COMP5408: Winter 2023 — Assignment 1

Please write up your solutions on paper (word processed in LATEX would be nice) and email them to me as a *single PDF file*.

- 1. Let *T* be a random binary search tree that stores the keys 1, ..., n and, for each $i \in \{1, ..., n\}$, let v_i the node of *T* that stores the key *i*.
 - (a) What is the probability that v_1 is a leaf?
 - (b) Fix some $i \in \{2, ..., n-1\}$. What is the probability that v_i is a leaf *T*? (Hint: The answer doesn't depend on *i*.)
 - (c) What is the expected number of nodes in *T* that are leaves?
 - (d) What is the expected number of nodes in *T* that have exactly one child?
 - (e) What is the expected number of nodes in *T* that have exactly two children?
- 2. Let T_1 and T_2 be two binary search trees that each contain the keys the elements 1, ..., n. Let $d_T(i)$ denote the depth (distance from the root) of element *i* in tree *T*.
 - (a) Show that there exists a ternary (3-ary) search tree¹ T_3 such that, for every $j \in \{1, ..., n\}$,

 $d_{T_3}(j) \le \min\{d_{T_1}(j), d_{T_2}(j)\}$

(Hint: The standard algorithm for deleting a value in a binary search tree does not increase the depth of any node.)

(b) Prove that the converse of the above statement is not true. That is, there exists a ternary search tree T_3 containing the elements $1, \ldots, n$ such that no pair of binary search trees T_1 and T_2 has the property that

$$\min\{d_{T_1}(j), d_{T_2}(j)\} \le d_{T_3}(j)$$

for all $j \in \{1, ..., n\}$. (Hint: In a perfectly balanced ternary tree, all nodes have depth at most $\lceil \log_3 n \rceil$.)

- 3. This question is about doing iterated search using biased search trees (instead of fractional cascading). Consider any increasing sequence $x_0 = -\infty, x_1, \dots, x_k, x_{k+1} = \infty$ of numbers and let I_i , $0 \le i \le k$, denote the interval $[x_i, x_{i+1}]$. Let W_i , $0 \le i \le k$, be an arbitrary positive *weight* associated with I_i and let $W = \sum_{i=0}^k W_i$. A *biased search tree* is a binary search tree built on x_1, \dots, x_k in such a way that, given any number x, we can determine the interval I_i containing x in $O(1) + \log(W/W_i)$ time.
 - (a) Suppose you have two lists *A* and *B* containing a total of *n* numbers. Show how to use a biased search tree on the elements of *A* so that, using this search tree, we can locate any element *x* in both *A* and *B* using $O(1) + \log n$ comparisons. (Hint: $\log(W/W_i) = \log W \log W_i$.)
 - (b) Generalize the above construction so that, given lists A_1, \ldots, A_r containing a total of *n* numbers, we can locate any element *x* in A_1, \ldots, A_r using a total of $O(r) + \log n$ comparisons.

¹In a ternary search tree each node contains up to 2 keys *a* and *b* with a < b and these are used to determine whether a search for *x* search proceeds to the left (x < a), middle (a < x < b) or right (x > b) child.

4. This question is about an application of persistence. Recall that persistent binary search trees take $O(\log n)$ time per insert/delete/search operation and require O(1) extra space per insert/delete operation.

Let $S := \{(x_i, y_i, z_i) : i \in \{1, ..., n\}\}$ be a set of points in \mathbb{R}^3 . We want to design a data structure that accepts a query (m, z)

Design a data structure of size O(n) that preprocesses *S* so that you can quickly answer a query of the form (m, q) that returns min $\{z > q : (x, y, z) \in S \text{ and } y > mx\}$. In words, we look at all the points in *S* whose projection onto *xy*-plane is above the line y = mx and, among those we find the one whose *z*-coordinate is closest to (but bigger than) *q*.

5. This question is about another application of persistence.

Suppose we are given an array $x_1, ..., x_n$ of (not necessarily sorted) numbers. We want to construct a data structure that supports "range location queries:" Given a query (a, b, x), find the smallest value $x' \in \{x_a, ..., x_b, \infty\}$ that is greater than or equal to x. Describe a data structure of size $O(n \log n)$ that supports range location queries in $O(\log n)$ time. (Hint: A range location query (a, b, x) can be answered if we have two binary search trees, one that stores $x_a, ..., x_c$ and one that stores $x_{c+1}, ..., x_b$ for some $c \in \{a, ..., b\}$.)