
JavaScript Fundamentals

Pat Morin

COMP 2405



2

Outline

• Data types

• Arrays

• Functions

• Objects

• Regular Expressions



3

Data Types
• There is only one kind of variable and it is declared 

with the var keyword

• Basic values are
– Numbers, like 42 and 3.14159
– Booleans, true and false
– Strings, like "thanks for all the fish..." and 'have a good day'
– null
– undefined, the value of a variable declared by never 

assigned to

var answer = 42;

answer = "thanks for all the fish...";



4

Type Conversion
• Expressions involving a string, the + operator and 

a number will convert the numbers to strings 

x = "The answer is " + 42
  // returns "The answer is 42" 

y = 42 + " is the answer" 
  // returns "42 is the answer"

• With other operators, strings are converted to 
numbers

"37" - 7 // returns 30
"37" + 7 // returns "377"



5

Type Conversion (2)
• Boolean values

– null and undefined treated as false
– 0 treated as false
– "" (the empty string) treated as false
– Everything else treated as true 



6

Variables
• A variable can be declared using the var keyword 

or simply assigned to

• The scope of a variable is limited to the containing 
block

var x = 42;
var q;        // q = undefined
y = 75;
if (condition) {
  var z = 411;
}
// z no longer in scope



7

Global Variables
• Global variables are properties of the global object

• In web pages, this object is called window

• We can use the window.variable syntax to do 
this

• We can access a global variable in another window 
if we know the name of the other window

• This can be a security risk



8

Constants
• Read-only named constants can be created with 

the const keyword

• Scoping rules for constants are exactly the same 
as for variables

• Constants live in the same name-space as 
variables and function names

const pi = 3.14156;



9

Array Literals
• Array literals can be specified with the [] syntax

• Adding extra commas creates undefined array 
entries

• This actually creates an Array object

var fish = ["lion", "angel", "grouper"];

var places = ["home", , "school", "work"];
places = ["home", undefined, "school", "work"]



10

More Literals
• Strings

– single- or double-quoted

• Boolean
– true and false

• Integers
– specified in decimal, octal, or hexadecimal

• Floating-point Literals
– in the usual ways



11

Functions
• JavaScript functions can be created using the 
function keyword

• Functions can return a value using the return 
keyword (or return undefined by default)

function factorial(n) {
   if ((n == 0) || (n == 1))
      return 1;
   else {
      var result = (n * factorial(n-1) );
      return result;
   }
}



12

Functions - Weirdness
• Scope rules for functions are the same as for 

variables

• Functions don't have to have names

• Functions can be assigned to variables or object 
properties

function writeCell(c) {
  document.write(c.value);
}

var c = new Cell(0, 0, "Petunia");
c.writeFunc = function () {
  writeCell(this);
}



13

Functions –  As Arguments
• A function can be an argument to a function

function generalSum (f, a) {
  var sum = a[0];
  for (var i = 1; i < a.length; i++) {
    sum = f(sum, a[i]);
  }
  return sum;
}

var myArray = [1, 9, 4, 2, 3];
var sum = generalSum(
   function (x,y) { return x + y; },
   myArray);



14

Function Arguments
• JavaScript is very flexible with function arguments

• A function can be called with more or less 
arguments than the number of declared 
parameters

• Too few arguments: leaves parameters undefined

function showThese(x, y) {
  document.write(x + "\n");
  document.write(y + "\n");
}
showThese("hello");   // prints hello and undefined



15

Functions - arguments
• All the arguments to a function can be accessed 

through the (implicit) arguments pseudo-array

function printThese () {
  for (var i = 0; i < arguments.length; i++) {
    document.writeln(arguments[i]);
  }
}
printThese("a", "b", "c", "d", 42);



16

eval
• The eval function evaluates a string as if it were 

JavaScript code

• The evalation environment is the same as that in 
which eval is called

var myCode = "document.writeln(x);"

var x = 56;
eval(myCode);   // prints 56



17

Object Literals
• JavaScript has objects but these are not what 

you're used to

• They are closer to C structs or Perl hashes than 
Java objects

var employee {
   firstName: "Patrick",
   lastName: "Morin",
   eId: 244333433
};

document.write(employee.lastName + ", "
              + employee.firstName + ", "
              + employee.eId);



18

Objects
• The values in an object are usually called 

properties

• Property names can also be numbers

var employee = {
   1: "Patrick",
   2: "Morin",
   eId: 244333433
};

document.write(employee[1] + ", "
              + employee[2] + ", "
              + employee.eId);



19

Accessing Object Properties
• Object properties can be accessed using the . or [] 

operators
var car = { color: "red", 
            weight: 2000, 
            mfr: "Hyundai", 
            cost: 21000,
            1: "dohc", 
            2: "abs" };

document.write(car.color); // "red"
document.write(car["color"]); // "red"
document.write(car[color]); // ERR: color undefined
var prop = "color";
document.write(car[prop]); // "red"
document.write(car.1); // "dohc"
document.write(car[1]); // "abs"



20

Operators
• We have already seen familiar operators, but these 

are new:
– delete
– in
– instanceof
– new
– this
– typeof
– void



21

delete
• delete removes something from a name space

• Can remove an object, a property, or an element at 
an index

• Future accesses to that will evaluate to undefined

delete objectName
delete objectName.property
delete objectName[index]

• Can remove an implicitly declared variable, but not 
one declared using the var keyword



22

in
• The in operator determines whether an object has 

a certain property or an array has a certain index

if ("cost" in car) {
  document.write("Cost: " + car.cost + "\n");
}

if (23 in a) {
  document.write("twenty-third: " + a[23]);
}



23

typeof
• The typeof operator returns a string representing 

the type of the argument

• Can be one of
– "function"
– "string"
– "number"
– "object"
– "undefined"

document.write(typeof(car));  // "object"



24

void
• The void operator specifies an expression to 

evaluate without returning a value

• Useful within an href attribute:

<a href="javascript:void(0)">Do nothing</a>

<a href="javascript:void(document.form.submit())">
Click here to submit
</a>



25

Objects and Classes
• JavaScript doesn't really have classes

• Instead, you define a constructor function that sets 
the properties of the implicit variable "this"

function Cell(i, j, val) {
  this.row = i;
  this.col = j;
  this.value = val;
}
var c = new Cell(5, 4, "Priscilla");
document.write("c.row = " + c.row + "\n");
document.write("c.col = " + c.col + "\n");
document.write("c.value = " + c.value + "\n");



26

instanceof
• The instanceof keyword tests if an object is of a 

specific class (created by a constructor with a 
specific name)

• This really checks if the object was created using 
the named constructor function

var c = new Cell(5, 4, "Priscilla");

if (c instanceof Cell) {
  document.write("c is a Cell");
}



27

Prototypes –  Adding Properties
• Constructor functions have a property named 
prototype that allows for the creation of 
properties after the fact

Cell.prototype.width = 20;

var c1 = new Cell(0, 0, "treasure");
var c2 = new Cell(4, 0, "hunt");

c1.width = "10";
document.writeln("c2.width = " + c2.width);
document.writeln("c2.width = " + c2.width);



28

Object Methods
• Any function can be turned into an object method 

that has access to this

function pC () {
  document.writeln(this.value);
}

var c = new Cell(0, 3, "hello");
c.print = pC;

c.print();



29

Objects and Default Parameters
• Here's a common idiom for making default 

parameter values

function Cell(i, j, val) {
  this.row = i || -1;
  this.col = j || -1;
  this.value = val || "";
}

• This works because a || b evaluates to a unless 
a is false

• If a is false then a || b evaluates to b



30

Object Methods (Cont'd)
• But it's easier to use anonymous functions within 

the constructor function

function Cell(i, j, val) {
  this.row = i;
  this.col = j;
  this.value = val;
  this.printOn = function (doc) {
    doc.writeln("[" + this.value + "]");
  }
}

...

c.printOn(document);



31

Getters and Setters
• Recall that, for a text input t, setting t.value 

causes the displayed text to change?

• This is the result of a setter for t.value

• Getters and setters are pieces of code that are 
executed when you ask for the value of a variable 
or when you set the value of a property
– Can have side effects (e.g., change displayed text)
– The property may not really exist (e.g., computed from other 

properties)



32

Getter and Setter Example

var temp = { 
  c: 0,
  get f() { return (this.c*9/5 + 32) },
  set f(x) { this.c = (x-32)*5/9 }
};

temp.c = 23;
document.writeln(temp.c + "C");
document.writeln(temp.f + "F");
temp.f = 85;
document.writeln(temp.c + "C");
document.writeln(temp.f + "F");



33

Getters and Setters in Constructors

function Temperature () {
  this.kelvin = 0;
  this.celsius getter = function() {
    return this.kelvin - 273;
  }
  this.celsius setter = function(x) {
    this.kelvin = x + 273;
  }
  this.fahrenheit getter = function() {
    return (this.kelvin - 273) * 9 / 5 + 32;
  }
  this.fahrenheit setter = function(x) {
    this.kelvin = (x - 32) * 5 / 9 + 273;
  }
}



34

Getters and Setters (Cont'd)
• The syntax is awkward, but getters and setters can 

be added to existing classes

var d = Date.prototype;
d.__defineGetter__(
  "year", 
  function() { return this.getFullYear(); }
);

d.__defineSetter__(
  "year", 
  function(y) { this.setFullYear(y); }
);



35

Using JavaScript Objects
• In Java, you have classes

• In JavaScript a class is defined by it's constructor 
function

function MyClass (idata) {
}

var c = new MyClass("here is some data");



36

Using JavaScript Objects (Cont'd)
• In Java you have instance methods

• In JavaScript you have functions defined within a 
class

function MyClass (idata) {
  this.toString = function() {
    return "a MyClass";
  }
}

var c = new MyClass("here is some data");
document.write(c);



37

Using JavaScript Objects (Cont'd)
• In Java you have instance variables

• In JavaScript you have properties

function MyClass (idata) {
  this.data = idata;

  this.toString = function() {
    return "MyClass(" + this.data + ")";
  }
}

var c = new MyClass("here is some data");
document.writeln(c);



38

Using JavaScript Objects (Cont'd)
• In Java you can declare instance methods and 

variables to be private

• In JavaScript you can use variables inside of 
constructors

function MyClass (idata) {
  var data = idata;

  this.toString = function() {
    return "MyClass(" + data + ")";
  }
}
var c = new MyClass("here is some data");
document.writeln(c);
document.writeln(c.data);   // undefined



39

Private Data (Cont'd)
• This works because Java does static lexical 

scoping

• When any function is called (or block of code 
executed) a new stack frame is created to hold the 
local variables

• These local variables are only accessable by 
blocks of code defined within the scope of those 
local variables



40

Inheritance
• In Java we have inheritance

• A subclass inherits the instance variables and 
methods of its superclass

• In JavaScript we use the prototype property of 
functions

• Recall that setting Class.prototype.xxxx 
specifies a property (xxxx) that all objects created 
by the Class constructor function have



41

Subclassing – First Way
function Employee (name, dept) {
  this.name = name || "";
  this.dept = dept || "general";
}

function Manager () {
  this.reports = [];
}
Manager.prototype = new Employee();

function WorkerBee () {
    this.projects = [];
}
WorkerBee.prototype = new Employee();



42

How this Works
• Remember the prototype property of a constructor 

functions f contains properties (and initial values) 
that all objects constructed by f have

• This is not the same as in Java

• The constructor for the parent class is only called 
once, when we set the prototype

• Creating a new instance of the subclass does not 
call the parent class constructor function again

• If we want to do that we should explicitly call the 
parent constructor



43

Subclassing – Another Way

function Employee () {
  this.name = "";
  this.dept = "general";
}

function Manager () {
  this.reports = [];
  this.base = Employee;
  this.base();
}

• We can also do subclassing by simply calling the 
parent class' constructor

• How do these interact with instanceof?



44

JavaScript Regular Expressions
• JavaScript supports the creation of regular 

expressions using the // operator or the RegExp 
class

var re1 = /ab+c/;   // match a, one or more b's then c

var re2 = RegExp("ab+c");

• The first form is evaluated at parse (compile) time

• The second form is evaluated each time it is 
executed



45

Using Regular Expressions
• Once we have a RE we can use these operations

– exec/match –  execute a search and return an array of 
information

– test/search – test for a match of the RE in a string and return 
a boolean value of an index, respectively

– replace –  replace a match with something else
– split – split a string into an array of substrings

• See documentation for more details
– http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Gu

ide:Regular_Expressions



46

Summary
• JavaScript is similar in syntax to C/C++ and Java 

but
– Variables have no type
– Functions are more "first-class"
– Objects are more like hashes
– Classes are defined by creating a constructor function
– Getters and setters offer some nice syntactic sugar
– Private variables, subclassing, multiple inheritance, are all 

possible
– Language support for regular expressions



47

Regular expressions


