COMP 3804 - Tutorial February 9

Problem 1: You are given three beer barrels B_{1}, B_{2}, and B_{3}. Barrel B_{1} has a capacity of 8 litres, barrel B_{2} has a capacity of 5 litres, and barrel B_{3} has a capacity of 3 litres.

At any moment, each barrel contains a given amount of beer (in litres). In one step, you can pour beer from one barrel, say B_{i}, to another barrel, say B_{j}. This step terminates at the moment when B_{i} becomes empty or B_{j} becomes full, whichever happens first.

To give some examples:

- If B_{1} contains 6 litres of beer, B_{2} contains 2 litres of beer, and B_{3} contains 0 litres of beer, then we can pour the entire contents of barrel B_{2} to barrel B_{3}. At the end of this step, B_{1} contains 6 litres of beer, B_{2} contains 0 litres of beer, and B_{3} contains 2 litres of beer.
- If B_{1} contains 3 litres of beer, B_{2} contains 4 litres of beer, and B_{3} contains 1 litre of beer, then we can pour 2 litres of beer from B_{1} to B_{3}. At the end of this step, B_{1} contains 1 litre of beer, B_{2} contains 4 litres of beer, and B_{3} contains 3 litres of beer.

Decision problem:

- Let b_{1}, b_{2}, and b_{3} be integers such that $b_{1} \geq 0, b_{2} \geq 0,0 \leq b_{3} \leq 3$, and $b_{1}+b_{2}+b_{3}=4$. Similarly, let $b_{1}^{\prime}, b_{2}^{\prime}$, and b_{3}^{\prime} be integers such that $b_{1}^{\prime} \geq 0, b_{2}^{\prime} \geq 0,0 \leq b_{3}^{\prime} \leq 3$, and $b_{1}^{\prime}+b_{2}^{\prime}+b_{3}^{\prime}=4$.
- Initially, barrel B_{1} is filled with b_{1} litres of beer, barrel B_{2} is filled with b_{2} litres of beer, and barrel B_{3} is filled with b_{3} litres of beer.
- We want to decide whether or not it is possible to perform a sequence of steps that results in barrel B_{1} having b_{1}^{\prime} liters of beer, barrel B_{2} having b_{2}^{\prime} litres of beer, and barrel B_{3} having b_{3}^{\prime} litres of beer?
(1.1) Formulate this as a problem on a directed graph. What are the vertices of the graph? What are the directed edges of the graph?
(1.2) Draw the entire graph.
(1.3) Assume that $\left(b_{1}, b_{2}, b_{3}\right)=(4,0,0)$ and $\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}\right)=(3,1,0)$. Use your graph to decide whether the answer to the decision problem is YES or NO.
(1.4) Assume that $\left(b_{1}, b_{2}, b_{3}\right)=(4,0,0)$ and $\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}\right)=(2,1,1)$. Use your graph to decide whether the answer to the decision problem is YES or NO.

Problem 2: Let $G=(V, E)$ be an undirected graph. A vertex coloring of G is a function $f: V \rightarrow\{1,2, \ldots, k\}$ such that for every edge $\{u, v\}$ in $E, f(u) \neq f(v)$. In words, each vertex u gets a "color" $f(u)$, from a set of k "colors", such that the two vertices of each edge have different colors.

Assume that the graph G has exactly one cycle with an odd number of vertices. (The graph may contain cycles with an even number of vertices.)

What is the smallest integer k such that a vertex coloring with k colors exists? As always, justify your answer.

Problem 3: Let $G=(V, E)$ be a directed graph, which is given to you in the adjacency list format. Thus, each vertex u has a list that stores all vertices of the set

$$
\{v:(u, v) \in E\}
$$

The backwards graph G_{b} is obtained from G by replacing each edge (u, v) in G by the edge (v, u). In words, in G_{b}, we follow the edges of G backwards.

Describe an algorithm that computes, in $O(|V|+|E|)$ time, an adjacency list representation of G_{b}. As always, justify your answer and the running time of your algorithm.

