
COMP 3804 — Solutions Tutorial March 15

Question 1: Consider the following directed graph:

AB

CD

E

F

G

(1.1) Draw the DFS -forest obtained by running algorithm DFS; the pseudocode is given on
the last page. Algorithm DFS uses algorithm Explore as a subroutine. The pseudocode
for this subroutine is also given on the last page.

Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS -
forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices,
pick the one that is alphabetically first.

(1.2) Draw the DFS -forest obtained by running algorithm DFS. Classify each edge as a
tree edge, forward edge, back edge, or cross edge. In the DFS -forest, give the pre- and
post-number of each vertex. Whenever there is a choice of vertices, pick the one that is
alphabetically last.

Solution: We start by recalling algorithms DFS and Explore:

Algorithm DFS(G):
for each vertex v
do visited(v) = false
endfor;
clock = 1;
for each vertex v
do if visited(v) = false

then Explore(v)
endif

endfor

1

Algorithm Explore(v):
visited(v) = true;
pre(v) = clock ;
clock = clock + 1;
for each edge (v, u)
do if visited(u) = false

then Explore(u)
endif

endfor;
post(v) = clock ;
clock = clock + 1

We start with (1.1). In case there is more than one choice, we pick the alphabetically
smallest one. Thus, algorithm DFS(G) starts by calling Explore(A). Here is the resulting
DFS -forest:

A

B

C D

E

F

G

[1, 8]

[2, 7]

[3, 4] [5, 6]

[9, 14]

[10, 11]

[12, 13]

tree edge

back edge

cross edge

Next we do (1.2). In case there is more than one choice, we pick the alphabetically
largest one. Thus, algorithm DFS(G) starts by calling Explore(G). Here is the resulting
DFS -forest:

2

A

B

C

D

E

F

G[1, 12] [13, 14]

[2, 11]

[3, 10]

[4, 9]

[5, 8]

[6, 7]

tree edge

back edge

cross edge

forward edge

Question 2: Let G = (V,E) be a directed graph, in which each edge (u, v) has a positive
weight wt(u, v), and let s be a source vertex in V . Let n = |V | and m = |E|.

Recall that Dijkstra’s algorithm computes for each vertex v, the length δ(s, v) of a shortest
path from s to v, in total time O((n+m) log n). The pseudocode for this algorithm is given
on the last page.

Assume that each edge weight wt(u, v) is an integer in the set {1, 2, . . . , 17}. Prove that
Dijkstra’s algorithm can be implemented such that the running time is O(m+ n).

Hint: A priority queue is a data structure that stores any finite sequence of numbers
and supports the operations Insert, Extract Min and Decrease Key. An example of
a priority queue is a min-heap.

A priority queue is called monotone if, during any sequence of operations, the smallest
element never decreases. Thus, if at some moment, the smallest element is 45, then later on,
the smallest value is always at least 45.

Assume that at any moment, any number stored in a monotone priority queue is an
integer belonging to the set {0, 1, 2, . . . , k}. Start by showing that any sequence consisting
of n Insert-operations, n Extract Min-operations and m Decrease Key-operations
(these operations may appear in any order) can be processed in total time O(m+ n+ k).

Solution: As the hint suggests, we start by describing a data structure that implements a
monotone priority queue.

• We have a set Q of items, where each item v has a key key(v), which is an integer
belonging to the set {0, 1, 2, . . . , k}.

– We store the set Q in an array A[0, . . . , k]. Each entry A[i] is a doubly-linked list
storing all items v in Q for which key(v) = i.

3

– We have a variable current min, whose value is the smallest integer i for which
the list A[i] is non-empty.

Note: Since the priority queue is monotone, this variable never decreases.

• Insert(v): Add item v at the end of the list A[key(v)].

– This takes O(1) time.

• Decrease Key(v, x): This operation gets a pointer to the node in the list A[key(v)]
that stores the item v. The real number x satisfies x < key(v). Note that since the
priority queue is monotone, we have x ≥ key(w), where w is an arbitrary item in the
list A[current min].

To process this operation Decrease Key(v, x), we do the following:

– Delete v from the list A[key(v)].

– Set key(v) = x.

– Add item v at the end of the list A[key(v)].

– Note: We do not have to update the variable current min.

– The entire operation takes O(1) time.

• Extract Min: We do the following:

– Let v be an arbitrary item in the list A[current min].

– Delete v from the list A[current min].

– If the list A[current min] is empty: keep on increasing current min until the list
A[current min] is non-empty.

– Return v.

– The entire operation takes time proportional to 1 plus the number of times the
variable current min is increased.

Consider an arbitrary sequence consisting of n Insert-operations, nExtract Min-operations
and m Decrease Key-operations (these operations may appear in any order).

• It takes O(k) time to initialize the array A[0, . . . , k].

• The total time for the n Insert-operations is O(n).

• The total time for the m Decrease Key-operations is O(m)

• What is the total time for the n Extract Min-operations:

– It is O(n) plus the total number of times the variable current min is increased.

– The variable current min can be increased only k times.

4

– Thus, the total time for the n Extract Min-operations is O(n+ k).

• We conclude that the total time to process the sequence of n Insert-operations, n
Extract Min-operations and m Decrease Key-operations is O(m+ n+ k).

Now we are going to use this result to implement Dijkstra’s algorithm for the case when
all edge weights are integers in the set {1, 2, . . . , 17}. Here is the algorithm that we have
seen in class:

Algorithm Dijkstra(G, s):
for each v ∈ V
do d(v) = ∞
endfor;
d(s) = 0;
S = ∅;
Q = V ;
while Q ̸= ∅
do u = vertex in Q for which d(u) is minimum;

delete u from Q;
insert u into S;
for each edge (u, v)
do if d(u) + wt(u, v) < d(v)

then d(v) = d(u) + wt(u, v)
endif

endfor
endwhile

• To implement Dijkstra’s algorithm, it is enough to have a monotone priority queue;
see property 4 on page 104 of my handwritten notes.

• Any path between two vertices has at most n − 1 edges and, thus, length at most
17(n− 1).

• Thus, any value d(v) is either ∞ or an element of the set {0, 1, . . . , 17(n− 1)}.

• We store the set Q in our monotone priority queue, where k = 17n plays the role of
∞.

• The running time of Dijkstra’s algorithm is equal to the total time to process a se-
quence of n Insert-operations, n Extract Min-operations and m Decrease Key-
operations. We have seen above that this is O(m+ n+ k), which is O(m+ n).

Question 3: Lionel Messi1 is having a difficult time. Not only has his team been kicked
out of the Champions League, he is even booed by his own fans. Lionel decides to hang up
his boots and become a software developer2.

1When I made this question, Messi was still playing in Paris.
2“We offer you a salary of half a million”. “That’s reasonable. I assume this is per week?”

5

On the first day of his new job, Lionel is asked to implement a sorting algorithm, i.e., an
algorithm that takes as input an arbitrary sequence of numbers and returns these numbers
in sorted order.

Since Lionel has no clue about algorithms, he looks at the cheater website chegg.com.
Unfortunately, this website does not have implementations of sorting algorithms. However,
Lionel does find a highly optimized implementation of Dijkstra’s algorithm. For any directed
input graph G = (V,E), in which each directed edge (u, v) has a weight wt(u, v) > 0, and
for any given source vertex s, this algorithm computes for each vertex v, the length δ(s, v)
of a shortest path from s to v, in total time O((|V |+ |E|) log |V |).

Prove that Lionel can use this implementation of Dijkstra’s algorithm to sort any sequence
of n numbers in O(n log n) time.

Hint: Given a sequence x1, x2, . . . , xn of numbers, define a (very simple!) directed graph
G with positive edge weights. Run Dijkstra’s algorithm on this graph.

Solution: When given as input a sequence x1, x2, . . . , xn of numbers, Professor Messi’s
algorithm does the following:

1. By scanning the sequence, find the smallest number in the sequence and denote it by
M . This takes O(n) time.

2. Construct a directed “star” graph G = (V,E):

(a) V = {s, v1, v2, . . . , vn}
(b) E = {(s, v1), (s, v2), . . . , (s, vn)}
(c) For each i = 1, 2, . . . , n, the edge (s, vi) gets weight xi −M + 1.

Note: All edge weights are positive, even if M < 0.

(d) Constructing this graph takes O(n) time.

3. Run Dijkstra’s algorithm on this graph G.

This takes time O((|V |+ |E|) log |V |). Since |V | = n+1 and |E| = n, this is O(n log n).

4. It is clear that for each i = 1, 2, . . . , n, δ(s, vi) is equal to xi −M + 1, because there is
ony one path from s to vi. It follows from property 4 on page 104 of my handwritten
notes that Dijkstra computes all values δ(s, vi) in sorted order.

By scanning this sorted order, we obtain the sorted order of the input numbers x1, x2, . . . , xn

in O(n)time.

5. The total running time is O(n) +O(n) +O(n log n) +O(n), which is O(n log n).

Question 4: Let G = (V,E) be a connected undirected graph, in which each edge has a
weight. An edge {u, v} is called annoying if the graph G′ = (V,E\{{u, v}}) is not connected.

Assume there is a unique edge in E with largest weight; denote this edge by e.

6

Prove that e is an edge in every minimum spanning tree of G if and only the edge e is
annoying.

Solution: Let u and v be the two vertices of e.
We first assume that e is an edge in every minimum spanning tree of G. We have to

prove that e is an annoying edge.
Let T be an arbitrary minimum spanning tree of G. By removing the edge e from T ,

we obtain two trees T1 and T2, where u is a vertex of T1 and v is a vertex of T2. Let A be
the vertex set of T1 and let B be the vertex set of T2. Let e′ = {u′, v′} be an edge in G
of minimum weight with u′ ∈ A and v′ ∈ B. Let T ′ be the spanning tree obtained from
T by replacing e by e′. We have seen in class that the weight of T ′ is equal to the weight
of T . This implies that e and e′ have the same weight. Since the largest edge weight in G
is unique, it follows that e = e′. Thus, there is only edge in G between the sets A and B.
Therefore, the edge e is annoying.

To prove the converse, assume that the edge e is annoying. If we remove e from G, we
obtain two connected subgraphs, say G1 containing u, and G2 containing v. Let A be the
vertex set of G1 and let B be the vertex set of G2. Observe that e is the only edge between
A and B. As a result, every spanning tree of G contains the edge e. In particular, this is
trie for every minimum spanning tree.

Question 5: In class, we have seen a data structure for the Union-Find problem that
stores each set in a linked list, with the header of the list storing the name and size of the
set, and each node storing a back pointer to the header. If we start with n sets, each having
size one, then we have seen in class that, using this data structure, any sequence of n − 1
Union-operations can be processed in O(n log n) time.

Give an example of a sequence of n− 1 Union-operations, for which the algorithm takes
Ω(n log n) time.

Solution: We have seen in class that the operation Union(A,B) takes time

Θ (min(|A|, |B|)) .

We assume for simplicity that n is a power of two, say n = 2k. We start with n sets, each
of size 1.

• We do n/2 Union-operations, each one on two sets of size 1. Afterwards, we have n/2
sets, each of size 2. The total time for these n/2 Union-operations is Θ(n).

• We do n/22 Union-operations, each one on two sets of size 2. Afterwards, we have
n/22 sets, each of size 22. The total time for these n/22 Union-operations is Θ(n).

• We do n/23 Union-operations, each one on two sets of size 22. Afterwards, we have
n/23 sets, each of size 23. The total time for these n/23 Union-operations is Θ(n).

• We do n/24 Union-operations, each one on two sets of size 23. Afterwards, we have
n/24 sets, each of size 24. The total time for these n/24 Union-operations is Θ(n).

7

• Etc. etc.

• We do n/2k−1 = 2 Union-operations, each one on two sets of size 2k−2 = n/4. Af-
terwards, we have n/2k−1 = 2 sets, each of size 2k−1 = n/2. The total time for these
n/2k−1 Union-operations is Θ(n).

• We do n/2k = 1 Union-operation, on two sets of size 2k−1 = n/2. Afterwards, we
have n/2k = 1 set of size n. The time for this Union-operation is Θ(n).

• Overall, during all these k stages, the amount of time is

Θ(kn) = Θ(n log n),

which is
Ω(n log n).

Question 6: You are given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn over some finite
alphabet. We consider the problem of converting X to Y , using the following operations:

1. Substitution: replace one symbol by another one.

2. Insertion: insert one symbol.

3. Deletion: delete one symbol.

For example, if X = “logarithm” and Y = “algorithm”, we can convert X to Y in the
following way:

1. Start with “logarithm”.

2. Inserting “a” at the front gives “alogarithm”.

3. Deleting “o” gives “algarithm”.

4. Replacing the second “a” by “o” gives “algorithm”.

The edit distance between the strings X and Y is defined to be the minimum number
of operations needed to convert X to Y . For example, the edit distance between X =
“logarithm” and Y = “algorithm” is three, because X can be converted to Y using three
operations, but not using two operations. If the string X has length m and the string Y is
empty, then the edit distance between X and Y is equal to m.

Give a dynamic programming algorithm (in pseudocode) that computes, in O(mn) time,
the edit distance between the strings X and Y . Argue why your algorithm is correct.

Solution: We want to apply dynamic programming, so we have to go through the three
steps, as we did in class.

Step 1: Structure of the optimal solution.
Consider the optimal way to convert X = x1x2 . . . xm to Y = y1y2 . . . yn. There are three

possibilities:

8

1. yn has been inserted. Then, the optimal conversion of X to Y consists of the optimal
conversion of x1x2 . . . xm to y1y2 . . . yn−1, followed by the insertion of yn.

2. xm has been deleted. Then, the optimal conversion of X to Y consists of the optimal
conversion of x1x2 . . . xm−1 to y1y2 . . . yn, followed by the deletion of xm.

3. Neither yn has been inserted, nor xm has been deleted. There are two possibilities:

(a) If xm = yn: In this case, the optimal conversion of X to Y is just the optimal
conversion of x1x2 . . . xm−1 to y1y2 . . . yn−1.

(b) If xm ̸= yn: In this case, the optimal conversion of X to Y consists of the optimal
conversion of x1x2 . . . xm−1 to y1y2 . . . yn−1, followed by replacing xm by yn.

Thus, the optimal solution contains optimal solutions to subproblems.

Step 2: Set up a recurrence relation for the optimal solution.
We define, for 0 ≤ i ≤ m and 0 ≤ j ≤ n:

S(i, j) = the edit distance between x1 . . . xi and y1 . . . yj.

Thus, we have to compute the value of S(m,n). We obtain the following recurrences:

S(i, 0) = i for 0 ≤ i ≤ m,

S(0, j) = j for 0 ≤ j ≤ n,

S(i, j) = min(S(i, j − 1) + 1, S(i− 1, j) + 1, S(i− 1, j − 1)) if i > 0, j > 0, and xi = yj,

S(i, j) = min(S(i, j − 1) + 1, S(i− 1, j) + 1, S(i− 1, j − 1) + 1) if i > 0, j > 0, and xi ̸= yj.

Step 3: Solve the recurrence, in a bottom-up order.

for i = 0 to m do S(i, 0) = i endfor;
for j = 1 to n do S(0, j) = j endfor;
for i = 1 to m
do for j = 1 to n

do if xi = yj
then S(i, j) = min(S(i, j − 1) + 1, S(i− 1, j) + 1, S(i− 1, j − 1))
else S(i, j) = min(S(i, j − 1) + 1, S(i− 1, j) + 1, S(i− 1, j − 1) + 1)
endif;

endfor;
endfor;
return S(m,n)

It is clear that the overall running time is O(mn).

9

