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Abstract. The time required for a sequence of operations on a data
structure is usually measured in terms of the worst possible such se-
quence. This, however, is often an overestimate of the actual time re-
quired. Distribution-sensitive data structures attempt to take advantage
of underlying patterns in a sequence of operations in order to reduce time
complexity, since access patterns are non-random in many applications.
Unfortunately, many of the distribution-sensitive structures in the liter-
ature require a great deal of space overhead in the form of pointers. We
present a dictionary data structure that makes use of both randomiza-
tion and existing space-efficient data structures to yield very low space
overhead while maintaining distribution sensitivity in the expected sense.

1 Introduction

For the dictionary problem, we would like to efficiently support the operations of
Insert, Delete and Search over some totally ordered universe. There exist
many such data structures: AVL trees [1], red-black trees [5] and splay trees [9],
for instance. Splay trees are of particular interest because they are distribution-
sensitive, that is, the time required for certain operations can be measured in
terms of the distribution of those operations. In particular, splay trees have
the working set property, which means that the time required to search for an
element is logarithmic in the number of distinct accesses since that element was
last searched for. Splay trees are not the only dictionary to provide the working
set property; the working set structure [6] and the unified structure [6] also have
it.

Unfortunately, such dictionaries often require a significant amount of space
overhead. Indeed, this is a problem with data structures in general. Space over-
head often takes the form of pointers: a binary search tree, for instance, might
have two pointers per node in the tree: one to each child. If this is the case and
we assume that pointers and keys have the same size, then it is easy to see that
2/3 of the storage used by the binary search tree consists of pointers. This seems
to be wasteful, since we are really interested in the data itself and would rather
not invest such a large fraction of space in overhead. To remedy this situation,
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there has been a great deal of research in the area of implicit data structures.
An implicit data structure uses only the space required to hold the data itself (in
addition to only a constant number of words, each of size O(log n) bits). Implicit
dictionaries are a particularly well-studied problem [8, 2, 4].

Our goal is to combine notions of distribution sensitivity with ideas from
implicit dictionaries to yield a distribution-sensitive dictionary with low space
overhead.

1.1 Our Results

We will present a dictionary data structure with worst-case insertion and dele-
tion times O(log n) and expected search time O(log t(x)), where x is the key
being searched for and t(x) is the number of distinct queries made since x was
last searched for, or n if x has not yet been searched for. The space overhead
required for this data structure is O(log log n), i.e., O(log log n) additional words
of memory (each of size O(log n) bits) are required aside from the data itself.
Current data structures that can match this query time include the splay tree
[9] (in the amortized sense) and the working set structure [6] (in the worst case),
although these require 3n and 5n pointers respectively, assuming three point-
ers per node (one parent pointer and two child pointers). We also show how to
modify this structure (and by extension the working set structure [6]) to sup-
port predecessor queries in time logarithmic in the working set number of the
predecessor.

The rest of the paper is organized in the following way. Section 2 briefly
summarizes the working set structure [6] and shows how to modify it to reduce
its space overhead. Section 3 shows how to modify the new dictionary to support
more useful queries with additional–but sublinear–overhead. These modifications
are also applicable to the working set structure [6] and make both data structures
considerably more useful. Section 4 concludes with possible directions for future
research.

2 Modifying the Working Set Structure

In this section, we describe the data structure. We will begin by briefly summa-
rizing the working set structure [6]. We then show how to use randomization to
remove the queues from the working set structure, and finally how to shrink the
size of the trees in the working set structure.

2.1 The Working Set Structure

The working set structure [6] consists of k balanced binary search trees T1, . . . , Tk

and k queues Q1, . . . , Qk. Each queue has precisely the same elements as its
corresponding tree, and the size of Ti and Qi is 22i

, except for Tk and Qk which
simply contain the remaining elements. Therefore, since there are n elements,
k = O(log log n). The structure is manipulated with a shift operation in the



following manner. A shift from i to j is performed by dequeuing an element
from Qi and removing the corresponding element from Ti. The removed element
is then inserted into the next tree and queue (where “next” refers to the tree
closer to j), and the process is repeated until we reach Tj and Qj . In this manner,
the oldest elements are removed from the trees every time. The result of a shift
is that the size of Ti and Qi has decreased by one and the size of Tj and Qj has
increased by one.

Insertions are made by performing a usual dictionary insertion into T1 and
Q1, and then shifting from the first index to the last index. Such a shift makes
room for the newly inserted element in the first tree and queue by moving the
oldest element in each tree and queue down one index. Deletions are accom-
plished by searching for the element and deleting it from the tree (and queue)
it was found in, and then shifting from the last index to the index the element
was found at. Such a shift fills in the gap created by the removed element by
bringing elements up from further down the data structure. Finally, a search is
performed by searching successively in T1, T2, . . . , Tk until the element is found.
This element is then removed from the corresponding tree and queue and in-
serted into T1 and Q1 in the manner described previously. By performing this
shift, we ensure that elements searched for recently are towards the front of the
data structure and will therefore by found quickly on subsequent searches.

The working set structure was shown by Iacono [6] to have insertion and
deletion costs of O(log n) and a search cost of O(log t(x)), where x is the key
being searched for and t(x) is the number of distinct queries made since x was
last searched for, or n if x has not yet been searched for. To see that the search
cost is O(log t(x)), consider that if x is found in Ti, it must have been dequeued

from Qi−1 at some point. If this is the case, then 22i−1

accesses to elements other

than x have taken place since the last access to x, and therefore t(x) ≥ 22i−1

.
Since the search time for x is dominated by the search time in the tree it was

found in, the cost is O
(

log 22i
)

= O(log t(x)).

2.2 Removing the Queues

Here we present a simple use of randomization to remove the queues from the
working set structure. Rather than relying on the queue to inform the shifting
procedure of the oldest element in the tree, we simply pick a random element in
the tree and treat it exactly as we would the dequeued element. Lemma 1 shows
that we still maintain the working set property in the expected sense.

Lemma 1. The expected search cost in the randomized working set structure is
O(log t(x)).

Proof. Fix an element x and let t = t(x) denote the number of distinct accesses
since x was last accessed. Suppose that x is in Ti and a sequence of accesses occurs
during which t distinct accesses occur. Since Ti has size 22i

, the probability that
x is not removed from Ti during these accesses is at least
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It thus suffices to show that the remaining sum is O(1). We will assume that
t ≥ 2, since otherwise x can be in at most the second tree and can therefore be
found in O(1) time. Considering only the remaining sum, we have
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All that remains to show is that this infinite sum is bounded by a decreasing
geometric series (and is therefore constant.) The ratio of consecutive terms is
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If we substitute u = 1

22i , we find that 1

22i+1 = u2. Observe that as i → ∞,
we have u → 0. Thus
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Therefore, the ratio of consecutive terms is o(1) and the series is therefore
bounded by a decreasing geometric series. An expected search time of O(log t(x))
follows.

At this point, we have seen how to eliminate the queues from the structure
at a cost of an expected search cost. In the next section, we will show how to
further reduce space overhead by shrinking the size of the trees.

2.3 Shrinking the Trees

Another source of space overhead in the working set structure is that of the trees.
As mentioned before, many pointers are required to support a binary search tree.
Instead, we will borrow some ideas from the study of implicit data structures.
Observe that there is nothing special about the trees used in the working set
structure: they are simply dictionary data structures that support logarithmic
time queries and update operations. In particular, we do not rely on the fact
that they are trees. Therefore, we can replace these trees with one of the many
implicit dictionary data structures in the literature (see, e.g., [8, 2, 4, 3].) The



dictionary of Franceschini and Grossi [3] provides a worst-case optimal implicit
dictionary with access costs O(log n), and so we will employ these results. It is
useful to note that any dictionary that offers polylogarithmic access times will
yield the same results: the access cost for each operation in our data structure
will be the maximum of the access costs for the substructure, since the shifting
operation consists of searches, insertions and deletions in the substructures.

Unfortunately, the resulting data structure is not implicit in the strict sense.
Since each substructure can use O(1) words of size O(log n) bits and we have
O(log log n) such substructures, the data structure as a whole could use as much
as O(log log n) words of size O(log n) bits each. Nevertheless, this is a signifi-
cant improvement over the O(n) additional words used by the traditional data
structures. We have

Theorem 1. There exists a dictionary data structure that stores only the data
required for its elements in addition to O(log log n) words of size O(log n) bits
each. This dictionary supports insertions and deletions in worst-case O(log n)
time and searches in expected O(log t(x)) time, where t(x) is the working set
number of the query x.

3 Further Modifications

In this section, we describe a simple modification to the data structure outlined
in Section 2 that makes searches more useful. This improvement comes at the
cost of additional space overhead.

Until now, we have implicitly assumed that searches in our data structure are
successful. If they are not, then we will end up searching in each substructure
at a total cost of O(log n) and returning nothing. Unfortunately, this is not very
useful.1 Typically, a dictionary will return the largest element in the dictionary
that is smaller than the element searched for or the smallest element larger
than the element searched for. Such predecessor and successor queries are a
very important feature of comparison-based data structures: without them, one
could simply use hashing to achieve O(1) time operations. Predecessor queries
are simple to implement in binary search trees since we can simply examine
where we “fell off” the tree. This trick will not work in our data structure,
however, since we have many such substructures and we will have to know when
to stop.

Our goal is thus the following. Given a search key x, we would (as before)
like to return x in time O(log t(x)) if x is in the data structure. If x is not in the
data structure, we would like to like to return pred(x) in time O(log t(pred(x))),
where pred(x) denotes the predecessor of x.

To accomplish this, we will augment our data structure with some pointers.
In particular, every item in the data structure will have a pointer to its successor.
During an insertion, each substructure will be searched for the inserted element

1 Note that this is also true of the original working set structure [6]. The modifications
described here are also applicable to it.



for a total cost of O(log n) and the smallest successor in each substructure will
be recorded. The smallest such successor is clearly the new element’s successor in
the whole structure. Therefore, the cost of insertion remains O(log n). Similarly,
during a deletion only the predecessor of the deleted element will need to have its
successor pointer updated and thus the total cost of deletion remains O(log n).

During a search for x, we proceed as before. Consider searching in any partic-
ular substructure i. If the result of the search in substructure i is in fact x, then
the analysis is exactly the same as before and we can return x in time O(log t(x)).
Otherwise, we won’t find x in substructure i. In this case, we search substructure
i for the predecessor (in that substructure) of x.2 Denote this predi(x). Since
every element knows its successor in the structure as a whole, we can determine
succ(predi(x)). If succ(predi(x)) = x, then we know that x is indeed in the
structure and thus the query can be completed as before. If succ(predi(x)) < x,
then we know that there is still an element smaller than x but larger than what
we have seen, and so we continue searching for x. Finally, if succ(predi(x)) > x,
then we have reached the largest element less than or equal to x, and so our
search stops.

In any case, after we find x or pred(x), we shift the element we returned to
the first substructure as usual. The analysis of the time complexity of this search
algorithm is exactly the same as before; we are essentially changing the element
we are searching for during the search. The search time for the substructure we
stop in dominates the cost of the search and since we return x if we found it
or pred(x) otherwise, the search time is O(log t(x)) if x is in the dictionary and
O(log t(pred(x))) otherwise.

Of course, this augmentation incurs some additional space overhead. In par-
ticular, we now require n pointers, resulting in a space overhead of O(n). While
the queues are now gone, we still have one pointer for each element in the dictio-
nary. To fix this, observe that we can leave out the pointers for the last few trees
and simply do a brute-force search at the cost of slightly higher time complex-
ity. Suppose we leave the pointers out of the last j trees: Tk−j+1 to Tk, where
k represents the index of the last tree, as before. Therefore, each element x in
the trees T1, . . . , Tk−j has a pointer to succ(x). Now, suppose we are searching
in the data structure and get to Tk−j+1. At this point, we may need to search
all remaining trees, since if we do not find the key we are looking for, we have
no way of knowing when we have found its predecessor. Consider the following
lemma.

Lemma 2. Let 0 ≤ j ≤ k. A predecessor search for x takes expected time
O
(

2j log t(x)
)

if x is in the dictionary and O
(

2j log t(pred(x))
)

otherwise.

Proof. Assume the search reaches Tk−j+1, since otherwise our previous analyses

apply. We therefore have t(x) ≥ 22k−j

, since at least 22k−j

operations have taken

2 Here we are assuming that substructures support predecessor queries in the same
time required for searching. This is not a strong assumption, since any comparison-
based dictionary must compare x to succ(x) and pred(x) during an unsuccessful
search for x.



place.3 As before, the search time is bounded by the search time in Tk. Since Tk

has size at most 22k

, we have an expected search time of

O
(

log 22k
)

= O
(

log 22k−j2j
)

= O
(

2j log 22k−j
)

≤ O
(

2j log t(x)
)

This analysis applies as well when x is not in the dictionary. In this case, the
search can be accomplished in time O

(

2j log t(pred(x))
)

.

One further consideration is that once an element is found in the last j trees,
we need to find its successor so that it knows where it is once it is shifted to
the front. However, this is straightforward because we have already examined all
substructures in the data structure and so we can make a second pass. It remains
to consider how much space we have saved using this scheme. Since each tree has
size the square of the previous, by leaving out the last j trees, the total number

of extra pointers used is O
(

n1/2j
)

. We therefore have

Theorem 2. Let 0 ≤ j ≤ k. There exists a dictionary that stores only the data

required for its elements in addition to O
(

n1/2j
)

words of size O(log n) bits each.

This dictionary supports insertions and deletions in worst-case O(log n) time
and searches in expected O

(

2j log t(x)
)

time if x is found in the dictionary and

expected O
(

2j log t(pred(x))
)

time otherwise (in which case pred(x) is returned).

Observe that j ≤ k = O(log log n), and so while the dependence on j is
exponential, it is still quite small relative to n. In particular, take j = 1 to get

Corollary 1. There exists a dictionary that stores only the data required for
its elements in addition to O(

√
n) words of size O(log n) bits each. This dictio-

nary supports insertions and deletions in worst-case O(log n) time and searches
in expected O(log t(x)) time if x is found in the dictionary. If x is not in the
dictionary, pred(x) is returned in expected O(log t(pred(x))) time.

4 Conclusion

We have seen how to modify the Iacono’s working set structure [6] in several
ways. To become more space efficient, we can remove the queues and use ran-
domization to shift elements, while replacing the underlying binary search trees
with implicit dictionaries. To support more useful search queries, we can sac-
rifice some space overhead to maintain information about some portion of the
elements in the dictionary in order to support returning the predecessor of any
otherwise unsuccessful search queries. All such modifications maintain the work-
ing set property in an expected sense.

3 This follows from Lemma 1, which is why the results here hold in the expected sense.



4.1 Future Work

The modifications described in this paper leave open a few directions for research.
The idea of relying on the properties of the substructures (in this case, im-

plicitness) proved fruitful. A natural question to ask, then, is what other sub-
structure properties can carry over to the dictionary as a whole in a useful way?
Other substructures could result in a combination of the working set property
and some other useful properties.

In this paper, we concerned ourselves with the working set property. There are
other types of distribution sensitivity, such as the dynamic finger property, which
means that query time is logarithmic in the rank difference between successive
queries. One could also consider a notion complementary to the idea of the
working set property, namely the queueish property [7], wherein query time is
logarithmic in the number of items not accessed since the query item was last
accessed. Are there implicit dictionaries that provide either of these properties?
Could we provide any of these properties (or some analogue of them) for other
types of data structures?

Finally, it would be of interest to see if a data structure that does not rely on
randomization is possible, in order to guarantee a worst case time complexity of
O(log t(x)) instead of an expected one.
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