
Almost-Delaunay Simplices:
Nearest Neighbor Relations for Imprecise Points

Deepak Bandyopadhyay∗ Jack Snoeyink†

Abstract

Delaunay tessellations and Voronoi diagrams capture prox-
imity relationships among sets of points in any dimension.
When point coordinates are not known exactly, as in the
case of 3D points representing protein atom coordinates, the
Delaunay tessellation may not be robust; small perturba-
tions in the coordinates may cause the Delaunay simplices
to change. In this paper, we define thealmost-Delaunay
simplices,derive some of their properties, and give algo-
rithms for computing them, especially for neighbor analysis
in three dimensions. We sketch applications in proteins that
will be described more fully in a companion paper in biol-
ogy. http://www.cs.unc.edu/∼debug/papers/AlmDel.

1 Introduction

The Voronoi diagram and Delaunay tessellation, which are
geometric structures defined for sets of points, have found
use in many areas of science and engineering [5, 13, 9, 34].

These diagrams are defined by exact geometric criteria.
In many applications, however, point coordinates are known
only imprecisely, so it is natural to ask whether the uses of
Voronoi and Delaunay are stable and robust under changes to
the input coordinates. In this paper, we consider the possible
structures that could be defined by nearby inputs. Specifi-
cally, we focus on the Delaunay tessellation, and consider
thealmost-Delaunay simplices, which are additional sets of
sites that could become Delaunay simplices if all sites are
perturbed by a minimum amountε ≥ 0.

In the next section, we list several problems from pro-
tein structure analysis that motivate the definition of almost-
Delaunay simplices. In Section 3 we relate almost-Delaunay
simplices to a variant of the minimum-width annulus prob-
lem, which allows us to determine several properties of
almost-Delaunay simplices and sketch a straightforward, but
slow, algorithm to compute them. In Section 4 we con-
sider the properties of our applications and derive efficient
algorithms to compute almost-Delaunay edges, triangles and
tetrahedra in two and three dimensions.
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2 Motivation & Definitions

We first need the following definitions for a finite set of point
sitesS ∈ <d. A k-simplex is the convex hull ofk + 1
affinely independent sites; the simplices in<3 are points,
edges, triangles and tetrahedra formed by sites ofS. The
Voronoi diagram ofS is the decomposition of space into
regions with the same set of closest neighbor sites [44]. The
dual Delaunay tessellationis a decomposition of the same
space based on an “empty sphere property:” [14] if a subset
of sites,S ⊂ S, lie on the boundary of a sphere that is
otherwise empty of sites, then the convex hull ofS is a region
of the Delaunay tessellation. It is common to assume, or to
simulate, that the sitesS are in general position—nod + 1
sites may be co-planar ord + 2 sites co-spherical in<d—so
that the Delaunay regions are simplices.

Proteins are long chains of amino acids that reliably fold
into 3-d structures that perform the functions essential for
life [25, 24]. The genomics revolution has produced power-
ful tools to manipulate the sequence of amino acids, but it is
the structure of a protein that determines its function. Crys-
tallography and NMR give us information about the struc-
tures of many molecules; the Protein Data Bank (PDB) con-
tains the coordinates of atoms for over 20,000 proteins [1].
One of the most important open problems in science, the
“protein folding problem,” is to derive 3-d structure directly
from the amino acid sequence.

Many researchers have found Delaunay tessellations
and Voronoi diagrams to be useful tools for problems of
protein structure analysis, such as

Protein geometry definition Given a set of labeled
points representing atoms or residues of a protein, what
is the protein’s volume, surface, and density? What are
its cavities and pockets?

Richards [36] pioneered the use of Voronoi diagrams
to compute protein volumes. This has been an active
research area, with more detailed empirical analysis of
parameters [42, 43], refinements on the definition of the
surface [29, 30], and analysis of differential packing
in the core and surface regions [26]. The Delaunay
tessellation has been used to define and detect pockets
and cavities [6, 27, 28].

Decoy discrimination Given a collection of “decoy”
structures for the same protein, (often generated by



structure prediction programs), determine which is the
most native-like.
Both Voronoi and Delaunay have been used to score
residue interactions in folded proteins and decoys. The
Voronoi diagram naturally assigns a region to each atom
or representative point, and the contact area between
residues has been incorporated into “two-body” poten-
tials [48, 4]. The Delaunay tessellation collects sets
of four “neighboring” representative points into tetra-
hedra. Researchers have analyzed the frequency of
occurrence of different amino acid types in tetrahedra
to develop empirical four-body potentials [11, 33, 40,
46]. These four-body potentials complement fragment-
based methods [39] and pairwise potentials [32] to
capture favorable or unfavorable packing interactions,
which are difficult to efficiently incorporate into struc-
ture prediction codes.
Motif detection What shapes or structure fragments
occur frequently in proteins?
The Voronoi diagram has been used to partition pro-
teins into structural domains with minimal interaction
between them [47]. Wako and Yamato use the Delaunay
tessellation ofCα carbons and find patterns of the back-
bone sequence among neighboring tetrahedra to iden-
tify local motifs for helices and sheets [45].

Small changes in the coordinates chosen to represent
atoms or residues can produce different sets of Delaunay
simplices. We would like to identify the simplices that are
almost Delaunayfor a finite set of sitesS.

DEFINITION 2.1. (ALMOST-DELAUNAY ) A k-tuple Q ⊂
Sk is in the set ofalmost Delaunay simplicesAD(δ) iff, by
perturbing each site ofS by at mostδ ≥ 0, the perturbed
Q becomes a Delaunayk-simplex—the perturbedQ has
an empty circumscribing sphere. We say thatQ is almost
Delaunay with thresholdε iff ε = lim inf{δ | Q ∈ AD(δ)}.

Every k-tuple for 1 ≤ k ≤ d + 1 is an almost Delaunay
simplex for some finite threshold;k-tuples with threshold
0 are Delaunay. In general, the sets ofAD(δ) do not
form a simplicial complex—AD(δ) includes the faces of its
simplices, but not necessarily the intersections of simplices.

Abellanaset al. [2] explored the robustness of a De-
launay triangulation in the plane, giving a complementary
definition of toleranceas the supremum of allε > 0 such
thatAD(ε) contains only the Delaunay triangles. They used
a minimum-width annulus problem, defined below, to find
value of ε over the whole triangulation and for individual
Delaunay edges. We generalize toεs for all simplices, and to
higher dimensions.

Other generalizations of Voronoi and Delaunay dia-
grams have been studied extensively in computational ge-
ometry. Order-k Voronoi diagrams [9, 13, 12] are a gener-
alization that uses the regions with the same set ofk-closest

neighbors. Gudmundssonet al.[21] have studied the related
order-k Delaunay triangulations, which include the tetrahe-
dra whose circumspheres can become empty ifk − 4 points
are deleted. Although this definition is easier to analyze and
implement, it is less natural in our analysis of perturbations.
Points that require a large perturbation to remove from a cir-
cumsphere can be deleted all too easily.

Perturbation is most often studied to put points in gen-
eral position, so that implementations of algorithms have
fewer special cases to handle. For example, the regions of
the Delaunay tessellation are simplices only if the points are
in general position (e.g. no five points are cospherical). Thus,
codes for computing the Delaunay usually enforce general
position by a random perturbation [8] or symbolic perturba-
tion [19], but otherwise take the input data as exact.

Papers that do consider computation from inexact in-
put usually search for only one output that is consistent
with the input [22]. When one consistent output exists,
then there may be exponentially many—even in a 2D De-
launay triangulation, two rows of grid points can be per-
turbed to form2(n−1)/2 triangulations by selecting which
diagonals of the grid squares to draw. This is why we de-
fine almost-Delaunay simplices instead of almost-Delaunay
tessellations—we know that the number of simplices is less
thannd+1, which helps keep the computation feasible.

3 Almost-Delaunay as an annulus problem

The computation of almost-Delaunay thresholds can be re-
lated to a minimum-width annulus problem from compu-
tational metrology. In the plane, a set of points is tested
for roundness by the smallest width between two concentric
circles that form an annulus enclosing all the points. This
roundness problemhas been studied extensively [18, 37, 38].
Solutions are known for two and higher dimensions, and for
various special cases [3, 15, 31, 35].

We now review the definition of an annulus ind dimen-
sions, and define some useful notation.

DEFINITION 3.1. (d-ANNULUS) A d-annulus is a set{p ∈
<d : r ≤ dist(p, c) ≤ R}, defined by itscenterc, its inner
and outer radii, r and R, and itswidth, w = R − r. We
allow the center to be a point at infinity, in which case the
inner and outer radii are infinite and the annulus is actually
a slab of widthw defined by two parallel hyperplanes [41].

Finding the almost-Delaunay thresholdε for a k-simplex
can be formulated as a variant of the problem of finding an
annulus of minimum width:

THEOREM 3.1. (ALMOST-DELAUNAY ) Given finite sets of
pointsQ ⊂ S ⊂ <d, letA denote thed-annulus of minimum
width that containsQ and whose inner hypersphere is empty
of points fromS. Thenwidth(A) = 2ε if and only ifQ is
almost-Delaunay with thresholdε.



Figure 1: anAD(ε)
triangle

Proof. Suppose thatQ can be en-
closed by an annulusA with center
c, inner radiusr, and width2ε so that
the inner (hyper)sphere is empty ofS.
As in Figure 1, every point ofA is
within ε of themedial (hyper)sphere,
M , having centerc and radiusr + ε.
Thus, there is a perturbation ofQ onto
M andS outside ofM showing that
Q ∈ AD(ε).

If simplexQ ∈ AD(ε), then we can bound the annulus
width as follows. By definition, we can perturb the points
S to S ′ so that the perturbed simplexQ′ lies on an empty
(hyper)sphereM . Note that each point ofS is within
distanceε of its corresponding pointS ′, so if we construct
the annulusAwith the same center asM and outer and inner
spheres offset by±ε, then the inner sphere ofA is empty ofS
becauseM was empty ofS ′, and outer sphere ofA contains
Q becauseM containedQ′.

Thus,Q is in AD(ε) iff there is an annulus of width2ε,
and theminimumannulus width equals the threshold ofQ. �

3.1 Configurations that determineε

The thresholdε for an almost-Delaunay simplexQ ⊆ S
is determined by properties of its associated minimum-
width annulus. These properties, and their derivations, are
similar to those for minimum-width annuli enclosing all
points [20, 41].

Recall that theVoronoi diagramis the partition of space
into maximally connected regions with the same set of
closest neighbor sites. Thefurthest-point Voronoi diagram
is the partition of space into maximally connected regions
with the same set of furthest neighbor sites [5, 9, 13, 34].

Modifying notation of [20], anycandidate centerpointc
has a setCN(c) of closest neighbors in the Voronoi ofS, and
a setFNQ(c) ⊂ Q of furthest neighbors in the furthest-point
Voronoi ofQ. Note thatc is in the intersection of closest- and
furthest-point Voronoi regions corresponding to setsCN and
FNQ.

An easy technical lemma establishes a geometric condi-
tion on the directions of motion that decrease the difference
in distances to two points.

LEMMA 3.1. Consider two pointsp and q, and the differ-
ence in their distances to the origin,d(p, 0) − d(q, 0). Let
v be a unit vector, andα andβ be its angles top andq re-
spectively. Suppose that we move the centerc of a minimum-
width annulus byλv for some infinitesimalλ. The direc-
tional derivative

d

dλ

(
d(p, λv)− d(q, λv)

)
= cos(β)− cos(α),

which is negative if angle0 ≤ α < β ≤ π.

As a corollary, we have a variant of the “cone condition”
of [20] to further characterize the centerc.

THEOREM 3.2. (CONE CONDITION) From a finite centerc
of a minimum-width annulus associated with simplexQ ⊂
S, no cone separatesCN(c) fromFNQ(c).
From an infinite centerc, no plane separatesCN(c) from
FNQ(c) and any cone (that is, cylinder) that separates them
hasCN(c) inside.

Proof. For a finite pointc, if there is a separating cone,
then one of the directions along the axis of the cone has
angles to sites ofFNQ(c) smaller than those ofCN(c).
Lemma 3.1 says that the directional derivative is negative,
so thatc cannot be the center of a minimum-width annulus.

For an infinite pointc, if there is a separating cylinder
with CN(c) outside, then movingc to a finite point produces
an annulus with smaller width. If there is a separating plane,
then movingc on the plane at infinity decreases the width
between the parallel planes. �

We can now count the points needed to define a minimum-
width annulus.

THEOREM 3.3. (NUMBER OF POINTS) Suppose that thek-
simplex Q ⊂ <d has a minimum-width annulusA
with center c. Then 2 ≤ |FNQ(c)| ≤ min(d, |Q|), and
|CN(c)|+ |FNQ(c)| ≥ d + 2 for finite c, and≥ d + 1 for
c at∞, with equality holding in general position.

Proof. A single closest or furthest point can always be
trivially separated from the other points by a cone with vertex
at c enclosing just that point, sonF = |FNQ(c)| > 1. Also,
nC = |CN(c)| ≥ 1, with equality only when centerc is at
infinity.

To bound the sumnF + nC , consider the relatively
open Voronoi regions forFNQ(c) and CN(c), which are
regions of dimensions≥ d + 1 − nF and≥ d + 1 − nC ,
equality holding in general position. Lemma 3.1 shows
that the minimum width occurs for a point on the boundary
of the intersection—if the intersection contains more than
a single finite pointc, then the minimum must occur at
infinity, because moving to a finite boundary will take the
point out ofCN(c) or FNQ(c)—one of these sets will gain
an additional site. The dimension of the intersection is at
leastd− (d + 1−nF )− (d + 1−nC) = nF + nC − d− 2.
Thus, whenc is finite, we have0 ≤ nF + nC − d − 2,
or nF + nC ≥ d + 2, and whenc is infinite, we have
1 ≤ nF + nC − d− 2, or nF + nC ≥ d + 1. �

Remark: The case withc = ∞ and|CN(c)| = 1 occurs in
our variant on the annulus problem; Smid and Janardan [41]
had observed that it never defines the width of a minimum-
width annulus that encloses all points.

Finally, we prove a fact asserted in the previous section.

LEMMA 3.2. (SIMPLEX THRESHOLD) The almost-Delau-
nay threshold for ak-simplex in<d is at least as high as
that for each of them-simplices that constitute it,m < k.



Proof. A perturbationε that makes thek-simplex Delaunay
creates an empty hypersphere containing all of the points of
the simplex after perturbation. �

The above properties immediately suggest a simplistic algo-
rithm: For each of the

(
n

d+1

)
simplices, maintain a minimum

threshold seen, which is initially infinite. For all sets ofd+2
points and all2 ≤ j ≤ d + 1, consider the annuli defined by
j points on the outer hypersphere andd− j + 2 on the inner
hypersphere. If the inner hypersphere of an annulus is empty
of all other points, update the minimum threshold seen for
eachk-simplex from among thed+2 points. This algorithm
would takeO(

(
n+d
d+2

)
· n) = O(nd+3) time. Since the points

on the inner hypersphere form a Delaunay simplex, we can
reduce this toO(nd+2) time for thed-simplices, and less for
the lower-dimensional simplices.

If we do want thresholds for all
(

n
d+1

)
simplices, then

there is not much room to improve this algorithm; we’d ex-
pect to spend betweenn4 andn5 time in 3D. In our appli-
cations, however, we are interested in a subset of simplices,
either those with small thresholds or those with short edges,
or both. In the next section, therefore, we will sketch worst-
case analyses primarily to help make the algorithm clear, but
will concentrate on algorithms that have good practical per-
formance, as demonstrated by experiments and by analysis
under assumptions such as even or random distribution of
points.

4 Algorithms for relevant thresholds

In this section, we identify “relevant” parameters that are
monotone increasing in simplex dimension, so that if the
parameter for a simplexσ is too large, then the parameter
for any simplex that hasσ as a face will also be too large.
Thus, we begin by computing almost-Delaunay edges, as in
Figure 2. Through these and other geometric observations,
we make practical improvements, and attempt to explain
these improvements by analysis and experiments.

Compute 
Delaunay 
tessellation

Partition
 edges

short:

long: >prune
Discarded

Comp. ε 
for short non-
Del. edges

high: ε>cutoff
Discarded

high: ε>cutoff
Discarded

Make    s, tets 
from DT & 
AD(ε) edges

Input point sites
Output almost-
Delaunay Simplices

Compute
threshold ε
for    s, tets

short Delaunay:

Figure 2: Processing AD edges then AD simplices

4.1 Parameters

Threshold cutoff: For analyzing robustness, we are primar-
ily interested in small perturbations, relative to interpoint dis-
tance. We set athreshold cutoff(or εcutoff ) and consider only
the simplices inAD(εcutoff ). Equivalently, we discard any
edge with AD thresholdε > εcutoff , and, by Lemma 3.2,
also the simplices that use these edges. Unless otherwise
specified,εcutoff = 2.0 Å in our protein experiments, where
the typical distance betweenCα carbons is 5–6̊A.

Figure 3:The lifting technique, illustrated on a 1D axis.

Edge length prune: For analyzing neighbor interac-
tions in proteins, only pairs of points within about 10Å of
each other are relevant. We set anedge length prunepa-
rameter to restrict the maximum length of any edge of the
simplices whose AD thresholds we evaluate. Edge pruning
also eliminates long Delaunay edges near the convex hull
that are not really between neighbors. We use a 10Å prune
by default.

As illustrated in Figure 2, we find the threshold for
eachk-simplex that satisfies the prune requirement, starting
with the 1-simplices (edges), and discard the simplices with
threshold higher than the cutoff before proceeding to the next
stage. For each remaining simplex, we use alifting map to
find the candidate centers. This makes the time and space
dependent on the number of relevant simplices, rather than
the total.

4.2 Computation of candidate centers by a lifting map

We modify Brown’slifting technique [10, 13] to compute the
Voronoi diagram of the points projected onto the furthest-
point Voronoi region ofk furthest neighbors, but with dis-
tances based on the original points. We sketch the technique
in d dimensions, and illustrate it in Figure 3 for points pro-
jected on a 1Daxis.

The proof of Theorem 3.3 observes thatk furthest neigh-
bors define a region of dimensiond − k + 1 in the furthest-
point Voronoi diagram in<d, which is a subspace if we
choose as origin the centroid of the furthest neighbors. The
distance from the origin to a pointp can be factored into
componentsx = {x1, . . . , x(d−k+1)} within this subspace
andh which is the Euclidean norm of all orthogonal com-
ponents, in an orthogonal dimensiony. We construct tan-
gents to the unit paraboloidy = x1

2 + . . . + xd−k+1
2 at

valuesx corresponding to each pointp, then shift each tan-
gent “down” in the negativey direction byh2. Now at any
point x′ within the subspace, the distance in they direction
between the shifted tangent at pointx and the paraboloid at
x′ equals the square of the distance betweenx′ andp.

Using the above property, the intersection points of two
shifted tangents along the upper envelope of these tangents



give the vertices of the Voronoi diagram, which are the
candidate centers. The intersection points can be computed
in dual space by finding the lower convex hull of the dual
points to these tangent planes. We use the Quickhull[8]
implementation which runs in expectedO(n log n) time in
2 and 3 dimensions. Lifting avoids higher-dimensional
Voronoi diagrams that are hard to compute robustly, and the
lifting implementation is easy and efficient for the dimension
(3) and problem sizes (n=100–10,000) we are interested in.

4.3 Computing almost-Delaunay edges

The pseudo-code for the algorithm is outlined below.

• Enumerate all non-Delaunay edges,(i, j).

• For each non-Delaunay edge(i, j) that is shorter than the edge
length prune, do:

1. Compute the equation ofP , the furthest-point Voronoi
region corresponding toi and j. For example, in 3D
this is the bisector plane ofij.

2. Find the intersections of the Voronoi diagram with
P using a lifting map. These are candidate centers
with i and j as furthest neighbors and the points of
a Delaunay simplex as closest neighbors, and include
Voronoi vertices at infinity.

3. Evaluate annulus width function at all candidate cen-
ters, and record the minimum annulus widthδ.

4. Record the value ofδ/2 as the AD threshold for edge
(i, j), if it is less thanεcutoff .

• Report the edges with threshold values between0 andεcutoff
as almost-Delaunay edges.

4.4 Computing almost-Delaunayk-simplices

We can easily modify the algorithm for an AD edge in any
dimension to find the minimum threshold (ε) when that edge
is part of ak-simplex. The only constraint is that each
candidate annulus should contain (not necessarily as closest
or furthest neighbors) all the other points of the simplex.
The AD threshold for the simplex is then the minimum
constrained edge threshold over all its edges. Now we
describe efficient ways of computing the AD threshold for
a few special cases.

4.4.1 Almost-Delaunay triangles in 2D

For AD edge(p, q) of4pqr, we will consider all candidate centers
c for which the distance top or q is greater than the distance to
point r. The candidate centers are computed using the 1D lifting
map of the points as discussed in Section 4.2. The distance to
point r is given by the tangent line to the parabolay = x2 at rx,
shifted down byry

2, whererx andry are the on-axis and off-axis
components ofr. At the point where the shifted tangent line atr

intersects the shifted horizontal tangent line at pointsp andq, all
three points are equidistant. Thus there is a 1Dhalf-line constraint
on the candidate centers generated by the condition that pointr be

Figure 4:Finding the AD threshold for4pqr in 2D by adding a
1D half-line constraint generated byr.

closer to the center thanp andq. If rx is positive, and hence the
slope of the tangent line is positive, this constraint is satisfied by
all candidate centers to the right of the equidistance point ofp,q
andr, which we call aleft cutoff. This is illustrated in Figure 4.
Similarly if rx is negative, the slope of the tangent is negative and
the constraint is satisfied by all candidate centers on the left of the
equidistance point, which we call aright cutoff.

4.4.2 Almost-Delaunay triangles/tetrahedra in 3D

Given a tetrahedronpqrs, assume that its associated minimum-
width annulus has pointsp andq as furthest neighbors. From all
the candidate annuli for edgepq, we need to consider only those
which contain both the pointsr and s. The annulus centers are
computed using a 2D lifting map constructed on the bisector plane
of pq as described in Section 4.2. The condition that a pointr
be closer thanp or q generates a 3Dhalf-plane constrainton the
annulus center, 2D when projected onto the bisector plane. Thus
finding the minimum annulus containingp, q andr is equivalent to
finding the minimum annulus for edgepq from among the candidate
centers (including centers at infinity) that satisfy the half-plane
constraint generated byr, and symmetrically for edgespr andqr.
For tetrahedronpqrs, the two half-planes forr ands form a wedge
on the bisector plane ofpq, which gives us a region in which to
search for centers of annuli containing the pointsr ands.

The center of the minimum-width annulus for an edge in 3D
always has 2 furthest neighbors, and either 3 closest neighbors for
a finite center, or 2 closest neighghbors when the center is at∞
(Theorem 3.3). There is a third possibility for finding the minimum
threshold of an AD triangle, that the center lies on a Voronoi edge
between two candidate centers, at its intersection with a half-plane
constraint. This corresponds to three furthest neighbors (two for the
bisector plane and one for the constraint) and two closest neighbors.
Also the points on each constraint at±∞ correspond to slabs with
three furthest neighbors and one closest neighbor, the one whose
Voronoi region the point is in.

For an AD tetrahedron, candidate centers of edgepq and
Voronoi edges between them may contribute to the minimum-width
annulus if they satisfy both half-plane constraints for pointsr and
s. For efficiency, we separate the edges into two groups. Each edge
that intersects only one constraint is completely on one side of the
other constraint, so it suffices to test any one of its points against



the other constraint, a test whose result is already known from the
AD triangles. Edges that intersect both constraints are valid if the
intersection point of each constraint satisfies the other constraint, a
more expensive but relatively infrequent test.

Recall that we computed the AD threshold only for non-
Delaunay edges, since for Delaunay edges it is zero by definition. In
3D there are AD triangles and tetrahedra with all edges Delaunay,
and we enumerate and handle them separately for efficiency.

4.5 Acceleration for applications

The algorithm as given above for 3D takesO(n3 log n) time
to run in the worst case for just the AD edge computation,
with Θ(n2) for computing the Delaunay,O(n2) for enumer-
ating short edges, and thenO(n log n) for finding the candi-
date centers for each short edge. Note that centers of some
minimum width annuli lie arbitrarily far from the midpoint
of the short edge, and thus we have to computeO(n log n)
candidate centers and may not search within a region near
the edge. Addition of a third and fourth point to the annuli
and computation of the constrained minimum with one and
two half-plane constraints takesO(n) andO(n2) time for
each candidate center. Thus withn sites and

(
n
4

)
potential

AD tetrahedra, testing all of them takesO(n5 log n) time.
We can improve the algorithm in 3D to takeO(n2 log n)

time by exploiting properties of minimum-width annuli and
assumptions made about the input data. We concentrate on
practical improvements for the number of points found in
proteins; further asymptotic improvement may be possible.

4.5.1 Effect of edge length pruning

Pruning long edges speeds up the algorithm by considering
only AD edges both of whose points lie in a bounded
spherical region, a bucket. Pruning needs to be done only
once, and then the complexity of the rest of the algorithm
is determined by the size of the set of pruned (short) edges.
This step reduces the search space of AD edges considerably
— from

(
n
2

)
total edges, we getO(n2) short edges in the

worst case, butO(n) edges under the assumption that points
have nearly uniform packing density.

LEMMA 4.1. (NUMBER OF SHORT EDGES) The expected
number of edges shorter than an edge length prunep in n
points closely packed such that the closest distance between
2 points is2r, is O(n · p3) for constantr, or O(n) for con-
stantp andr.

Proof. We use a volume packing argument: Represent each
residue by a ball of radius∼ r; balls pack within the volume
of the protein without overlap. Denote the sphere of radiusp
around residueA as itsprune volume; all other residuesBi

whose centers lie within this sphere would form short edges
ABi. There can be a maximum of0.78(p + r)3/r3 spheres
within the prune volume, since spheres in close packing can
fill up at most 78% of the volume they occupy. Thus the
total number of short edges isO(n · p3) for constantr, or

O(n) for constantp andr. �

This lemma is clearly not true for arbitrary data, as we
can getO(n2) short edges if we take uniformly distributed
data in a fixed volume, and arbitrarily increasen and the
packing density. In the limit, each newly added point adds a
number of short edges proportional to the number of points
already existing, and this adds up toO(n2) edges. However,
the lemma holds for close-packed protein data where two
Cαs are a minimum of 3̊A apart, and two sidechain centroids
are even further, say 5̊A.

Increasing the edge length prune parameter allows
longer edges to exist on the outer sphere of the annulus,
and in turn allows tetrahedra with larger thresholds, from
Lemma 3.2. As shown in Figure 5 for a typical protein with
∼ 180 residues, the maximum AD edge threshold at any
edge length increases linearly with the edge length, which
justifies picking a value forεcutoff based on the value of edge
length prune.

Figure 5: Scatter plot showing correlation of AD edge threshold
with edge length for a protein with 185 points.

4.5.2 Angle pruning

Using the properties from Section 3.1, we get conditions for
valid Voronoi edges and valid configurations of points in 2D
and 3D, which can be used to prune away candidate centers
that cannot give minimum-width annuli.

In 2D, if the furthest neighbors arep andq for a centerc,
exactly one of the two closest neighbors is inside the triangle
4cpq, or within the cylinder fromc at infinity bounded byp
andq. In 3D, the cone condition can be checked just like 2D
once we fix the axis of the cone as the angle bisector of two
furthest or closest neighbors, by rotating all other points into
the same plane.

In experiments on 3D protein data, we found that be-
tween 80 and 85% of candidate centers get eliminated by
angle pruning. But we have to test every candidate center,
and the pruning computation for a center needs more work
than just evaluating the annulus width. Thus, angle pruning
is useful only if we can use its results to prune the candidate
centers and edges between centers for computation of AD
triangles and tetrahedra. This is easy to see for the centers;



for the edges we keep them if either endpoint satisfies the
angle prune conditions, or is closer to the origin than an em-
pirically determined distance ofprune + cutoff 2. For both
centers and edges, we can apply angle pruning in conjunction
with threshold cutoff, and results are shown in Figure 6 for a
cutoff of 1.0 for a test dataset of 440 proteins, and tabulated
later in Section 4.7.

Figure 6:Angle pruning of candidate centers and our edge pruning
heuristic greatly reduce the number of centers and edges considered
for each AD triangle and tetrahedron.

4.6 Time complexity with assumptions about data

Edge-length pruning speeds up the AD edge algorithm by a
factor of n to run in O(n2 log n) expected time on typical
protein data, as proved in Lemma 4.1. We shall now
argue that the AD triangle and tetrahedron algorithms run
in expectedO(n2) time after the edges have been processed,
for an algorithm that isO(n2 log n) overall, and scales very
well from edges to higher dimensional simplices.

LEMMA 4.2. The expected time taken to check all the can-
didates for AD triangles and tetrahedra, once the AD edges
are known, inn points closely packed such that the closest
distance between 2 points is2r, and the edge length prune is
p, is O(n2) for constantp andr.

Proof. Since each point hasO(1) short edges to its neigh-
bors (Lemma 4.1), each short edge forms a constant number
of triangles and tetrahedra with all short edges. For each tri-
angle there is one half-plane constraint and for each tetrahe-
dron there are two half-plane constraints induced on the can-
didate centers and edges. Previous work by Dwyer [16, 17]

shows the expected number ofk-faces in the Voronoi dia-
gram ofn independent, uniformly distributed sites in<d to
beO(n). We can apply this result to our computation of the
lifting map if we assume the projections of our data points
to be uniformly distributed, and thus can bound the number
of candidate centers per short edge and the number of edges
connecting these centers byO(n).

After angle pruning and applying the threshold cutoff,
the number of candidate centers and edges is stillO(n),
though it may be sublinear as we shall see in Section 4.7.
Now finding all the AD triangle and tetrahedron thresholds
involves checking the threshold ofO(n) valid candidate
centers and edges againstO(1) half-plane constraints, and
doing this for O(n) short edges. Thus we get the time
complexity asO(n2). �

4.7 Practical performance

To show that the practical behavior is not worst-case, but
fits the theoretical bounds based on assumptions about our
data, we estimated the performance of the algorithm in terms
of the number of simplices checked at each stage and the
output size, fitted using regression as shown in Table 1. Our
dataset comprised the 440 protein chains, represented byCα

carbons, with chain length (n) between 80 and 256, from our
training set of 1100 proteins. This training set was selected
as mentioned in [23], to span a variety of different folds and
families.

From these results we may determine the practical time
complexity – the number of short edges,O(n), times the
O(n log n) lifting map computation gives the complexity for
AD edges. For AD triangles and tetrahedra, performance
measures are more naturally expressed in terms ofs (the
number of short non-Delaunay edges that pass the cutoff)
which isO(n).

Angle pruning is instrumental in making the practical
case more efficient than the theoretical upper bound; the
number of candidates per short edge is almost constant (∼
s

1
6 ) after angle pruning, which leads toO(s

7
6 ) time taken.

The number of AD triangles and tetrahedra tested and output
isO(s), which corresponds toO(1) simplices per short edge.

Thus the algorithm has output size and memory require-
ments linear in the number of points for typical edge length
prune andεcutoff values. Our MATLAB implementation
computes the AD tetrahedra for protein data in 3D with 100–
1000 points in a few seconds to two minutes on a 2.0GHz
computer.

5 Delaunay probability

In the previous sections we discussed one new method for es-
timating nearest neighbors in sets of imprecise points. Here
we introduce another notion that is useful in describing ran-
dom perturbations of points. The almost-Delaunay simplices



Quantity Regression Fit± Residual
εcutoff =1.0Å εcutoff =0.1Å

Delaunay edges 7.1n− 92± 30
Short D edges 5.7n− 60± 60
Short non-D edges 2.9n− 73± 100
% that pass cutoff
(# that pass =s) 98± 2% 12± 3%

Candidate centers,
pre-angle pruning 1.87n0.78 + 14± 5
Edges between ctrs,
pre-angle pruning 2.12n0.83 + 25± 5
Candidate centers,
post-angle pruning 7.1s0.16+0.5± 1 8.9s0.16± 1.5
Edges between ctrs,
post-angle pruning 6.7s0.16+2.7± 2 8.9s0.16+0.5± 2

AD triangles tested 8s− 260± 300 4.4s− 5.9± 20
AD tetrahedra tested 21s−1300± 1500 6.2s− 18± 60
AD triangles output 5s− 39± 100 3.7s + 1.3± 20
AD tetrahedra output 8.5s− 180± 300 4.6s + 0.65± 40

Table 1:Performance measures of the AD algorithm over 440 pro-
teins as functions ofnumber of points(n) or number of short non-
Delaunay edges that pass cutoff(s) obtained from regression, along
with 99th-percentile residuals. Candidate centers and edges are per
short edge, while other quantities are per point set. Measurements
were made for two typical values ofεcutoff , 1.0 and 0.1Å, and
edges longer than 10̊A were pruned.

AD(ε) capture in a sense the worst case change in the De-
launay triangulation due to some bounded and carefully or-
chestrated perturbation. The actual perturbations that occur
are random, and will sometimes cause a simplex to become
Delaunay, and at other times will not. Here we characterize
random perturbations; the analysis and algorithm are given
for tetrahedra, though the concept holds in arbitrary dimen-
sions.

If we assume a particular distribution of error in the co-
ordinates, it is possible to calculate the probability that a par-
ticular tetrahedron is Delaunay. Assume that the probability
density function (pdf) has radial symmetry so that it can be
expressed in spherical coordinates as a function of the ra-
dius, f(r). Such a pdf must satisfy

∫∞
0

4πx2f(x)dx = 1;
examples include the Gaussian distributions with expected
radiusa given byfa(x) = 8/(aπ)3 exp

(
−(2x/a)2/π

)
.

A sphereC of radiusr at distanced from the origin will
contain total density

C(d, r) =

∫ d+r

d−r

πx
(d + r − x)(x− d + r)

d
f(x)dx.

The probability that a point is outside sphereC is
1−C(d, r), so if we have a fixed circle, we can compute the
probability that it is empty. For the distributionfa, we can
even give an expression in terms of the normal error function
erf(x) =

∫ x

0
exp(−u2)du:

C(d, r) =
1

2

(
erf

(2(d + r)

a
√

π

)
− erf

(2(d− r)

a
√

π

))
+

a

4d

(
e
−4(d+r)2

a2π − e
−4(d−r)2

a2π

)
.(5.1)

Given positions of all sites,s1, s2, . . . , sn, we could
obtain the probability that{s1, s2, s3, s4} form a Delaunay
tetrahedron if we could integrate, over each sphere that
these sites can define, the probability of the sphere times
the probability that it is empty. This integral cannot be
calculated in closed form, but we can perform a Monte
Carlo integration by generating sitess1 through s4 from
the Gaussian distribution and using (5.1) to compute the
probability that their circumsphere is empty.
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Figure 7: Tetrahedron probability vs. ADε with perturbations of
average radiusa = 0.1 and0.5.

Computation of the Delaunay probabilities suffers from
the same problem as the naı̈ve almost-Delaunay computa-
tion: there are roughlyn4 tetrahedra to check, and each one
requires significant computation. Fortunately, Figure 5 illus-
trates that the probability of a tetrahedron is inversely cor-
related with AD threshold. With the Gaussian distribution
fa, the probability falls below10−6 for AD(2a) tetrahedra.
Thus, our efficient enumeration of almost-Delaunay tetrahe-
dra makes it feasible to estimate probabilities for tetrahedra
in proteins.

Two confirmations of the accuracy of the Delaunay
probability calculation: First, in a configuration whose con-
vex hull contains the origin, the sum of the probabilities of
all simplices containing the origin numerically converges to
1 as we increased the number of Monte Carlo trials. Second,
in a large training set of 1100 proteins selected as detailed
in [23], the sum of the Delaunay probabilities of all AD(0.3)
tetrahedra converged to within 99–101% of the number of
Delaunay tetrahedra at any value of edge length prune.

6 Results from analysis of protein structure

We studied the robustness of the Delaunay tessellation for
analysis of protein packing interactions and finding motifs of
secondary structure. We briefly report a few of our results,
which are detailed in a companion paper [7].

1. An α-helix has a striking distribution of posi-
tive almost-Delaunay thresholds: three sharp peaks atε =



0.3,0.7 and1.2, which arise from the regular geometric pat-
tern. IndividualCα histograms also reveal the same peaks,
which characterize residues inα-helices.

2. Proteins represented by side-chain centroids produce
fewer AD tetrahedra for a given cutoff and prune than those
represented byCαs.

3. As point sets become more structured (i.e. protein-
like), the number of AD tetrahedra decreases, particularly at
low threshold values. This indicates the relative stability of
the Delaunay for protein data.

4. Simplicial Neighborhood Analysis of Protein Pack-
ing (SNAPP) scores protein structures using the likelihood of
neighboring four-tuples of residues from the Delaunay tes-
sellation of their side-chain centroids. We evaluated the sen-
sitivity of the SNAPP scores to a change in the Delaunay tes-
sellation using AD tetrahedra weighted by Delaunay proba-
bility and unweighted. We found the modified scores equally
effective at distinguishing proteins from decoys, which indi-
cates the robustness of Delaunay tessellation.

5. We characterized the better inter-chain packing of the
native state than decoys (artificial structures) in terms of AD
tetrahedra.

6. Using the characteristic AD thresholds of theα-helix,
we filtered out the tetrahedra containing residues in helical
conformation, and were able to visualize and quantify the
α-helical content of a protein to high accuracy. We also
identifiedβ-sheets andβ-turns in a similar way.

7. We identified hinge regions in a protein undergoing
conformational change by comparing AD tetrahedra across
many copies of the protein chain, grouping them based
on number of Delaunay tetrahedra and maximum threshold
across all the chains.

7 Future work

We have introduced the tools of almost-Delaunay simplices
and Delaunay probability to give worst-case and average-
case analysis of the Delaunay tessellation under perturbation
of the input sites. We have proved properties of the AD
simplices that lead to an efficient 3D implementation, and
applied them to analyze protein data. We hope to use these
and other tools in the future for a clearer understanding of
nearest neighbors and packing interactions in imprecise data,
and investigate Delaunay probability to improve results in
GIS and meshing applications of Delaunay tessellation.
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