COMP5408: Winter 2023 - Assignment 1

Please write up your solutions on paper (word processed in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ would be nice) and email them to me as a single PDF file.

1. Let T be a random binary search tree that stores the keys $1, \ldots, n$ and, for each $i \in\{1, \ldots, n\}$, let v_{i} the node of T that stores the key i.
(a) What is the probability that v_{1} is a leaf?
(b) Fix some $i \in\{2, \ldots, n-1\}$. What is the probability that v_{i} is a leaf T ? (Hint: The answer doesn't depend on i.)
(c) What is the expected number of nodes in T that are leaves?
(d) What is the expected number of nodes in T that have exactly one child?
(e) What is the expected number of nodes in T that have exactly two children?
2. Let T_{1} and T_{2} be two binary search trees that each contain the keys the elements $1, \ldots, n$. Let $d_{T}(i)$ denote the depth (distance from the root) of element i in tree T.
(a) Show that there exists a ternary (3-ary) search tree ${ }^{1} T_{3}$ such that, for every $j \in$ $\{1, \ldots, n\}$,

$$
d_{T_{3}}(j) \leq \min \left\{d_{T_{1}}(j), d_{T_{2}}(j)\right\}
$$

(Hint: The standard algorithm for deleting a value in a binary search tree does not increase the depth of any node.)
(b) Prove that the converse of the above statement is not true. That is, there exists a ternary search tree T_{3} containing the elements $1, \ldots, n$ such that no pair of binary search trees T_{1} and T_{2} has the property that

$$
\min \left\{d_{T_{1}}(j), d_{T_{2}}(j)\right\} \leq d_{T_{3}}(j)
$$

for all $j \in\{1, \ldots, n\}$. (Hint: In a perfectly balanced ternary tree, all nodes have depth at most $\left\lceil\log _{3} n\right\rceil$.)
3. This question is about doing iterated search using biased search trees (instead of fractional cascading). Consider any increasing sequence $x_{0}=-\infty, x_{1}, \ldots, x_{k}, x_{k+1}=\infty$ of numbers and let $I_{i}, 0 \leq i \leq k$, denote the interval $\left[x_{i}, x_{i+1}\right)$. Let $W_{i}, 0 \leq i \leq k$, be an arbitrary positive weight associated with I_{i} and let $W=\sum_{i=0}^{k} W_{i}$. A biased search tree is a binary search tree built on x_{1}, \ldots, x_{k} in such a way that, given any number x, we can determine the interval I_{i} containing x in $O(1)+\log \left(W / W_{i}\right)$ time.
(a) Suppose you have two lists A and B containing a total of n numbers. Show how to use a biased search tree on the elements of A so that, using this search tree, we can locate any element x in both A and B using $O(1)+\log n$ comparisons. (Hint: $\left.\log \left(W / W_{i}\right)=\log W-\log W_{i}.\right)$
(b) Generalize the above construction so that, given lists A_{1}, \ldots, A_{r} containing a total of n numbers, we can locate any element x in A_{1}, \ldots, A_{r} using a total of $O(r)+\log n$ comparisons.

[^0]4. This question is about an application of persistence. Recall that persistent binary search trees take $O(\log n)$ time per insert/delete/search operation and require $O(1)$ extra space per insert/delete operation.
Let $S:=\left\{\left(x_{i}, y_{i}, z_{i}\right): i \in\{1, \ldots, n\}\right\}$ be a set of points in \mathbb{R}^{3}. We want to design a data structure that accepts a query (m, z)
Design a data structure of size $O(n)$ that preprocesses S so that you can quickly answer a query of the form (m, q) that returns $\min \{z>q:(x, y, z) \in S$ and $y>m x\}$. In words, we look at all the points in S whose projection onto $x y$-plane is above the line $y=m x$ and, among those we find the one whose z-coordinate is closest to (but bigger than) q.
5. This question is about another application of persistence.

Suppose we are given an array x_{1}, \ldots, x_{n} of (not necessarily sorted) numbers. We want to construct a data structure that supports "range location queries:" Given a query (a, b, x), find the smallest value $x^{\prime} \in\left\{x_{a}, \ldots, x_{b}, \infty\right\}$ that is greater than or equal to x. Describe a data structure of size $O(n \log n)$ that supports range location queries in $O(\log n)$ time. (Hint: A range location query (a, b, x) can be answered if we have two binary search trees, one that stores x_{a}, \ldots, x_{c} and one that stores x_{c+1}, \ldots, x_{b} for some $c \in\{a, \ldots, b\}$.)

[^0]: ${ }^{1}$ In a ternary search tree each node contains up to 2 keys a and b with $a<b$ and these are used to determine whether a search for x search proceeds to the left $(x<a)$, middle $(a<x<b)$ or right $(x>b)$ child.

