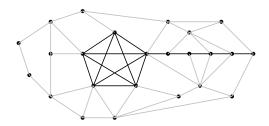
COMP 3804 — Tutorial April 5

Question 1: Let $K \ge 3$ be an integer. A *K*-kite is a graph consisting of a clique of size K and a path with K vertices that is connected to one vertex of the clique; thus, the number of vertices is equal to 2K. In the figure below, the graph with the black edges forms a 5-kite.



The *kite problem* is defined as follows:

 $KITE = \{(G, K) : graph G contains a K-kite\}.$

Prove that the language KITE is in **NP**.

Question 2: The *clique problem* is defined as follows:

 $CLIQUE = \{ (G, K) : graph G contains a clique of size K \}.$

Prove that $CLIQUE \leq_P KITE$, i.e., in polynomial time, CLIQUE can be reduced to KITE.

Question 3: The *subset sum problem* is defined as follows:

SUBSETSUM = {(S, t): S is a set of integers, t is an integer, $\exists S' \subseteq S$ such that $\sum_{x \in S'} x = t$ }.

The *partition problem* is defined as follows:

 $\begin{array}{ll} \text{PARTITION} = \{S : & S \text{ is a set of integers,} \\ & \exists S' \subseteq S \text{ such that } \sum_{x \in S'} x = \sum_{y \in S \setminus S'} y \}. \end{array}$

- Prove that SUBSETSUM \leq_P PARTITION, i.e., in polynomial time, SUBSETSUM can be reduced to PARTITION.
- Prove that PARTITION \leq_P SUBSETSUM, i.e., in polynomial time, PARTITION can be reduced to SUBSETSUM.

Question 4: The *clique and independent set problem* is defined as follows:

CLIQUEINDEPSET = {(G, K): graph G contains a clique of size K and G contains an independent set of size K }.

Prove that $CLIQUE \leq_P CLIQUEINDEPSET$, i.e., in polynomial time, CLIQUE can be reduced to CLIQUEINDEPSET.

Question 5: Let φ be a Boolean formula in the variables x_1, x_2, \ldots, x_n . We say that φ is in conjunctive normal form (CNF) if it is of the form

$$\varphi = C_1 \wedge C_2 \wedge \ldots \wedge C_m,$$

where each C_i , $1 \le i \le m$, is of the following form:

$$C_i = l_1^i \vee l_2^i \vee \ldots \vee l_{k_i}^i.$$

Each l_j^i is a *literal*, which is either a variable or the negation of a variable. The *satisfiability problem* is defined as follows:

 $\mathsf{SAT} = \{ \varphi : \varphi \text{ is in CNF-form and is satisfiable} \}.$

Prove that $CLIQUE \leq_P SAT$, i.e., in polynomial time, CLIQUE can be reduced to SAT.