
COMP5408: Winter 2023 — Assignment 1

Please write up your solutions on paper (word processed in LATEX would be nice) and email
them to me as a single PDF file.

1. Let T be a random binary search tree that stores the keys 1, . . . ,n and, for each i ∈ {1, . . . ,n},
let vi the node of T that stores the key i.

(a) What is the probability that v1 is a leaf?

(b) Fix some i ∈ {2, . . . ,n − 1}. What is the probability that vi is a leaf T ? (Hint: The
answer doesn’t depend on i.)

(c) What is the expected number of nodes in T that are leaves?

(d) What is the expected number of nodes in T that have exactly one child?

(e) What is the expected number of nodes in T that have exactly two children?

2. Let T1 and T2 be two binary search trees that each contain the keys the elements 1, . . . ,n.
Let dT (i) denote the depth (distance from the root) of element i in tree T .

(a) Show that there exists a ternary (3-ary) search tree1 T3 such that, for every j ∈
{1, . . . ,n},

dT3
(j) ≤min{dT1

(j),dT2
(j)}

(Hint: The standard algorithm for deleting a value in a binary search tree does not
increase the depth of any node.)

(b) Prove that the converse of the above statement is not true. That is, there exists a
ternary search tree T3 containing the elements 1, . . . ,n such that no pair of binary
search trees T1 and T2 has the property that

min{dT1
(j),dT2

(j)} ≤ dT3
(j)

for all j ∈ {1, . . . ,n}. (Hint: In a perfectly balanced ternary tree, all nodes have depth
at most ⌈log3n⌉.)

3. This question is about doing iterated search using biased search trees (instead of frac-
tional cascading). Consider any increasing sequence x0 = −∞,x1, . . . ,xk ,xk+1 =∞ of num-
bers and let Ii , 0 ≤ i ≤ k, denote the interval [xi ,xi+1). Let Wi , 0 ≤ i ≤ k, be an arbitrary
positive weight associated with Ii and let W =

∑k
i=0Wi . A biased search tree is a binary

search tree built on x1, . . . ,xk in such a way that, given any number x, we can determine
the interval Ii containing x in O(1) + log(W/Wi) time.

(a) Suppose you have two lists A and B containing a total of n numbers. Show how
to use a biased search tree on the elements of A so that, using this search tree, we
can locate any element x in both A and B using O(1) + logn comparisons. (Hint:
log(W/Wi) = logW − logWi .)

(b) Generalize the above construction so that, given lists A1, . . . ,Ar containing a total
of n numbers, we can locate any element x in A1, . . . ,Ar using a total of O(r) + logn
comparisons.

1In a ternary search tree each node contains up to 2 keys a and b with a < b and these are used to determine whether
a search for x search proceeds to the left (x < a), middle (a < x < b) or right (x > b) child.

1



4. This question is about an application of persistence. Recall that persistent binary search
trees take O(logn) time per insert/delete/search operation and require O(1) extra space
per insert/delete operation.

Let S := {(xi , yi , zi) : i ∈ {1, . . . ,n}} be a set of points in R
3. We want to design a data

structure that accepts a query (m,z)

Design a data structure of size O(n) that preprocesses S so that you can quickly answer
a query of the form (m,q) that returns min{z > q : (x,y,z) ∈ S and y > mx}. In words, we
look at all the points in S whose projection onto xy-plane is above the line y = mx and,
among those we find the one whose z-coordinate is closest to (but bigger than) q.

5. This question is about another application of persistence.

Suppose we are given an array x1, . . . ,xn of (not necessarily sorted) numbers. We want to
construct a data structure that supports “range location queries:” Given a query (a,b,x),
find the smallest value x′ ∈ {xa, . . . ,xb,∞} that is greater than or equal to x. Describe a data
structure of size O(n logn) that supports range location queries in O(logn) time. (Hint: A
range location query (a,b,x) can be answered if we have two binary search trees, one that
stores xa, . . . ,xc and one that stores xc+1, . . . ,xb for some c ∈ {a, . . . ,b}.)

2


