Chapter 5

Entropy, Working Sets and
Doubly-Exponential Series

Until now, we have studied data structures that had good worst-case behaviour. That is, for any
sequences of queries the data structures offer good query times, usually O(logn), where n is the number
of elements stored in the data structure. In the usually accepted comparison-tree model of computation,
O(logn) is optimal if the distribution of queries is uniform, that is each query is equally likely. However,
when the distribution of queries is not uniform data structures may take advantage of this to perform
operations in o(logn) time. This chapter is about such data structures.

5.1 Entropy

Let S ={kq,...,kn} be a set of objects let D = pq,...,pn be a probability distribution, so that p; > 0
is the probability associated with k;. The entropy of D is defined as

n n
H(D)=—> pilogpi=) pilog(1/pi) . (5.1)
i=1 i=1
Entropy is used in the context of coding theory. Imagine we have a sender and a receiver and the
sender wants to sent a sequence s1, ..., s, where each element s; is chosen randomly and independently
according to D, so that s; = k; with probability p;. The main result of coding theory is Shannon’s
Theorem, which states that for any protocol the sender and receiver might use, the expected number of
bits required to transmit sq,..., s, using that protocol is at least mH(D).

As an example, consider the uniform distribution p; = 1/n for all 1 < i < n. Then (5.1)
becomes H(D) = Z?ﬂ (1/n)logn = logn. In this case, Shannon’s theorem says that, on average, we
require logn bits to encode each symbol, which can be achieved using a standard binary encoding. At
the other extreme, we could consider the geometric distribution py = 1/2' for all 1 < i < n and
Pn = 1/2™7 1. In this case, (5.1) becomes H(D) = > " ,(i/2Y) < 2. Shannon’s theorem only gives a
lower bound of 2 bits per symbol. In this case a lot of bits can be saved by an encoding scheme that
achieves H(D) bits per symbol.

24

CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 25

Shannon’s Theorem has had a profound impact in many areas, including data structures. Imag-

ine k1, ..., kn are taken from some total order, so that we can compare any two values k; and k;. Then
the sender and receiver use the following protocol: Initially, the sender and receiver both store the
elements k1,...,k, in some comparison-based data structure that is agreed on before hand.

When the sender wants to transmit s;, he performs a search for s; in the data structure. This
results in a sequence of comparisons of the form a op b, where op € {<, >, <, >, =} which are either true
or false. This gives a sequence of 1s (for true) and Os (for false) that the sender sends to the receiver.
On the receiving end, the receiver runs the search algorithm without knowing the value of s;. The
receiver can do this, because she is doing exactly the same comparisons that the sender did, and knows
the results of those comparison because the sender has sent them. After doing this, the receiver deduces
that the element sent is s; since it has just completed a search for s;. The sender and receiver then
continue in this manner to transmit s»,...,Sm.

Note that the sender and receiver can use any data structure they like, and can modify the
data structure as they are transmitting. However, Shannon’s Theorem says that no matter which data
structure they use, and no matter which rules they use to reorganize this data structure, the expected
number of bits sent is still at least mH(D). However, the number of bits sent when sending s; is
exactly the same as the number of comparisons performed while searching for s;. Therefore, Shannon’s
Theorem implies that the expected number of comparisons while searching for s; is Q(H(D)) and the
expected number of comparisons required to handle the request sequence s1,...,sn is Q(mH(D)), for
any comparison-based data structure.

In the remainder of this chapter, we study data structures that can access the sequence sq,...,sm
in close to O(mH(D)) expected time, and are thus optimal by Shannon’s Theorem. In fact, some of
these data structures work without even knowing the probability distribution D. In studying these data
structures, it sometimes helps to fix a specific sequence s1,...,s,. Let m; be the number of times the
symbol i occurs in s1,...,Sm. Then, the empirical entropy of s1,...,sm is given by

n] n
H(s1,...,8m) = Z(ml/m) log(mi/m) = m Z mi/log(m/mi) .

i=1 i=1

Some of the data structures described in this section will be able to access the sequence s1,...,sm
in close to O(mH(s1,...,sm)) time. If each of the s; are chosen independently according to distribution

D, then
H(s1,...,sm) £ H(D)

as m goes to infinity. Thus, for sufficiently large m (compared to n), the expected time of the data
structure to access s1,...,sm is O(mH(D)).

5.2 Nearly-Optimal Search Trees

Suppose we are given they keys ki,...,k,, with ki < ki;1 for each i € {1,...,n— 1} and with each key
ki we are also given its access probability p;. A common tool in the design of entropy-sensitive data
structures is probability splitting. One way to implement this idea is to find a key k; such that

i—1 n
Y p<(1/2)) v (5:2)
j=1 j=1

CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 26

and
n n
2 » </ v (5.3)
j=1i+1 j=1
Note that at least one and at most 2 values of 1 satisfy this property.

The key ki becomes the root of a binary search tree, and the left and right child are constructed
recursively from (kq,...,ki—1,P1,...,Pi—1) and (Ki+1,...,Kn,Pit1,--.,Pn)- Let T denote the resulting
tree.

Observe that, in T, if a node k; has depth depth(ki), then

Z P; <]/zdepthT(ki) ,
k€T (ki)

where T(k;) is the set of all nodes in the subtree rooted at k;i. In particular p; < 1/2depthr(ki) 5o
depthy (ki) < log(1/pi). The expected depth (distance from the root) of a key chosen according to the
distribution D is

n n
Zpi ~depthy (ki) < Zpi log(1/pi) =H(D) .
i=1 i=1
where d(k;) is the depth of k;. Therefore, the search tree T is a data structure that can answer queries
using O(1 + H(D)) comparisons in O(1 + H(D)) time, so is optimal by Shannon’s Theorem.

How long does it take to construct T? Finding the key k; that satisfies (5.2) and (5.3) can easily
be done in O(n) time. Unfortunately, for some distributions, this can lead to an overall construction
time of @(n?). (Exercise: describe such a distribution). By searching simultaneously starting and k;
and working forward and starting at k,, and working backwards, the time to find k; can be reduced to
O(min{i,n — 1+ 1}). This leads to the recurrence

Tn) =0(min{in —i+ 1) +TEi-1)+Tn—-i-1),

for some 1 € {1,...,n}, which resolves to O(nlogn).

An even better solution starts searching simultaneously from 1 and n using an ezponential
search. That is, we check k1, k2, k4, kg and so on until finding the first k,; with 2) > i and then perform
binary search on ky;-1,...,ky;. This allows us to find ki in O(logi) time. Simultaneously doing the
search working backwards from n allows us to find ki in O(logmin{i,n — 1+ 1}) time. This gives an
overall running time that is defined by the recurrence

Tn)=0(logmin{iyn—1+1)+TA-1)4+Tn—-1-1) ,
whose solution is O(n), as can be verified using induction.

Theorem 10. If k1,...,kn are given in sorted order then the above data structure can be con-
structed in O(n) time, uses O(n) space and the expected cost of searching for a random key chosen
according to probability distribution D s O(1+ H(D)).

5.3 Optimal In-Place Static Searching

Suppose again that we are given n keys kq,...,k, with corresponding distribution D = py,...,pn
where p; represents the probability of accessing k;. Without loss of generality, assume p; < pi4q for

CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 27

all 1 <1 < n, since we can always relabel the keys to achieve this. Our goal is to find a static data
structure that allows us to perform searches, so that the cost of searching for k; is O(log(1/pi)).

To achieve this goal we store kq,...,k; in an array of size n that is partitioned into O(loglogn)
groups. Group 0 contains the keys k; and k. Group 1 contains the keys k3, ..., ks. Group 2 contains
the keys k7, ..., k2. In general, group i contains 2% keys. The data structure maintains each group in
sorted order, so that searching within group i takes O(log22) = O(2!) time using binary search.

To search for a key k; in this data structure, we search first in group 0, then in group 1, and
so on until we find k;, or we have searched in all groups. If we find k; in group 1, then the cost of the
search is

) 0(29)=0(2Y) .
g=0

We claim that, if the we find k; in group i, then p; < 1/22i71 . To see this, observe that j > Z;:o 2%° >
227" In other words, there are more than 227 keys with access probability larger than p;. Therefore
p; < 1/22171 , since all the access probabilities sum to 1.

We finish by observing that
log(1/p;) > log (22" ') =27! = @(2Y

so that the time to access key k; is O(log(1/p;)), as required. Therefore, if we search for a random key
chosen according to distribution D then the expected cost of the search is

2 PiO(1 +1og(1/pi)) = O(1 + H(D)) .

i=1

Theorem 11. The above data structure can be constructed in O(nlogn) time (by sorting), uses
O(n) space and the ezpected cost of searching for a random key chosen according to probability
distribution D 1s O(1 + H(D)).

5.4 Optimal Dynamic Searching

In the previous section, we assumed that the distribution D was known to the data structure. In this
section we show that the data structure does not need to know D to achieve good performance. The
setup is the same, we have a data structure that stores keys kq,...,kn, but we know nothing about the
access probabilies of these keys.

The data structure is based on the same doubly-exponential (221) sequence as the previous
data structure, but it is self-organizing. That is, after every access it modifies itself, in the hopes of
speeding up subsequent accesses. The data structure consists of O(loglogn) balanced search trees that
support insertion, deletion and searching in logarithmic time. The tree T; contains exactly 22 elements.
Additionally, the data structure maintains, for each tree T;, a linked-list L; of the elements contained in
T;. Initially, the elements kq,..., k., are assigned to trees arbitrarily.

When searching for the key k;, we start by searching Ty, T7, and so on until we find k; in some
tree, say T;. We then remove the key k; from T; and L; and insert k; into Tp and put it at the front of

CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 28

the list Ly. Now Ty contains one element too many, so we take the last element in Ly, remove it from Ty
and Ly and insert it into T; and put it at the front of L. Now T; contains one element too many, so we
take the last element from [, remove it from [; and T; and insert it into T, and put it at the front of
L,. We proceed in this manner until reaching T;, at which point the process stops because T; contained
one element too few, due to the removal of k;.

In each tree Ty, 0 < g < i we perform one insertion, one deletion and one search operation, at
a cost of O(log(22”)) = O(29). Therefore, the cost of accessing k; is

) O(log(2*") =) 0[29)=0(2") .
g=0 g=0

Unfortunately, it’s not clear that the value of 1 has anything to do with the probability of
accessing kj. However, one thing we do know is the following working set property. Suppose we have
accessed k; at some point in the past, say t accesses previously. Immediately after we accessed k; it was
put into Tp. During each subsequent access, it moved down at most one unit in the list it was contained
in or, if it was the last element in some list Ly, it moved into L47. Therefore, k; is contained in T; for

some 1 such that Z;;lo 22° < t. It follows that the time to access k;j is O(logt).

Thus, if we accessed k; recently, it won’t cost much to access it again. Next, we formalize
the following intuition: If we access k; frequently, then the average amount of time between successive
accesses is small and the overall cost of accessing k; is small. Before we begin, we require an inequality
due to Jensen:

Lemma 2 (Jensen’s Inequality). Let f: R — R be a strictly increasing concave function. Then, the
sum 2?21 (ti) subject to the constraint Z _1 ti <m 1s mazimized when t; =t; = =t, = m/n.

A nice way to visualize Jensen'’s inequality is to imagine placing 1 — 1 points on an interval of
length m, so that the interval is split into n intervals of length t;,...,t,,. Jensen’s inequality says that
if we want to maximize Z?ﬂ f(ti) then the best thing we can do is to make all the intervals of equal
length.

Returning to our data structuring problem, suppose s1, ..., s;, is a sequence of keys representing
accesses, and suppose that the key k; appears m; times in this sequence. Then the total cost of all
accesses to kj using the above data structure is

m;
O(nlogn) + Y O(log(1+t:))
i=1
where t; is the number of accesses to keys other than k; between the ith and the (i 4 1)th access to
kj. (The extra O(nlogn) term comes from the fact that the first access to each element takes O(logn)
time.) Of course, the t; obey the inequality ZZ} ti < m and log is a concave function so, by Jensen'’s
inequality,

j
cost of accesses to kj = O(logn) + Z O(log(ti)) = O(logn 4+ m; log(m/m;)
i=1
This is true for all 1 < j < n, so the total cost of handling the sequence s1,..., sy, is
n
cost of s1,...,85m = Z(cost of accesses to k;j)
j=1

CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 29

O(logn + m;(1 + log(m/m;)))

—_

|
.I\/];

= O(nlogn+m(1+H(s1,...,sa))) .

Theorem 12. The above data structure can be constructed in O(nlogn) time and can access the
sequence s1,...,Sm m O(mlogn+m(1 4+ H(s1,...,sm))) teme.

5.5 MTF Compression

The optimal dynamic search data structure from Section 5.4 can be used as a compression scheme, as
described in the introduction. This will give a compression scheme that uses O(H(D)) bits per symbol
on average. In the remainder of this section we describe a compression algorithm that is basically a
stripped down version of this idea. The algorithm is called mowve-to-front for reasons that will become
apparent soon enough.

Consider the following encoding scheme for positive integers. The integer iis encoded as [logi]—
1 zeros followed by the binary representation of i (which starts with a 1). To decode an integer, a receiver
counts the number of leading zeros, reads the same number of bits from the remainder and decodes this
as a binary number. This scheme uses 2[logi] —1 < 1+ 2|log; | bits to encode the integer i, and the
first [logi] bits are always a sequence of zeroes followed by exactly one one. To get a scheme that
uses |logi] + O(loglogi) bits we just observe that the leading [logi] bits represent the positive integer
[logi] < 1+ logi and can therefore be encoded using 1+ 2|log(1 + logi)| bits, using the same scheme
recursively.

In MTF (move-to-front) compression, the sender and receiver each maintain identical lists that
contain integers 1,...,n. To send the symbol j, the sender looks for j in his list and finds it at position i
(say). The sender then encodes i using logi+ O(loglogi) bits and sends it to the receiver. The receiver
decodes 1i, looks at the ith element in his list and finds j. The sender and receiver then both move the
element j to the front of their lists and continue.

To analyze the cost of sending the sequence s1,...,sm, we first observe that MTF also has the
working set property. If the number of distinct symbols between two consecutive occurences of the
integer j is t — 1 then the cost of encoding the second j is logt + O(loglogt). Therefore, by the same
argument used in previous section, the total cost of encoding all occurences of j is at most

m;j
C; = logn+ O(loglogn) + Z (logti + O(loglogty))
i=1

< logn + O(loglogn) + m; (log(m/m;) + O(loglogm/m;)) ,

where t; — 1 is the number of symbols between the i — 1th and the ith occurence of j. Summing this

over all j, we see that the number of bits required to compress the sequence s1,...,sm is
B(s1,...,sm) < G
n
< mnlogn+ O(nloglogn)+ mH(sq1,...,sm) + Z O(m; loglog m/m;)
j=1
< mnlogn+ mH(s1,...,sm)+ O(nloglogn + mlogH(s1,...,Sm))

BIBLIOGRAPHY 30

Although this equation looks quite complicated, it really consists of a a nlogn startup cost plus the
empirical entropy of si,..., s, plus some lower order terms. If m is much larger than n, the nlogn
terms become negligible and the overall cost is very close to the empirical entropy of s1,...,sm-

Theorem 13. The MTF compression algorithm compresses the sequence si,...,Sm tnto
nlogn +mH(sq,...,sm)+ O(nloglogn + mlogH(s1,...,5m))

bits.

5.6 Discussion and References

The notion of entropy was introduced by Shannon in his groundbreaking work on information theory
[6]. The construction of nearly optimal binary search trees in linear time is due to Mehlhorn [5]. The
optimal dynamic search structure is due to Iacono [4]. The variable length integer encoding scheme is
due to Elias [3]. The MTF compression algorithm is due to Bentley et al [1]. MTF is a nice simple idea
that is easy to implement and gives good compression. Unfortunately, it’s patented [2], but at least the
patent expires soon.

Bibliography

[1] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data compression
scheme. Communications of the ACM, 29(4), 1986.

[2] J. L. Bentley, D. D. K. Sleator, and R. E. Tarjan. Data compaction. US Patent 4,796,003, January
1989.

[3] P. Elias. Universal codeword sets and the representation of the integers. IEEE Transactions on
Information Theory, 21:194-203, 1975.

[4] J. lacono. Alternatives to splay trees with O(logn) worst-case access times. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-01), pages 516-522,
2001.

[5] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287-295, 1975.

[6] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-
423, 623—-656, 1948.

