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Abstract 2 Motivation & Definitions

Delaunay tessellations and Voronoi diagrams capture prdMe first need the following definitions for a finite set of point
imity relationships among sets of points in any dimensicsitesS € R¢. A k-simplex is the convex hull of + 1
When point coordinates are not known exactly, as in taéfinely independent sites; the simplicesi are points,
case of 3D points representing protein atom coordinates, guges, triangles and tetrahedra formed by site§.ofThe
Delaunay tessellation may not be robust; small perturb&ronoi diagram ofS is the decomposition of space into
tions in the coordinates may cause the Delaunay simplicegions with the same set of closest neighbor sites [44]. The
to change. In this paper, we define taknost-Delaunay dual Delaunay tessellatiois a decomposition of the same
simplices,derive some of their properties, and give algspace based on an “empty sphere property:” [14] if a subset
rithms for computing them, especially for neighbor analysig sites,S C S, lie on the boundary of a sphere that is
in three dimensions. We sketch applications in proteins thedherwise empty of sites, then the convex hulba$ a region

will be described more fully in a companion paper in biobf the Delaunay tessellation. It is common to assume, or to
ogy. http://imwww.cs.unc.eduflebug/papers/AlmDel. simulate, that the siteS are in general position—na@ + 1
sites may be co-planar dr+ 2 sites co-spherical iR‘—so

that the Delaunay regions are simplices.

Proteins are long chains of amino acids that reliably fold
The Voronoi diagram and Delaunay tessellation, which dréo 3-d structures that perform the functions essential for
geometric structures defined for sets of points, have fouifd [25, 24]. The genomics revolution has produced power-
use in many areas of science and engineering [5, 13, 9, 3#]l tools to manipulate the sequence of amino acids, but it is

These diagrams are defined by exact geometric critetize structure of a protein that determines its function. Crys-
In many applications, however, point coordinates are knowallography and NMR give us information about the struc-
only imprecisely, so it is natural to ask whether the usestofes of many molecules; the Protein Data Bank (PDB) con-
Voronoi and Delaunay are stable and robust under changetins the coordinates of atoms for over 20,000 proteins [1].
the input coordinates. In this paper, we consider the possiBliee of the most important open problems in science, the
structures that could be defined by nearby inputs. Specififotein folding problem,” is to derive 3-d structure directly
cally, we focus on the Delaunay tessellation, and consideym the amino acid sequence.
the almost-Delaunay simplicesvhich are additional sets of ~ Many researchers have found Delaunay tessellations
sites that could become Delaunay simplices if all sites aaed Voronoi diagrams to be useful tools for problems of
perturbed by a minimum amouat> 0. protein structure analysis, such as

~ In the next section, we list several problems from pro-  prqein geometry definition Given a set of labeled
tein structure analysis that motivate the definition of almost- points representing atoms or residues of a protein, what

Delaunay simplices. In Section 3 we relate almost-Delaunay g the protein’s volume, surface, and density? What are
simplices to a variant of the minimum-width annulus prob- 5 cavities and pockets?

lem, which allows us to determine several properties of
almost-Delaunay simplices and sketch a straightforward, but
slow, algorithm to compute them. In Section 4 we con-
sider the properties of our applications and derive efficient
algorithms to compute almost-Delaunay edges, triangles and
tetrahedra in two and three dimensions.

1 Introduction

Richards [36] pioneered the use of Voronoi diagrams
to compute protein volumes. This has been an active
research area, with more detailed empirical analysis of
parameters [42, 43], refinements on the definition of the
surface [29, 30], and analysis of differential packing
in the core and surface regions [26]. The Delaunay
tessellation has been used to define and detect pockets

and cavities [6, 27, 28].
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structure prediction programs), determine which is tmeighbors. Gudmundssa al[21] have studied the related
most native-like. order% Delaunay triangulations, which include the tetrahe-
Both Voronoi and Delaunay have been used to scéh® whose circumspheres can become empty-if4 points
residue interactions in folded proteins and decoys. Taee deleted. Although this definition is easier to analyze and
Voronoi diagram naturally assigns a region to each atdmplement, it is less natural in our analysis of perturbations.
or representative point, and the contact area betwdr@ints that require a large perturbation to remove from a cir-
residues has been incorporated into “two-body” potepdmsphere can be deleted all too easily.

tials [48, 4]. The Delaunay tessellation collects sets Perturbation is most often studied to put points in gen-
of four “neighboring” representative points into tetraéral position, so that implementations of algorithms have
hedra. Researchers have analyzed the frequencyfewfer special cases to handle. For example, the regions of
occurrence of different amino acid types in tetrahediae Delaunay tessellation are simplices only if the points are
to develop empirical four-body potentials [11, 33, 400 general position (e.g. no five points are cospherical). Thus,
46]. These four-body potentials complement fragmerfiodes for computing the Delaunay usually enforce general
based methods [39] and pairwise potentials [32] R@sition by a random perturbation [8] or symbolic perturba-
capture favorable or unfavorable packing interactiori&n [19], but otherwise take the input data as exact.

which are difficult to efficiently incorporate into struc- ~ Papers that do consider computation from inexact in-

ture prediction codes. put usually search for only one output that is consistent
Motif detection What shapes or structure fragment4ith the input [22]. When one consistent output exists,
occur frequently in proteins? then there may be exponentially many—even in a 2D De-

The Voronoi diagram has been used to partition prtUnay triangulation, two rows of grid points can be per-
rbed to form2("—1)/2 triangulations by selecting which

teins into structural domains with minimal interactioﬁu_ . N
gonals of the grid squares to draw. This is why we de-

between them [47]. Wako and Yamato use the Delaung 1 i
tessellation of”,, carbons and find patterns of the baclIlne almost-Delaunay simplices instead of almost-Delaunay

bone sequence among neighboring tetrahedra to idghs_sellations—we know that the number of simplices is less
tify local motifs for helices and sheets [45]. thann?t!, which helps keep the computation feasible.

Small changes in the coordinates chosen to represent
atoms or residues can produce different sets of Delaurdy Almost-Delaunay as an annulus problem

simplices. We would like to identify the simplices that ar%he computation of almost-Delaunay thresholds can be re-
almost Delaunayor a finite set of sitess. P Y

lated to a minimum-width annulus problem from compu-

DEFINITION 2.1. (ALMOST-DELAUNAY) A k-tuple @ C tational metrology. In the plane, a set of points is tested
S" is in the set ohlmost Delaunay simpliced D(9) iff, by ~ for roundness by the smallest width between two concentric
perturbing each site of by at mosts > 0, the perturbed circles that form an annulus enclosing all the points. This
@ becomes a Delaunay-simplex—the perturbed) has roundness probleras been studied extensively [18, 37, 38].

an empty circumscribing sphere. We say thats almost Solutions are known for two and higher dimensions, and for
Delaunay with thresholdiff e = liminf{é | @ € AD(6)}. various special cases [3, 15, 31, 35].

Every k-tuple for1 < k < d + 1 is an almost Delaunay _ We now review the definition of an annulusdrdimen-

simplex for some finite thresholdi-tuples with threshold Sions, and define some useful notation.
0 are Delaunay. In general, the sets 4D () do not DeriNITION 3.1. (d-ANNULUS) A d-annulus is a sefp €
form a simplicial complex-AD(¢) includes the faces of itsfpd . < dist(p,c) < R}, defined by itsenterc, its inner
simplices, but not necessarily the intersections of simplicegad outerradii, » and R, and itswidth, w = R — r. We
Abellanaset al. [2] explored the robustness of a Deallow the center to be a point at infinity, in which case the
launay triangulation in the plane, giving a complementajiyner and outer radii are infinite and the annulus is actually
definition of toleranceas the supremum of all > 0 such 3 slab of widthw defined by two parallel hyperplanes [41].
that AD(e) contains only the Delaunay triangles. They us . .
a minim(ur)n—width annulus problendefined below, to findeigndlng the aImost-DeIaun_ay thresholdior a ’f'S'”.‘p'?X
value of ¢ over the whole triangulation and for individuaf&" be formu_la_ted as a_lva.rlant of the problem of finding an
Delaunay edges. We generalizegdfor all simplices, and to annulus of minimum width:
higher dimensions. THEOREM 3.1. (ALMOST-DELAUNAY) Given finite sets of
Other generalizations of Voronoi and Delaunay dipointsQ c S C R, let.A denote thel-annulus of minimum
grams have been studied extensively in computational gedth that containg2 and whose inner hypersphere is empty
ometry. Orderk Voronoi diagrams [9, 13, 12] are a genemf points fromS. Thenwidth(A) = 2¢ if and only if Q is
alization that uses the regions with the same sétdbsest almost-Delaunay with threshold



As a corollary, we have a variant of the “cone condition”
of [20] to further characterize the center

THEOREM 3.2. (CONE CONDITION) From a finite center:

of a minimum-width annulus associated with simpi&xc

&, no cone separateaSN (c) from FNg(c).

From an infinite center;, no plane separate§' N(c) from
FNg(c) and any cone (that is, cylinder) that separates them
hasCN (c) inside.

Figure 1: anAD(¢) Proof. For a finite pointc, if there is a separating cone,
triangle then one of the directions along the axis of the cone has
Qe Al_)(e)' angles to sites o' Ng(c) smaller than those o' N (c).

_ Itsimplex @ € AD(e), then we can bound the annulug o yyma 3.1 says that the directional derivative is negative,
width as follows. By definition, we can perturb the pointg, tat. cannot be the center of a minimum-width annulus.
S 1o &' so that the perturbed simple®’ lies on an empty £ an infinite pointc, if there is a separating cylinder
(hyper)spherel/. Note that each point of is within i &N (c) outside, then movingto a finite point produces

. : ) . .
distancee of |ts. corresponding poins’, so if we consjtruct an annulus with smaller width. If there is a separating plane,
the annulus4 with the same center dd and outer and inner o, movingc on the plane at infinity decreases the width

spheres offset by¢, then the inner sphere gfis empty o_fS between the parallel planes. [

becausél/ was empty ofS’, and outer sphere od contains ] ) o

0 becausé// containedd’. We can now count the points needed to define a minimum-
Thus,Q is in AD(e) iff there is an annulus of widtge, Width annulus.

and theminimumannulus width equals the threshold@f] THEOREM3.3. (NUMBER OF POINTS) Suppose that the-
simplex @ < %®¢ has a minimum-width annulusd
3.1 Configurations that determinee with centerc. Then2 < |FNg(c¢)| < min(d,|Q]), and

The thresholde for an almost-Delaunay simple® C S [CN(c)] + |FNQ(,C)‘ > d + 2 for finite ¢, and > d + 1 for

is determined by properties of its associated minimur@@t oo, With equality holding in general position.

width annulus. These properties, and their derivations, &t@of. A single closest or furthest point can always be

similar to those for minimum-width annuli enclosing altrivially separated from the other points by a cone with vertex

points [20, 41]. atc enclosing just that point, sez = |F Ng(c)| > 1. Also,
Recall that tha/oronoi diagramis the partition of space nc = |CN(c)| > 1, with equality only when center is at

into maximally connected regions with the same set @finity.

closest neighbor sites. THarthest-point Voronoi diagram ~ To bound the sumr + nc, consider the relatively

is the partition of space into maximally connected regio@en Voronoi regions fof"Ng(c) and CN(c), which are

with the same set of furthest neighbor sites [5, 9, 13, 34]. regions of dimensiong d +1 —np and> d + 1 — nc,
Modifying notation of [20], anycandidate centepointc  €quality holding in general position. Lemma 3.1 shows

has a sef’ N (¢) of closest neighbors in the Voronoi&f and  that the minimum width occurs for a point on the boundary

asetF'Ng(c) C Q of furthest neighbors in the furthest-poingf the intersection—if the intersection contains more than

Voronoi of Q. Note that is in the intersection of closest- andt single finite pointc, then the minimum must occur at

furthest-point Voronoi regions corresponding to $&f§ and infinity, because moving to a finite boundary will take the

FNo. point out of CN(c¢) or F'Ng(c)—one of these sets will gain
An easy technical lemma establishes a geometric comin additional site. The dimension of the intersection is at

tion on the directions of motion that decrease the differené@std — (d+1—nr) — (d+1—nc) =npr+nc —d—2.

in distances to two points. Thus, whene is finite, we haved < ng + ng — d — 2,

LEMMA 3.1. Consider two pointw and ¢, and the differ- ©F #F + nc = d + 2, and whenc is infinite, we have

ence in their distances to the origid(p, 0) — d(g,0). Let 1 =nF+tnc—d—2,0rmp+nc>d+1. O

v be a unit vector, andv and 3 be its angles tp andq re- Remark: The case with = co and|C'N(c)| = 1 occurs in

spectively. Suppose that we move the centém minimum- our variant on the annulus problem; Smid and Janardan [41]

width annulus by\v for some infinitesimal. The direc- had observed that it never defines the width of a minimum-

Proof. Suppose thatQ can be en-
closed by an annulugl with center
¢, inner radius-, and width2e so that
the inner (hyper)sphere is empty®f
As in Figure 1, every point ofd is
within e of the medial (hyper)sphere
M, having center and radius" + .
Thus, there is a perturbation gfonto
M andS outside of M showing that

tional derivative width annulus that encloses all points.
d Finally, we prove a fact asserted in the previous section.
ﬁ(d(p’ M) — d(g, \v)) = cos() — cos(a), LEMMA 3.2. (SMPLEX THRESHOLD) The almost-Delau-

nay threshold for ak-simplex inR? is at least as high as
which is negative ifangle < o < 8 < 7. that for each of then-simplices that constitute itp < &.
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Computing the 1D projected Voronoi diagram

Proof. A perturbatione that makes thé-simplex Delaunay

. . bol = x2 — t ts at [x,x%]
creates an empty hypersphere containing all of the points of 8t~ Y 5537 124 T oner emvelope of
« points x=-1.5,-0.25,1 shifted tangent lines

the simplex after perturbation. O sl

+ points on parabola - point on upper
[x,x?] at x=-1.5,-0.25,1 envelope

% projected Voronoi vertex

The above properties immediately suggest a simplistic algo- af
rithm: For each of th¢ ;"' ) simplices, maintain a minimum
threshold seen, which is initially infinite. For all setsdof 2
points and alk < j < d + 1, consider the annuli defined by
j points on the outer hypersphere ahd j + 2 on the inner i .
hypersphere. If the inner hypersphere of an annulus is empty s
of all other points, update the minimum threshold seen for , , ) )
eachk-simplex from among thé + 2 points. This algorithm - 2 - 0 ! 2 3
would takeO((;74) - n) = O(n*3) time. Since the points
on the inner hypersphere form a Delaunay simplex, we can
reduce this t@)(n**+2) time for thed-simplices, and less for ~ Edge length prune: For analyzing neighbor interac-
the lower-dimensional simplices. tions in proteins, only pairs of points within about 20of

If we do want thresholds for alf,” ) simplices, then each other are relevant. We set esige length prunga-
there is not much room to improve this algorithm; we’'d exameter to restrict the maximum length of any edge of the
pect to spend betweestt andn’ time in 3D. In our appli- Simplices whose AD thresholds we evaluate. Edge pruning
cations, however, we are interested in a subset of simplic@§o eliminates long Delaunay edges near the convex hull
either those with small thresholds or those with short edg#at are not really between neighbors. We use & Hune
or both. In the next section, therefore, we will sketch wordty default.
case analyses primarily to help make the algorithm clear, but As illustrated in Figure 2, we find the threshold for
will concentrate on algorithms that have good practical p&achk-simplex that satisfies the prune requirement, starting
formance, as demonstrated by experiments and by analyéfé the 1-simplices (edges), and discard the simplices with
under assumptions such as even or random distributiortffeshold higher than the cutoff before proceeding to the next

Figure 3:The lifting technique, illustrated on a 1D axis.

points. stage. For each remaining simplex, we uditing mapto
find the candidate centers. This makes the time and space
4  Algorithms for relevant thresholds dependent on the number of relevant simplices, rather than
the total.

In this section, we identify “relevant” parameters that are

monotone increasing in simplex dimension, so that if ey  computation of candidate centers by a lifting map

parameter for a simplex is too large, then the parameter

for any simplex that has as a face will also be too large VY& modify Brown'slifting technique [10, 13] to compute the

Thus, we begin by computing almost-Delaunay edges, as/pyonoi diagram of the points projected onto the furthest-

Figure 2. Through these and other geometric observatioR@nt Voronoi region ofk furthest neighbors, but with dis-
we make practical improvements, and attempt to expléﬁ{‘ces based on the original points. We sketch the technique

these improvements by analysis and experiments. in d dlmenS|ons,_ and illustrate it in Figure 3 for points pro-
jected on a 1laxis
The proof of Theorem 3.3 observes thdtirthest neigh-
| pronpemn (—/ I bors define a region of dimensiah- & + 1 in the furthest-
_ . L g o )
ggr;g;;; N 0“- Comp.e N _D Make ps. tels| _|Compute point Voron0|_ qllagram ink 0 which is a subspace if we
tessellation 2 Del. edges, AD(e) edges | [for s, tets choose as origin the centroid of the furthest neighbors. The

i St high: cutof distance from the origin to a point can be factored into

Figure 2: Processing AD edges then AD simplices  COMponentsc = {1, ..., (4 1)} Within this subspace

and h which is the Euclidean norm of all orthogonal com-
ponents, in an orthogonal dimensign We construct tan-
Threshold cutoff: For analyzing robustness, we are primagents to the unit paraboloig = 2,2 + ... + z4_54,% at

ily interested in small perturbations, relative to interpoint disaluesx corresponding to each poipt then shift each tan-
tance. We setthreshold cutoffor e.....) and consider only gent “down” in the negativeg direction byh?. Now at any

the simplices inAD(e...op7). Equivalently, we discard anypoint x’ within the subspace, the distance in thdirection
edge with AD threshold > e..06, and, by Lemma 3.2, between the shifted tangent at poinand the paraboloid at
also the simplices that use these edges. Unless otheraisequals the square of the distance betweeandp.
specifiedecutor = 2.0 Ain our protein experiments, where  Using the above property, the intersection points of two
the typical distance betweef}, carbons is 5-4. shifted tangents along the upper envelope of these tangents

4.1 Parameters



give the vertices of the Voronoi diagram, which are the [ cCondition on candidate centers in 2D
candidate centers. The intersection points can be compute on adding constigintTorthirdipoint, & o
in dual space by finding the lower convex hull of the dual
points to these tangent planes. We use the Quickhull[8]
implementation which runs in expectéd(n logn) time in

2 and 3 dimensions. Lifting avoids higher-dimensional
Voronoi diagrams that are hard to compute robustly, and the
lifting implementation is easy and efficient for the dimension . ; — 3l e
(3) and problem sizes1£100-10,000) we are interested in. =z} !Mvald candidats /l valid candidate |

centers centers

4.3 Computing almost-Delaunay edges ) 3 o i 2 3 3
The pseudo-code for the algorithm is outlined below.

Figure 4:Finding the AD threshold for\pqr in 2D by addi
e Enumerate all non-Delaunay edgésj). g 'ncing e feshoic 108pgr N yadding a

1D half-line constraint generated lby
e Foreach non-Delaunay ed@e ) thatis shorter than the edge
length prune, do: closer to the center thgmandgq. If r, is positive, and hence the

1. Compute the equation @, the furthest-point Voronoi SIoP€ Of the tangent line is positive, this constraint is satisfied by
region corresponding to and j. For example, in 3D all candidate centers to the right of the equidistance point,@f
this is the bisector plane of. andr, which we call aleft cutoff This is illustrated in Figure 4.

2. Find the intersections of the Voronoi diagram wit®imilarly if 7 is negative, the slope of the tangent is negative and
P using a lifting map. These are candidate centeiflde constraint is satisfied by all candidate centers on the left of the
with < and 5 as furthest neighbors and the points ofquidistance point, which we callright cutoft
a Delaunay simplex as closest neighbors, and include
Voronoi vertices at infinity. 4.4.2 Almost-Delaunay triangles/tetrahedra in 3D

3. Evaluate annulus width function at all candidate ceré-_ hed hat i iated mini
ters, and record the minimum annulus width iven a tetrahedromgrs, assume that its associated minimum-

width annulus has points and ¢ as furthest neighbors. From all
4. Regor_d_the value af/2 as the AD threshold for edgethe candidate annuli for edge, we need to consider only those
(é,7), ifitis less tharecutop which contain both the points ands. The annulus centers are
e Report the edges with threshold values betw@ende .. computed using a Zp Iifting_map constructed o_n_the bisector plane
as almost-Delaunay edges. of pg as described in Section 4.2. The condition that a peint
be closer thamp or ¢ generates a 3Dalf-plane constrainbn the
annulus center, 2D when projected onto the bisector plane. Thus
finding the minimum annulus containing ¢ andr is equivalent to
We can easily modify the algorithm for an AD edge in anfinding the minimum annulus for edge from among the candidate
dimension to find the minimum thresholg) (vhen that edge centers (including centers at infinity) that satisfy the half-plane
is part of ak-simplex. The only constraint is that eaclgonstraint generated by and symmetrically for edggs™ andqr.
candidate annulus should contain (not necessarily as clo§@setrahedropgrs, the two half-planes for ands form a wedge
or furthest neighbors) all the other points of the simple®? the bisector plane gfg, which gives us a region in which to
The AD threshold for the simplex is then the minimur?iearch for centers of annuli containing the poingds.

trained ed threshold Il its ed N The center of the minimum-width annulus for an edge in 3D
constrained edge threshoid over all IlS edges. ow \Q’Iﬁ/ays has 2 furthest neighbors, and either 3 closest neighbors for

describe efficient ways of computing the AD threshold fQf finite center, or 2 closest neighghbors when the center ds at

a few special cases. (Theorem 3.3). There is a third possibility for finding the minimum
threshold of an AD triangle, that the center lies on a Voronoi edge
between two candidate centers, at its intersection with a half-plane
For AD edge(p, ) of Apgr, we will consider all candidate centersconstraint. This corresponds to three furthest neighbors (two for the
¢ for which the distance tp or ¢ is greater than the distance tdiS€ctor plane and one for the constraint) and two closest neighbors.
pointr. The candidate centers are computed using the 1D Iiftiﬁﬂfo the points on each constraintato corres_pond to slabs with
map of the points as discussed in Section 4.2. The distanc thtroee furthest neighbors and one closest neighbor, the one whose

ointr is given by the tangent line to the parabgla= = at eVoronoi region the point is in.
pomtr 1S 9 y 9 parabgia= x” & ra, For an AD tetrahedron, candidate centers of egigeand
shifted down byr,“, wherer, andr,

_ are the on-axis and off-axis . onoj edges between them may contribute to the minimum-width
components of. At the point where the shifted tangent linerat 5nnulus if they satisfy both half-plane constraints for poingd
intersects the shifted horizontal tangent line at pojntndg, all 5. For efficiency, we separate the edges into two groups. Each edge
three points are equidistant. Thus there is ahBD-line constraint that intersects only one constraint is completely on one side of the
on the candidate centers generated by the condition that pbiat other constraint, so it suffices to test any one of its points against

4.4 Computing almost-Delaunayk-simplices

4.4.1 Almost-Delaunay triangles in 2D



the other constraint, a test whose result is already known from thén) for constanp andr-. g
AD triangles. Edges that intersect both constraints are valid if the

; ; - ; L , This lemma is clearly not true for arbitrary data, as we
intersection point of each constraint satisfies the other constraing, a 9 . . S

. L can getO(n?) short edges if we take uniformly distributed
more expensive but relatively infrequent test.

data in a fixed volume, and arbitrarily increaseand the

Recall that we computed the AD threshold only for non-

Delaunay edges, since for Delaunay edges itis zero by definition.plerllCklng density. In the limit, each newly added point adds a

3D there are AD triangles and tetrahedra with all edges Delaunre]\umber of short edges proportional to the number of points

e . 5
and we enumerate and handle them separately for efficiency. ?y‘ie?:%r?gsﬁgﬁisapﬁ t?lgsae(-jgaslcuk%(gm;;rc)) tZ?r?ZZt:svmee\feer,two

4.5 Acceleration for applications C,s are a minimum of & apart, and two sidechain centroids
are even further, sayA.
Increasing the edge length prune parameter allows

OI%’nger edges to exist on the outer sphere of the annulus
i 5 . 5 ] ,
with ©(n*) for computing the Delaunag)(n*) for enumer and in turn allows tetrahedra with larger thresholds, from

ating short edges, and thél(n log ) for finding the candi- Lemma 3.2. As shown in Figure 5 for a typical protein with

date centers for each short edge. Note that centers of SOM& ¢ residues. the maximum AD edge threshold at an
minimum width annuli lie arbitrarily far from the midpoint ' g Y

edge length increases linearly with the edge length, which
of th? short edge, and thus we have to cqm_pﬂh@e log.n) r1justifies picking a value fot....5 based on the value of edge
candidate centers and may not search within a region r

the edge. Addition of a third and fourth point to the annu ﬁgth prune.
and computation of the constrained minimum with one and ADedge lengths, s in 1AM Co 185 points
two half-plane constraints take3(n) and O(n?) time for
each candidate center. Thus withsites and(’;) potential
AD tetrahedra, testing all of them takéXn° log n) time.

We can improve the algorithm in 3D to takkn? log n)
time by exploiting properties of minimum-width annuli and
assumptions made about the input data. We concentrate on
practical improvements for the number of points found in
proteins; further asymptotic improvement may be possible.

The algorithm as given above for 3D tak@én? log n) time
to run in the worst case for just the AD edge computati

=
h

AD threshold ()

o
ih

4.5.1 Effect of edge length pruning By 1Ei§clg_|yLmEth_13_ P

Pruning long edges speeds up the glgorlt_hm_ by consider 8ure 5: Scatter plot showing correlation of AD edge threshold
only AD edges both of whose points lie in a boundegf edge length for a protein with 185 points.

spherical region, a bucket. Pruning needs to be done only

once, and then the complexity of the rest of the algorithas 2 Angle pruning

is determined by the size of the set of pruned (short) edg@t%,y

This step reduces the search space of AD edges considerab) g the prppertles from S.ect|on .3'1’ we get con_dmo.ns for
— from (n) total edges, we geD(n?) short edges in the valid Voronoi edges and valid configurations of points in 2D
2 1

worst case, bud (n) edges under the assumption that poin?é]d 3D, which can be used to prune away candidate centers

: . . that cannot give minimum-width annuli.
have nearly uniform packing density. In 2D, if the furthest neighbors ageandq for a center:,

LEMMA 4.1. (NUMBER OF SHORT EDGES) The expected gxactly one of the two closest neighbors is inside the triangle
number of edges shorter than an edge length prum@ . A ., “or within the cylinder from: at infinity bounded by
points closely packed such that the closest distance betwgg, |n 3D, the cone condition can be checked just like 2D
2 points is2r, is O(n - p*) for constantr, or O(n) for con-  gnce we fix the axis of the cone as the angle bisector of two
stantp andr. furthest or closest neighbors, by rotating all other points into
Proof. We use a volume packing argument: Represent edlch same plane.

residue by a ball of radius r; balls pack within the volume In experiments on 3D protein data, we found that be-
of the protein without overlap. Denote the sphere of ragdiusween 80 and 85% of candidate centers get eliminated by
around residued as itsprune volumeall other residued3; angle pruning. But we have to test every candidate center,
whose centers lie within this sphere would form short edgasd the pruning computation for a center needs more work
AB;. There can be a maximum 6f78(p + r)3/r3 spheres than just evaluating the annulus width. Thus, angle pruning
within the prune volume, since spheres in close packing damuseful only if we can use its results to prune the candidate
fill up at most 78% of the volume they occupy. Thus theenters and edges between centers for computation of AD
total number of short edges @(n - p3) for constantr, or triangles and tetrahedra. This is easy to see for the centers;




for the edges we keep them if either endpoint satisfies sgteows the expected number bffaces in the Voronoi dia-
angle prune conditions, or is closer to the origin than an egram ofn independent, uniformly distributed sites®Rf to
pirically determined distance gfrune + cutoff*. For both beO(n). We can apply this result to our computation of the
centers and edges, we can apply angle pruning in conjunctifting map if we assume the projections of our data points
with threshold cutoff, and results are shown in Figure 6 forta be uniformly distributed, and thus can bound the number
cutoff of 1.0 for a test dataset of 440 proteins, and tabulateidcandidate centers per short edge and the number of edges
later in Section 4.7. connecting these centers Byn).

After angle pruning and applying the threshold cutoff,
e the number of candid_ate centers and edge; is @m_t),
12{| . alVoronol conters A though it may be sublinear as we shall see in Section 4.7.
“_alledges hetween centers | * o Now finding all the AD triangle and tetrahedron thresholds

gt Sl M ] involves checking the threshold @d(n) valid candidate

centers and edges agairf3tl) half-plane constraints, and
doing this for O(n) short edges. Thus we get the time
complexity as0(n?). a

1a% 10 Angle Pruning Cuts Search Space

# Centers/Edges Considered

4.7 Practical performance

8O 100 120 140 160 180 200 220

Number of Points To show that the practical behavior is not worst-case, but
26 ] i fits the theoretical bounds based on assumptions about our
5 o data, we estimated the performance of the algorithm in terms

: o i of the number of simplices checked at each stage and the

e ] output size, fitted using regression as shown in Table 1. Our

prune=10

dataset comprised the 440 protein chains, representét, by
carbons, with chain lengtj between 80 and 256, from our
training set of 1100 proteins. This training set was selected
as mentioned in [23], to span a variety of different folds and

% Centers/Edges Not Pruned

families.
From these results we may determine the practical time
& 100 150 200 complexity — the number of short edge8(n), times the

Number of Points
Figure 6:Angle pruning of candidate centers and our edge pruni
heuristic greatly reduce the number of centers and edges consid

O(nlogn) lifting map computation gives the complexity for
dedges. For AD triangles and tetrahedra, performance

for each AD triangle and tetrahedron. measures are more naturally expressed in terms (bfie
number of short non-Delaunay edges that pass the cutoff)
4.6 Time complexity with assumptions about data which isO(n).

Edge-length pruning speeds up the AD edge algorithm by a Angle pruning is instrumental in making the practical
factor of n to run in O(n2logn) expected time on typical case more efficient than the theoretical upper bound; the
protein data, as proved in Lemma 4.1. We shall nowmber of candidates per short edge is almost constant (
argue that the AD triangle and tetrahedron algorithms ran) after angle pruning, which leads ©(s¢) time taken.

in expected)(n?) time after the edges have been processddie number of AD triangles and tetrahedra tested and output
for an algorithm that i$)(n? log n) overall, and scales veryis O(s), which corresponds t0(1) simplices per short edge.

well from edges to higher dimensional simplices. Thus the algorithm has output size and memory require-

. ments linear in the number of points for typical edge length
LEMMA 4.2. The expected time taken to check all the ca| fune ande,.,; values. Our MATLAB implementation

didates for AD triangles and tetrahedra, once the AD edg mputes the AD tetrahedra for protein data in 3D with 100—
are known, inn points closely packed such that the closef 00 points in a few seconds to two minutes on a 2.0GHz
distance between 2 pointsls, and the edge length prune IS, computer.

p, is O(n?) for constanty andr-.

Proof. Since each point ha®@(1) short edges to its neigh-
bors (Lemma 4.1), each short edge forms a constant number
of triangles and tetrahedra with all short edges. For each trithe previous sections we discussed one new method for es-
angle there is one half-plane constraint and for each tetrati@ating nearest neighbors in sets of imprecise points. Here
dron there are two half-plane constraints induced on the cam introduce another notion that is useful in describing ran-
didate centers and edges. Previous work by Dwyer [16, Tdm perturbations of points. The almost-Delaunay simplices

Delaunay probability



Quantity Regression Fit+ Residual |

ecutoﬁ:l-OA l ecutoﬁ:o-lA
Delaunay edges 7.1n — 92+ 30 Cldr) = 1 (erf(Q(d + r)) B erf<2(d - r)))
Short D edges 5.7n — 60 & 60 2 a\/T a\/T
Short non-D edges 2.9n — 73 +£ 100 a —4(d+7)? —4(d—n)?
% that pass cutoff (5.1) vy (e @ro—e o ) :
(# that pass =) 98 £ 2% 12 + 3% . . .
Candidate centers, Given positions of all sitessy, so,...,s,, we could
pre-angle pruning 1.870078 £ 14+ 5 obtain the probability thafs;, so, s3, s4} form a Delaunay
Edges between crs, tetrahedron if we could integrate, over each sphere that
pre-angle pruning 2.12n°8% 4254+ 5 these sites can define, the probability of the sphere times
Candidate centers, the probability that it is empty. This integral cannot be
post-angle pruning | 7.1s%1%405+1 8.9s1°+ 1.5 | calculated in closed form, but we can perform a Monte
Edges between ctrs, . . Carlo integration by generating sitas through s, from
post-angle pruning | 6.7s"°+2.7+£2 | 8.95'°+0.5+2 | the Gaussian distribution and using (5.1) to compute the
AD triangles tested | 8s —260+£300 | 4.4s—5.9+20 | propability that their circumsphere is empty.
AD tetrahedra tested 21s—1300 =+ 1500 6.2s — 18 =60
AD triangles output 55 — 39+ 100 3.7s4+1.3+20 Oty gt v AD ot for s, 8 0500, 016010 Oty g e ADietfr T 5 s, =08 pramet
AD tetrahedra outpul_8.5s — 180 £ 300 | 4.65 +0.65£40 | 5 ||~ .. ¢

S L
v
L

Table 1:Performance measures of the AD algorithm over 440 proZ
teins as functions afiumber of point§n) or number of short non-
Delaunay edges that pass cut@if obtained from regression, along =
with 99*"-percentile residuals. Candidate centers and edges are per
short edge, while other quantities are per point set. Measurements

were made for two typical values @f.:., 1.0 and 0.1A, and
edges longer than 1R were pruned.

10°}
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Figure 7:Tetrahedron probability vs. AR with perturbations of
average radius = 0.1 and0.5.

AD(e) capture in a sense the worst case change in the De- Computation of the Denlaunay probabilities suffers from
launay triangulation due to some bounded and carefully §#¢ same problem as thene almost-Delaunay computa-

chestrated perturbation. The actual perturbations that oci@: there are roughly* tetrahedra to check, and each one
are random, and will sometimes cause a simplex to becoffiguires significant computation. Fortunatel_y, Figure 5 ilus-
Delaunay, and at other times will not. Here we characteriggtes that the probability of a tetrahedron is inversely cor-
random perturbations; the analysis and algorithm are gi\;&I@ted with AD threshold. With the Gaussian distribution

for tetrahedra, though the concept holds in arbitrary dimefy the probability falls belowl.0~° for AD(2a) tetrahedra.
sions. Thus, our efficient enumeration of almost-Delaunay tetrahe-

If we assume a particular distribution of error in the cdira makes it feasible to estimate probabilities for tetrahedra
ordinates, it is possible to calculate the probability that a p4t-Proteins.
ticular tetrahedron is Delaunay. Assume that the probability TWo confirmations of the accuracy of the Delaunay
density function (pdf) has radial symmetry so that it can ipkobability cal<_:u|at|on: I_:|rst, in a configuration Who_s_e_ con-
expressed in spherical coordinates as a function of the Y&X hull contains the origin, the sum of the probabilities of
dius, f(r). Such a pdf must satisfyi™ 422 f(x)dz = 1; all simplices containing the origin numerically converges to

1 . 0 ) . .
examples include the Gaussian distributions with expecte@S We increased the number of Monte Carlo trials. Second,

radiusa given by f, () = 8/(ar)? exp(—(2z/a)?/7). in a large training set of 1100 proteins selected as detailed
A sphereC of radiusr at distancel from the origin will in [23], the sum of the Delaunay probabilities of all AD(0.3)
contain total density tetrahedra converged to within 99-101% of the number of
Delaunay tetrahedra at any value of edge length prune.
d+r _ _ . .
C(d,r) = / SMCRE, 5”2(‘” d+ T)f(:r)dac. 6 Results from analysis of protein structure
d—r

We studied the robustness of the Delaunay tessellation for
The probability that a point is outside sphefé is analysis of protein packing interactions and finding motifs of
1-C(d,r), so if we have a fixed circle, we can compute theecondary structure. We briefly report a few of our results,
probability that it is empty. For the distributiof),, we can which are detailed in a companion paper [7].
even give an expression in terms of the normal error function 1. An «-helix has a striking distribution of posi-
erf(z) = fo”” exp(—u?)du: tive almost-Delaunay thresholds: three sharp peaks-at
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