COMP 3804 - Solutions Tutorial February 16

```
Algorithm DFS(G):
for each vertex v
do visited (v) = false
endfor;
clock = 1;
for each vertex v
do if visited (v)= false
    then Explore(v)
    endif
endfor
```

```
Algorithm Explore \((v)\) :
\(\operatorname{visited}(v)=\) true;
\(\operatorname{pre}(v)=\) clock;
clock \(=\) clock +1 ;
for each edge ( \(v, u)\)
do if \(\operatorname{visited}(u)=\) false
    then Explore \((u)\)
    endif
endfor;
\(\operatorname{post}(v)=\) clock \(;\)
clock \(=\) clock +1
```

Problem 1: Consider the following directed graph:

(1.1) Draw the $D F S$-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically first.
(1.2) Draw the $D F S$-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically last.

Solution:

We start with (1.1). In case there is more than one choice, we pick the alphabetically smallest one. Thus, algorithm $\operatorname{DFS}(G)$ starts by calling Explore (A). Here is the resulting DFS-forest:

Next we do (1.2). In case there is more than one choice, we pick the alphabetically largest one. Thus, algorithm $\operatorname{DFS}(G)$ starts by calling Explore (G). Here is the resulting DFS-forest:

Problem 2: Let $G=(V, E)$ be a directed acyclic graph, and let s and t be two vertices of V.

Describe an algorithm that computes, in $O(|V|+|E|)$ time, the number of directed paths from s to t in G. As always, justify your answer and the running time of your algorithm.

Solution: We start by computing a topological sorting $v_{1}, v_{2}, \ldots, v_{n}$ of the vertex set. Recall that for each edge $\left(v_{i}, v_{j}\right)$ in $E, i<j$. In other words, if we draw the vertices, in the given order, on a line, then all edges go from left to right.

If s is to the right of t in the topological sorting, then there is no directed path from s to t. Thus, we assume that s is to the left of t.

We may assume that $s=v_{1}$ and $t=v_{n}$. (If, for example, $s=v_{7}$, then we can remove v_{1}, \ldots, v_{6}, and renumber the remaining vertices. Similarly, if, for example, $t=v_{n-12}$, then we can remove v_{n-11}, \ldots, v_{n}, and renumber the remaining vertices.)

We define $P(1)=0$ and, for each i with $2 \leq i \leq n, P(i)$ to be the number of directed paths from s to v_{i} in G. Our task is to compute $P(n)$.

For each i, let $\operatorname{In}(i)$ be the set of indices j such that $\left(v_{j}, v_{i}\right)$ is an edge in E. Note that $j<i$ for each such edge. The main observation is that

$$
P(1)=0
$$

and for each i with $2 \leq i \leq n$,

$$
P(i)=\sum_{j \in \operatorname{IN}(i)} P(j)
$$

This suggests that we can compute $P(n)$ (this is the number we have to compute), by computing, in this order, $P(0), P(1), P(2), \ldots, P(n)$.

The algorithm does the following:

- Compute a topological sorting $v_{1}, v_{2}, \ldots, v_{n}$ of the vertex set V. We have seen in class that this can be done in $O(|V|+|E|)$ time.
- Use Problem 3 from the February 9 tutorial to compute the list of incoming edges $\operatorname{In}(i)$ for each vertex v_{i}. This takes $O(|V|+|E|)$ time.
- Initialize $P(1)=0$. This takes $O(1)$ time.
- For $i=2,3, \ldots, n$, do the following:
- Initialize $P(i)=0$;
- For each index j in $\operatorname{In}(i)$, set

$$
P(i)=P(i)+P(j) .
$$

- This takes time

$$
O\left(1+\sum_{i=2}^{n}(1+|\operatorname{IN}(i)|)\right)
$$

which is $O(|V|+|E|)$.

- Return $P(n)$. This takes $O(1)$ time.

The total running time of the algorithm is $O(|V|+|E|)$.
Problem 3: A Hamilton path in an undirected graph is a path that contains every vertex exactly once. In the figure below, you see a Hamilton path in red. A Hamilton cycle is a cycle that contains every vertex exactly once. In the figure below, if you add the black edge $\{s, t\}$ to the red Hamilton path, then you obtain a Hamilton cycle.

If $G=(V, E)$ is an undirected graph, then the graph G^{3} is defined as follows:

1. The vertex set of G^{3} is equal to V.
2. For any two distinct vertices u and v in $V,\{u, v\}$ is an edge in G^{3} if and only if there is a path in G between u and v consisting of at most three edges.

Question 3.1: Describe a recursive algorithm HamiltonPath that has the following specification:

```
Algorithm HamiltonPath \((T, u, v)\) :
Input: A tree \(T\) with at least two vertices; two distinct vertices \(u\) and \(v\) in \(T\) such
that \(\{u, v\}\) is an edge in \(T\).
Output: A Hamilton path in \(T^{3}\) that starts at vertex \(u\) and ends at vertex \(v\).
```

Hint: You do not have to analyze the running time. The base case is easy. Now assume that T has at least three vertices. If you remove the edge $\{u, v\}$ from T, then you obtain two trees T_{u} (containing u) and T_{v} (containing v).

1. One of these two trees, say, T_{u}, may consist of the single vertex u. How does your recursive algorithm proceed?
2. If each of T_{u} and T_{v} has at least two vertices, how does your recursive algorithm proceed?

Solution: Algorithm $\operatorname{HamiltonPath}(T, u, v)$ does the following:

1. If T consists of two vertices: Return the path consisting of the single edge $\{u, v\}$.
2. If T has at least three vertices: Let T_{u} and T_{v} be the two trees obtained by removing the edge $\{u, v\}$ from T.
(a) If each of T_{u} and T_{v} has at least two vertices (see the left figure below): Let u^{\prime} be a neighbor of u in T_{u}, and let v^{\prime} be a neighbor of v in T_{v}. Run algorithm HamiltonPath $\left(T_{u}, u, u^{\prime}\right)$ and let P be the path returned; note that P is a Hamilton path in T_{u}^{3} that starts at u and ends at u^{\prime}. Run algorithm $\operatorname{HamiltonPath}\left(T_{v}, v^{\prime}, v\right)$ and let Q be the path returned; note that Q is a Hamilton path in T_{v}^{3} that starts at v^{\prime} and ends at v. Note that, since u^{\prime} and v^{\prime} have distance three in T, the edge $\left\{u^{\prime}, v^{\prime}\right\}$ is in T^{3}. Thus, we return the path that starts by following P, then takes the edge $\left\{u^{\prime}, v^{\prime}\right\}$, and then follows Q. This is a Hamilton path in T^{3} that starts at u and ends at v.
(b) If T_{u} consists of the single vertex u and T_{v} has at least two vertices (see the right figure below): Let v^{\prime} be a neighbor of v in T_{v}. Run algorithm $\operatorname{HamiltonPath~}\left(T_{v}, v^{\prime}, v\right)$ and let Q be the path returned; note that Q is a Hamilton path in T_{v}^{3} that starts at v^{\prime} and ends at v. Note that, since u and v^{\prime} have distance two in T, the edge $\left\{u, v^{\prime}\right\}$ is in T^{3}. Thus, we return the path that starts with the edge $\left\{u, v^{\prime}\right\}$ and then follows Q. This is a Hamilton path in T^{3} that starts at u and ends at v.
(c) If T_{u} has at least two vertices and T_{v} consists of the single vertex v : Swap u and v and proceed as in the previous case.

Question 3.2: Prove the following lemma:
Lemma: For every tree T that has at least three vertices, the graph T^{3} contains a Hamilton cycle.
Solution: Take an arbitrary edge $\{u, v\}$ in T. Algorithm $\operatorname{HamiltonPath}(T, u, v)$ gives us a Hamilton path in T^{3} that starts at u and ends at v. This path does not contain the edge $\{u, v\}$: This is because T has at least three vertices. If we connect the end-vertices u and v of this path using the edge $\{u, v\}$, then we obtain a Hamilton cycle in T^{3}.
Question 3.3: Prove the following theorem:
Theorem: For every connected undirected graph G that has at least three vertices, the graph G^{3} contains a Hamilton cycle.
Solution: We run algorithm $\operatorname{DFS}(G)$. Since G is connected, this gives us a spanning tree, say T, of G. We have seen above that T^{3} contains a Hamilton cycle. Since T^{3} is a subgraph of G^{3}, this is also a Hamilton cycle in G^{3}.

