

j=1

pj (5.2)



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 26and
n∑

j=i+1

pj � (1/2)

n∑

j=1

pj . (5.3)Note that at least one and at most 2 values of i satisfy this property.The key ki be
omes the root of a binary sear
h tree, and the left and right 
hild are 
onstru
tedre
ursively from (k1, . . . , ki−1, p1, . . . , pi−1) and (ki+1, . . . , kn, pi+1, . . . , pn). Let T denote the resultingtree. Observe that, in T , if a node ki has depth depthT (ki), then
∑

kj2T(ki)

pj � 1/2depthT (ki) ,where T(ki) is the set of all nodes in the subtree rooted at ki. In parti
ular pi � 1/2depthT (ki), sodepthT (ki) � log(1/pi). The expe
ted depth (distan
e from the root) of a key 
hosen a

ording to thedistribution D is
n∑

i=1

pi � depthT (ki) � n∑

i=1

pi log(1/pi) = H(D) .where d(ki) is the depth of ki. Therefore, the sear
h tree T is a data stru
ture that 
an answer queriesusing O(1 + H(D)) 
omparisons in O(1 + H(D)) time, so is optimal by Shannon's Theorem.How long does it take to 
onstru
t T? Finding the key ki that satis�es (5.2) and (5.3) 
an easilybe done in Θ(n) time. Unfortunately, for some distributions, this 
an lead to an overall 
onstru
tiontime of Θ(n2). (Exer
ise: des
ribe su
h a distribution). By sear
hing simultaneously starting and k1and working forward and starting at kn and working ba
kwards, the time to �nd ki 
an be redu
ed to
O(min{i, n − i + 1}). This leads to the re
urren
e

T(n) = O(min{i, n − i + 1}) + T(i − 1) + T(n − i − 1) ,for some i 2 {1, . . . , n}, whi
h resolves to O(n logn).An even better solution starts sear
hing simultaneously from 1 and n using an exponentialsear
h. That is, we 
he
k k1, k2, k4, k8 and so on until �nding the �rst k2j with 2j � i and then performbinary sear
h on k2j−1 , . . . , k2j . This allows us to �nd ki in O(log i) time. Simultaneously doing thesear
h working ba
kwards from n allows us to �nd ki in O(logmin{i, n − i + 1}) time. This gives anoverall running time that is de�ned by the re
urren
e
T(n) = O(logmin{i, n − i + 1}) + T(i − 1) + T(n − i − 1) ,whose solution is O(n), as 
an be veri�ed using indu
tion.

Theorem 10. If k1, . . . , kn are given in sorted order then the above data stru
ture 
an be 
on-stru
ted in O(n) time, uses O(n) spa
e and the expe
ted 
ost of sear
hing for a random key 
hosena

ording to probability distribution D is O(1 + H(D)).
5.3 Optimal In-Place Static SearchingSuppose again that we are given n keys k1, . . . , kn with 
orresponding distribution D = p1, . . . , pnwhere pi represents the probability of a

essing ki. Without loss of generality, assume pi � pi+1 for



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 27all 1 � i < n, sin
e we 
an always relabel the keys to a
hieve this. Our goal is to �nd a stati
 datastru
ture that allows us to perform sear
hes, so that the 
ost of sear
hing for ki is O(log(1/pi)).To a
hieve this goal we store k1, . . . , kn in an array of size n that is partitioned into Θ(log logn)groups. Group 0 
ontains the keys k1 and k2. Group 1 
ontains the keys k3, . . . , k6. Group 2 
ontainsthe keys k7, . . . , k22. In general, group i 
ontains 22i keys. The data stru
ture maintains ea
h group insorted order, so that sear
hing within group i takes O(log 22i

) = O(2i) time using binary sear
h.To sear
h for a key kj in this data stru
ture, we sear
h �rst in group 0, then in group 1, andso on until we �nd kj, or we have sear
hed in all groups. If we �nd kj in group i, then the 
ost of thesear
h is
i∑

g=0

O(2g) = O(2i) .We 
laim that, if the we �nd kj in group i, then pj < 1/22i−1 . To see this, observe that j >
∑i−1

g=0 22g

>

22i−1 . In other words, there are more than 22i−1 keys with a

ess probability larger than pj. Therefore
pj < 1/22i−1 , sin
e all the a

ess probabilities sum to 1.We �nish by observing thatlog(1/pj) � log�22i−1

�
= 2i−1 = Θ(2i) ,so that the time to a

ess key kj is O(log(1/pj)), as required. Therefore, if we sear
h for a random key
hosen a

ording to distribution D then the expe
ted 
ost of the sear
h is

n∑

i=1

piO(1 + log(1/pi)) = O(1 + H(D)) .

Theorem 11. The above data stru
ture 
an be 
onstru
ted in O(n logn) time (by sorting), uses
O(n) spa
e and the expe
ted 
ost of sear
hing for a random key 
hosen a

ording to probabilitydistribution D is O(1 + H(D)).
5.4 Optimal Dynamic SearchingIn the previous se
tion, we assumed that the distribution D was known to the data stru
ture. In thisse
tion we show that the data stru
ture does not need to know D to a
hieve good performan
e. Thesetup is the same, we have a data stru
ture that stores keys k1, . . . , kn, but we know nothing about thea

ess probabilies of these keys.The data stru
ture is based on the same doubly-exponential (22i) sequen
e as the previousdata stru
ture, but it is self-organizing. That is, after every a

ess it modi�es itself, in the hopes ofspeeding up subsequent a

esses. The data stru
ture 
onsists of O(log logn) balan
ed sear
h trees thatsupport insertion, deletion and sear
hing in logarithmi
 time. The tree Ti 
ontains exa
tly 22i elements.Additionally, the data stru
ture maintains, for ea
h tree Ti, a linked-list Li of the elements 
ontained in
Ti. Initially, the elements k1, . . . , kn are assigned to trees arbitrarily.When sear
hing for the key kj, we start by sear
hing T0, T1, and so on until we �nd kj in sometree, say Ti. We then remove the key kj from Ti and Li and insert kj into T0 and put it at the front of



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 28the list L0. Now T0 
ontains one element too many, so we take the last element in L0, remove it from T0and L0 and insert it into T1 and put it at the front of L1. Now T1 
ontains one element too many, so wetake the last element from L1, remove it from L1 and T1 and insert it into T2 and put it at the front of
L2. We pro
eed in this manner until rea
hing Ti, at whi
h point the pro
ess stops be
ause Ti 
ontainedone element too few, due to the removal of kj.In ea
h tree Tg, 0 � g � i we perform one insertion, one deletion and one sear
h operation, ata 
ost of O(log(22g

)) = O(2g). Therefore, the 
ost of a

essing kj is
i∑

g=0

O(log(22g

) =

i∑

g=0

O(2g) = O(2i) .Unfortunately, it's not 
lear that the value of i has anything to do with the probability ofa

essing kj. However, one thing we do know is the following working set property. Suppose we havea

essed kj at some point in the past, say t a

esses previously. Immediately after we a

essed kj it wasput into T0. During ea
h subsequent a

ess, it moved down at most one unit in the list it was 
ontainedin or, if it was the last element in some list Lg, it moved into Lg+1. Therefore, kj is 
ontained in Ti forsome i su
h that ∑i−1
g=0 22g

< t. It follows that the time to a

ess kj is O(log t).Thus, if we a

essed kj re
ently, it won't 
ost mu
h to a

ess it again. Next, we formalizethe following intuition: If we a

ess kj frequently, then the average amount of time between su

essivea

esses is small and the overall 
ost of a

essing kj is small. Before we begin, we require an inequalitydue to Jensen:
Lemma 2 (Jensen's Inequality). Let f : R → R be a stri
tly in
reasing 
on
ave fun
tion. Then, thesum ∑n

i=1 f(ti) subje
t to the 
onstraint ∑n

i=1 ti < m is maximized when t1 = t2 = � � � = tn = m/n.A ni
e way to visualize Jensen's inequality is to imagine pla
ing n − 1 points on an interval oflength m, so that the interval is split into n intervals of length t1, . . . , tn. Jensen's inequality says thatif we want to maximize ∑n

i=1 f(ti) then the best thing we 
an do is to make all the intervals of equallength. Returning to our data stru
turing problem, suppose s1, . . . , sm is a sequen
e of keys representinga

esses, and suppose that the key kj appears mj times in this sequen
e. Then the total 
ost of alla

esses to kj using the above data stru
ture is
O(n logn) +

mj∑

i=1

O(log(1 + ti)) ,where ti is the number of a

esses to keys other than kj between the ith and the (i + 1)th a

ess to
kj. (The extra O(n logn) term 
omes from the fa
t that the �rst a

ess to ea
h element takes O(logn)time.) Of 
ourse, the ti obey the inequality ∑mj

i=1 ti < m and log is a 
on
ave fun
tion so, by Jensen'sinequality, 
ost of a

esses to kj = O(logn) +

mj∑

i=1

O(log(ti)) = O(logn + mj log(m/mj)This is true for all 1 � j � n, so the total 
ost of handling the sequen
e s1, . . . , sm is
ost of s1, . . . , sm =

n∑

j=1

(
ost of a

esses to kj)



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 29
=

n∑

j=1

O(logn + mj(1 + log(m/mj)))

= O(n logn + m(1 + H(s1, . . . , sn))) .

Theorem 12. The above data stru
ture 
an be 
onstru
ted in O(n logn) time and 
an a

ess thesequen
e s1, . . . , sm in O(n logn + m(1 + H(s1, . . . , sm))) time.
5.5 MTF CompressionThe optimal dynami
 sear
h data stru
ture from Se
tion 5.4 
an be used as a 
ompression s
heme, asdes
ribed in the introdu
tion. This will give a 
ompression s
heme that uses O(H(D)) bits per symbolon average. In the remainder of this se
tion we des
ribe a 
ompression algorithm that is basi
ally astripped down version of this idea. The algorithm is 
alled move-to-front for reasons that will be
omeapparent soon enough.Consider the following en
oding s
heme for positive integers. The integer i is en
oded as dlog ie−
1 zeros followed by the binary representation of i (whi
h starts with a 1). To de
ode an integer, a re
eiver
ounts the number of leading zeros, reads the same number of bits from the remainder and de
odes thisas a binary number. This s
heme uses 2dlog ie − 1 � 1 + 2blogi
 bits to en
ode the integer i, and the�rst dlog ie bits are always a sequen
e of zeroes followed by exa
tly one one. To get a s
heme thatuses blog i
+ O(log log i) bits we just observe that the leading dlog ie bits represent the positive integerdlog ie � 1 + log i and 
an therefore be en
oded using 1 + 2blog(1 + log i)
 bits, using the same s
hemere
ursively.In MTF (move-to-front) 
ompression, the sender and re
eiver ea
h maintain identi
al lists that
ontain integers 1, . . . , n. To send the symbol j, the sender looks for j in his list and �nds it at position i(say). The sender then en
odes i using log i +O(log log i) bits and sends it to the re
eiver. The re
eiverde
odes i, looks at the ith element in his list and �nds j. The sender and re
eiver then both move theelement j to the front of their lists and 
ontinue.To analyze the 
ost of sending the sequen
e s1, . . . , sm, we �rst observe that MTF also has theworking set property. If the number of distin
t symbols between two 
onse
utive o

uren
es of theinteger j is t − 1 then the 
ost of en
oding the se
ond j is log t + O(log log t). Therefore, by the sameargument used in previous se
tion, the total 
ost of en
oding all o

uren
es of j is at most

Cj = logn + O(log logn) +

mj∑

i=1

(log ti + O(log log ti))� logn + O(log logn) + mj (log(m/mj) + O(log logm/mj)) ,where ti − 1 is the number of symbols between the i − 1th and the ith o

uren
e of j. Summing thisover all j, we see that the number of bits required to 
ompress the sequen
e s1, . . . , sm is
B(s1, . . . , sm) � Cj� n logn + O(n log logn) + mH(s1, . . . , sm) +

n∑

j=1

O(mj log logm/mj)� n logn + mH(s1, . . . , sm) + O(n log logn + m logH(s1, . . . , sm))



BIBLIOGRAPHY 30Although this equation looks quite 
ompli
ated, it really 
onsists of a a n logn startup 
ost plus theempiri
al entropy of s1, . . . , sm plus some lower order terms. If m is mu
h larger than n, the n lognterms be
ome negligible and the overall 
ost is very 
lose to the empiri
al entropy of s1, . . . , sm.
Theorem 13. The MTF 
ompression algorithm 
ompresses the sequen
e s1, . . . , sm into

n logn + mH(s1, . . . , sm) + O(n log logn + m logH(s1, . . . , sm))bits.
5.6 Discussion and ReferencesThe notion of entropy was introdu
ed by Shannon in his groundbreaking work on information theory[6℄. The 
onstru
tion of nearly optimal binary sear
h trees in linear time is due to Mehlhorn [5℄. Theoptimal dynami
 sear
h stru
ture is due to Ia
ono [4℄. The variable length integer en
oding s
heme isdue to Elias [3℄. The MTF 
ompression algorithm is due to Bentley et al [1℄. MTF is a ni
e simple ideathat is easy to implement and gives good 
ompression. Unfortunately, it's patented [2℄, but at least thepatent expires soon.
Bibliography[1℄ J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A lo
ally adaptive data 
ompressions
heme. Communi
ations of the ACM, 29(4), 1986.[2℄ J. L. Bentley, D. D. K. Sleator, and R. E. Tarjan. Data 
ompa
tion. US Patent 4,796,003, January1989.[3℄ P. Elias. Universal 
odeword sets and the representation of the integers. IEEE Transa
tions onInformation Theory, 21:194{203, 1975.[4℄ J. Ia
ono. Alternatives to splay trees with O(logn) worst-
ase a

ess times. In Pro
eedings of theTwelfth Annual ACM-SIAM Symposium on Dis
rete Algorithms (SODA-01), pages 516{522,2001.[5℄ K. Mehlhorn. Nearly optimal binary sear
h trees. A
ta Informati
a, 5:287{295, 1975.[6℄ C. E. Shannon. A mathemati
al theory of 
ommuni
ation. Bell System Te
hni
al Journal, 27:379{423, 623{656, 1948.


