
Introduction to Perl: Part I

Pat Morin

COMP 2405

2

Outline

• Literals

• Scalar variables

• File I/O

• Arrays

• Hashes

• Contexts

• Focus is on where Perl differs from Java and C
– not comprehensive

• Read the Perl 5 Tutorial

3

Hello World

#!/usr/bin/perl

print(“H ello World!\n”) ;

4

Literals
• Perl has two kinds of basic literals:

– strings: text strings
– numbers: including integers and decimals (floating-point)

5

String Literals
• String literals in Perl are similar to those in C or

Java but can be specified in three different ways:

• Single quoted strings
– Prints exactly what is contained in the single quotes

• Double quoted strings
– Like in C or Java (with special escape codes) and variables

can be used within the string

• Here docs
– Like single or double-quoted strings, but for multiline strings

6

String Literals

print('This is a single-quoted string\n');

print("This is a double-quoted string\n");

print(<<ENDOFSTRING);
This is a heredoc string that spans
multiple lines, including carriage
returns.
ENDOFSTRING

print(<<'FINISH');
This is another heredoc string that
spans multiple lines. But this one
is treated like a single-quoted string
FINISH

7

Number Literals
• Numbers are similar to C and can be specified as

– Decimal (base 10), e.g., 47362
– Octal (base 8), e.g., 04837
– Hexadecimal (base 16), e.g., 0x38de
– Floating-point, e.g., 2.8
– Scientific notation, e.g., 2.9e12

print(47362); print('\n');
print(0437); print('\n');
print(0x38de); print('\n');
print(2.8); print('\n');
print(2.9e12); print('\n');

8

Data Types
• Perl 5 only distinguishes between two types of data

• Scalar data represents a single piece of data
– literals
– variables

• List data is an aggregation of scalar data
– arrays
– hashes (hash tables)

9

Scalar Variables
• Scalar variables can hold

– A string
– A number
– A reference

• By default variables are global, unless specified
otherwise

• We declare variables as local using the my
keyword

• When we use perl 5 strict, variables must be
declared before they are used

10

Using Scalar Variables
• In Perl, scalar variables are prefixed with $

• Assignments are done as in most other
programming languages

• The assignment operator returns the assigned
value

my $aString = "Hello my name is Simon";

my $aSecondString = "and I love to do drawrings.";

my $thisNumber = 42;

my $a = my $b = $thisNumber;

11

Variable Substitution
• An extremely useful feature in Perl is variable

substitution within strings

• This works with double-quoted strings
– To avoid variable substitution, use single-quoted strings

• The substitution occurs at the time the string is
evaluated (and can occur again)

my $name = "Huckleberry Finn";
my $age = 14;

print("His name was $name and his age was $age\n");

12

Curly Braces
• Variable names can surrounded with curly braces

• This is sometimes helpful in string substitutions

$n = 4;

print("${n}th Edition\n");

13

Comparing Scalar Variables
• How to compare scalar variables depends on

whether they are strings or numbers

• For numbers, we use <, >, <=, >=, and ==, just
like in C or Java

• For strings, we use lt, gt, le, ge, eq to get
(case-sensitive) lexicographic comparison

• Be careful: This is a common source of errors
if ($lastName le 'M') {
 print("First half of alphabet\n");
} else {
 print("Second half of alphabet\n");
}

14

Basic String Operations
• The length() function gets the length of a string

• The substr() function is used for extracting and
replacing a substring from a string
– substr STRING, OFFSET
– substr STRING, OFFSET, LENGTH
– substr STRING, OFFSET, LENGTH, REPLACEMENT

$string = "This is a test string.";
$len = length($string);
print(substr($string, 5)); # is a test string.
print(substr($string, 5, 2)); # is
print(substr($string, 8, 0, "not a "));
 # This is not a test string.

• Note: The last form is destructive!

15

Basic String Operations
• The . (dot) operator is used to concatenate strings

print("This string is" .
 " concatenated with this string\n");

16

Manipulating Text Files
• Files are opened with the open function and

closed with the close function

• open(filehandle, mode, filename)

• Common modes are
– Reading "<", clobbering ">", and appending ">>"

• open returns true on success and false on failure
(and $! contains an error message)

open(my $ifp, "<", "infile.txt");

open(my $ofp, ">", "outfile.txt");

open(my $afp, ">>", "logfile.txt");

17

Example of open

if (!open(my $fp, "<", "infile.txt")) {
 print("Error opening file: $!\n");
 exit(-1);
}
...
close($fp);

open(my $fp, "<", "infile.txt")) ||
 die("Error opening file: $!\n");
...
close($fp);

18

Reading from a File
• The <> (diamond) operator is used to read a line

from a file

• Returns true on success or false on end-of-file

Open infile.txt and print its contents
my $fp;
open($fp, "<", "infile.txt") || die("Error: $!");
while (my $line = <$fp>) {
 print($line);
}
close($fp);

19

Writing to a File
• We can write to a file using the print command

• print filehandle (list)

open(my $lfp, ">>", "logfile.txt")
 || die("Error opening logfile: $!\n");
}

print $lfp ("Processed another transaction\n");

close($lfp);

20

Arrays and Lists
• Perl has arrays that are indexed starting at 0

• Array sizes do not have to specified in advance
– Perl arrays grow and shrink dynamically (like Vectors in Java)

• Perl arrays are often frequently used like stacks
and/or queues

• Perl arrays are also often used as parameter lists
to subroutines (functions)

21

Creating an Array
• Array variables are prefixed with @

• Arrays can be created and populated in different
ways

@choices = ("yes", "no", "maybe");

#equivalent to
$choices[0] = "yes";
$choices[1] = "no";
$choices[2] = "maybe";

22

Nested Arrays
• Arrays can be nested

• But this doesn't result in an array of arrays!

• The arrays are flattened into a single array

@colors = (("bright red", "dark red"),
 ("bright yellow", "dark yellow"));

equivalent to
@colors = ("bright red", "dark red",
 "bright yellow", "dark yellow");

23

Merging and Appending to Arrays
• When applied to arrays , (comma) is a merge

operator

Merge two arrays into one big array
@bigArray = (@smallArray1, @smallArray2);

Add a new element to the end of myArray
@myArray = (@myArray, $myNewElement);

Add a new element to the beginning of myArray
@myArray = ($myNewElement, @myArray);

24

Getting the Size of an Array
• We can get the size of an array by converting the

array to a scalar!

$nColors = @colors; # conversion to scalar

• Or we can get the last index of the array
$lastIndex = $#colors;
$nColors = $lastIndex + 1;

25

The Range Operator
• The range operator .. generates an array of

consecutive numbers
– @numbers = (100 .. 200);

• The range must be increasing

• For a decreasing range, use the reverse function
– @numbers = reverse(100 .. 200);

26

Array Access and Slices
• We use the [] operator to access the elements of

an array
– $listOfNames[2] = "Mark Twain";
– print("Name: $listOfNames[2]\n");

• The [] operator also lets us take a slice of an
array

@alphabet = ('0' .. '9', 'a' .. 'z', 'A' .. 'Z');

@lowercase = @alphabet[10 .. 35];

@zeroAndLowercase = @alphabet[0, 10 .. 35];

27

Printing the Contents of an Array
• The print function, like many functions, takes a

list (array) of parameters

• If we give it an array, the print function will print
the array items

• A special variable $, determines what is printed
between the array (list) entries

@colors = ("red", "green", "blue", "yellow");

$, = " ";
print(@colors, "\n");

28

Arrays as Deques
• Arrays can also be treated like stacks in which we

push and pop from the end
– push – add an element to the end
– pop – remove an element from the end

• Or like stacks in which we push and pop from the
front
– unshift – add an element to the front
– shift – remove an element from the front

unshiftshift pop

push

29

Array Splicing
• The splice function can do all the above and more

– splice ARRAY, OFFSET
– splice ARRAY, OFFSET, LENGTH
– splice ARRAY, OFFSET, LENGTH, LIST

• Starting at position OFFSET, remove LENGTH
elements and replace them with LIST
– If no LIST is provided then only the deletion is done
– If no LENGTH is specified then all elements from OFFSET to

the end of the list are removed

• More general than push, pop, unshift, shift,
etc but harder to read

30

Other Array Functions
• join – concatenates a list of scalars into a single

string

• reverse – reverse a list

• map – applies an operation to every element in a
list and produces a new list containing the results
of each operation

• sort – sorts a list (lexicographically by default)

• We will touch on sort and map again later

31

Hashes
• Perl hashes are associative containers

• They associate a key with data

• It is very efficient to access the data for a specific
key

• Similar to arrays, but we can use anything for
indexes

• Hash names are prefixed with %

32

Initializing a Hash
• A hash can be initialized using an array

• The array entries alternate key/value key/value ...
%grades = ('Peruvian', 9.5,
 'Columbian', 9,
 'Canadian', 6,
 'Mexican', 8);

• The => operator is (almost) identical to a comma,
but easier to read
%grades = ('Peruvian' => 9.5,
 'Columbian' => 9,
 'Canadian' => 6,
 'Mexican'=> 8);

33

Accessing a Hash
• The values in a hash can be accessed by key

• This is the normal way in which hashes are used
and is the most efficient

• If you frequently need to access the values some
other way, maybe you shouldn't use a hash

print("Before testing: Peruvian = ",
 $grades{'Peruvian'});

$grades{'Peruvian'} = 10;
print("After testing: Peruvian = ",
 $grades{'Peruvian'});

34

Adding and Removing Elements
• Elements can be added to a hash simply by

assigning a value to them

• Elements can be deleted from a hash using the
delete function

• To delete an entire hash, just assign it to be empty
or use the undef function

$grades{'Brazillian'} = 8.6; # add new pair
delete $grades{'Canadian'}; # delete pair
%grades = (); # clear hash
undef %grades; # undefine hash

35

Testing a Hash
• To test if a key is in a hash, use the exists

function

• To test if a key is in a hash and it's value is
defined, use the defined function

if (defined($grades{$name})) {
 print("The Grade of $name is $grades{$name}\n");
}

36

Enumerating a Hash
• To get all the keys in a hash we use the keys

function

• To get all the values in a hash we use the values
function

• These functions return an array

for $k (keys(%grades)) {
 print("$k => $grades{$k}\n");
}
for $v (values(%grades)) {
 print("$v\n");
}

37

Contexts in Perl
• Perl is a context-sensitive language

• The meaning of a code fragment can depend on
the context in which it appears

• This is most common on the right hand side of the
assignment = operator
– Recall: $numEelements = @colors;
– This evaluates @colors in the scalar context

• We can force a scalar context using the scalar
function
– print (scalar(@colors));

38

A Context Example
• The following code creates an array

– @a = (35, 48, 56);

• The following code assigns the value 56 to $a
– $a = (35, 48, 56);

• In the array context, the comma acts as a
separator for array values

• scalar context, the comma operator evaluates a
sequence of expressions and returns the value of
the last one

39

More Context
• Places where you expect a boolean (true/false)

value are treated as scalar contexts
– 0, the empty string "", and undefined values are treated as

false
– All other values are treated as true

• What does the following code do?

if (@colors) {
 # do something
}

40

Summary
• We have discussed

– Literals
– Scalar variables
– File I/O
– Arrays
– Hashes
– Context

• Chapters 1-3 in the Perl 5 Tutorial

