Maarten Löffler Marc van Kreveld

+

Center for Geometry, Imaging and Virtual Environments

Utrecht University

IMPRECISELINES

IMPRESISELINES

$$
7
$$

PROPERTIES OF IMPRECISE POINTS

PROPERTIES OF IMPRECISE POINTS

- connected

PROPERTIES OF IMPRECISE POINTS

- connected
- convex

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal
- constant

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal
- constant

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal
- constant

PROPERTIES OF IMPRECISE LINES
 - connected

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal
- constant

PROPERTIES OF IMPRECISE LINES
 - connected
 - convex?

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal
- constant

PROPERTIES OF IMPRECISE LINES
 - connected
 - convex?
 - polygonal?

PROPERTIES OF IMPRECISE POINTS

- connected
- convex
- polygonal
- constant

PROPERTIES OF IMPRECISE LINES
 - connected
 - convex?
 - polygonal?
 - constant?

WHAT ARE CONVEX SETS OF LINES?

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!
- problem: vertical lines

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!
- problem: vertical lines

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!
- problem: vertical lines

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!
- problem: vertical lines
- different mapping?

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!
- problem: vertical lines
- different mapping?

WHAT ARE CONVEX SETS OF LINES?

- let's use duality!
- problem: vertical lines
- different mapping?
[Rosenfeld, 1995]

WHAT ARE CONVEX SETS OF LINES?

WHAT ARE CONVEX SETS OF LINES?

- desirable properties of convex hull
- affine transformation invariant
- anti-exchange property
- connectivity

WHAT ARE CONVEX SETS OF LINES?

- desirable properties of convex hull
- affine transformation invariant
- anti-exchange property
- connectivity

WHAT ARE CONVEX SETS OF LINES?

- desirable properties of convex hull
- affine transformation invariant
- anti-exchange property
- connectivity
- no such definition exists!
[Goodman, 1998]

WHAT ARE CONVEX SETS OF LINES?

- desirable properties of convex hull
- affine transformation invariant
- anti-exchange property
- connectivity
- no such definition exists!
- drop connectivity?
[Goodman, 1998]

WHAT ARE CONVEX SETS OF LINES?

- desirable properties of convex hull
- affine transformation invariant
- anti-exchange property
- connectivity
- no such definition exists!
- drop connectivity?
[Goodman, 1998]

WHAT ARE CONVEX SETS OF LINES?

- desirable properties of convex hull
- affine transformation invariant
- anti-exchange property
- connectivity
- no such definition exists!
- drop connectivity?
[Goodman, 1998]

WHAT ARE CONVEX SETS OF LINES?
[Gates, 1993]

WHAT ARE CONVEX SETS OF LINES?

- what about directed lines?
[Gates, 1993]

WHAT ARE CONVEX SETS OF LINES?

- what about directed lines?
[Gates, 1993]

WHAT ARE CONVEX SETS OF LINES?

- what about directed lines?
[Gates, 1993]

WHAT ARE CONVEX SETS OF LINES?

- what about directed lines?

WHAT ARE CONVEX SETS OF LINES?

- what about directed lines?
- imprecise lines have a "general direction"
[Gates, 1993]

WHAT ARE CONVEX SETS OF LINES?

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between ℓ and ℓ^{\prime} are also in L

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between ℓ and ℓ^{\prime} are also in L

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between ℓ and ℓ^{\prime} are also in L

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between ℓ and ℓ^{\prime} are also in L

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between ℓ and ℓ^{\prime} are also in L
- convex hull not defined

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between ℓ and ℓ^{\prime} are also in L
- convex hull not defined
- given by boundary

WHAT ARE CONVEX SETS OF LINES?

- a set of lines L is convex when:
- there is a line $d \notin L$ such that no line in L is parallel to d
- if $\ell, \ell^{\prime} \in L$, all lines between
ℓ and ℓ^{\prime} are also in L
- convex hull not defined
- given by boundary
- limit angle α

PROPERTIES OF IMPRECISE LINES

- connected
- convex

PROPERTIES OF IMPRECISE LINES

- connected
- convex
- polygonal

PROPERTIES OF IMPRECISE LINES

- connected
- convex
- polygonal
- constant

EXAMPLE: LINEAR PROGRAMMING

- important, well known problem

EXAMPLE: LINEAR PROGRAMMING

- important, well known problem
- given set of directed lines

EXAMPLE: LINEAR PROGRAMMING

- important, well known problem
- given set of directed lines
- determine the lowest point to the left of all lines

EXAMPLE: LINEAR PROGRAMMING

- important, well known problem
- given set of directed lines
- determine the lowest point to the left of all lines
- takes $O(n)$ time

EXAMPLE: LINEAR PROGRAMMING

EXAMPLE: LINEAR PROGRAMMING

- given set of imprecise directed lines

EXAMPLE: LINEAR PROGRAMMING

- given set of imprecise directed lines
- determine all possible heights of the lowest point to the left of all lines

EXAMPLE: LINEAR PROGRAMMING

- given set of imprecise directed lines
- determine all possible heights of the lowest point to the left of all lines
- lowest possible point

EXAMPLE: LINEAR PROGRAMMING

- given set of imprecise directed lines
- determine all possible heights of the lowest point to the left of all lines
- lowest possible point
- highest possible point

HIGHEST VALUE

HIGHEST VALUE

- only consider left borders of bundles
- find lowest point to the left of those

HIGHEST VALUE

- only consider left borders of bundles
- find lowest point to the left of those
- apply convex programming
- takes $O(n)$ time

LOWEST VALUE

LOWEST VALUE

- only consider right borders of bundles
- find lowest point to the left of those

LOWEST VALUE

- only consider right borders of bundles
- find lowest point to the left of those
- takes $\Theta\left(n^{2}\right)$ time

LOWEST VALUE

- only consider right borders of bundles
- find lowest point to the left of those
- takes $\Theta\left(n^{2}\right)$ time
- if $\alpha<180^{\circ}-c$
it takes $\Theta(n \log n)$ time

Thank You!

Questions?

