
COMP 3804 — Solutions Tutorial February 16

Algorithm DFS(G):
for each vertex v
do visited(v) = false
endfor;
clock = 1;
for each vertex v
do if visited(v) = false

then Explore(v)
endif

endfor

Algorithm Explore(v):
visited(v) = true;
pre(v) = clock ;
clock = clock + 1;
for each edge (v, u)
do if visited(u) = false

then Explore(u)
endif

endfor;
post(v) = clock ;
clock = clock + 1

1



Problem 1: Consider the following directed graph:

AB

CD

E

F

G

(1.1) Draw the DFS -forest obtained by running algorithm DFS. Classify each edge as a
tree edge, forward edge, back edge, or cross edge. In the DFS -forest, give the pre- and
post-number of each vertex. Whenever there is a choice of vertices, pick the one that is
alphabetically first.

(1.2) Draw the DFS -forest obtained by running algorithm DFS. Classify each edge as a
tree edge, forward edge, back edge, or cross edge. In the DFS -forest, give the pre- and
post-number of each vertex. Whenever there is a choice of vertices, pick the one that is
alphabetically last.

Solution:
We start with (1.1). In case there is more than one choice, we pick the alphabetically

smallest one. Thus, algorithm DFS(G) starts by calling Explore(A). Here is the resulting
DFS -forest:

A

B

C D

E

F

G

[1, 8]

[2, 7]

[3, 4] [5, 6]

[9, 14]

[10, 11]

[12, 13]

tree edge

back edge

cross edge

Next we do (1.2). In case there is more than one choice, we pick the alphabetically
largest one. Thus, algorithm DFS(G) starts by calling Explore(G). Here is the resulting
DFS -forest:

2



A

B

C

D

E

F

G[1, 12] [13, 14]

[2, 11]

[3, 10]

[4, 9]

[5, 8]

[6, 7]

tree edge

back edge

cross edge

forward edge

Problem 2: Let G = (V,E) be a directed acyclic graph, and let s and t be two vertices
of V .

Describe an algorithm that computes, in O(|V |+ |E|) time, the number of directed paths
from s to t in G. As always, justify your answer and the running time of your algorithm.

Solution: We start by computing a topological sorting v1, v2, . . . , vn of the vertex set. Recall
that for each edge (vi, vj) in E, i < j. In other words, if we draw the vertices, in the given
order, on a line, then all edges go from left to right.

If s is to the right of t in the topological sorting, then there is no directed path from s
to t. Thus, we assume that s is to the left of t.

We may assume that s = v1 and t = vn. (If, for example, s = v7, then we can remove
v1, . . . , v6, and renumber the remaining vertices. Similarly, if, for example, t = vn−12, then
we can remove vn−11, . . . , vn, and renumber the remaining vertices.)

We define P (1) = 0 and, for each i with 2 ≤ i ≤ n, P (i) to be the number of directed
paths from s to vi in G. Our task is to compute P (n).

For each i, let In(i) be the set of indices j such that (vj, vi) is an edge in E. Note that
j < i for each such edge. The main observation is that

P (1) = 0

and for each i with 2 ≤ i ≤ n,

P (i) =
∑

j∈In(i)

P (j).

This suggests that we can compute P (n) (this is the number we have to compute), by
computing, in this order, P (0), P (1), P (2), . . . , P (n).

The algorithm does the following:

3



• Compute a topological sorting v1, v2, . . . , vn of the vertex set V . We have seen in class
that this can be done in O(|V |+ |E|) time.

• Use Problem 3 from the February 9 tutorial to compute the list of incoming edges In(i)
for each vertex vi. This takes O(|V |+ |E|) time.

• Initialize P (1) = 0. This takes O(1) time.

• For i = 2, 3, . . . , n, do the following:

– Initialize P (i) = 0;

– For each index j in In(i), set

P (i) = P (i) + P (j).

– This takes time

O

(
1 +

n∑
i=2

(1 + |In(i)|)

)
,

which is O(|V |+ |E|).

• Return P (n). This takes O(1) time.

The total running time of the algorithm is O(|V |+ |E|).
Problem 3: A Hamilton path in an undirected graph is a path that contains every vertex
exactly once. In the figure below, you see a Hamilton path in red. A Hamilton cycle is a
cycle that contains every vertex exactly once. In the figure below, if you add the black edge
{s, t} to the red Hamilton path, then you obtain a Hamilton cycle.

s

t

If G = (V,E) is an undirected graph, then the graph G3 is defined as follows:

1. The vertex set of G3 is equal to V .

2. For any two distinct vertices u and v in V , {u, v} is an edge in G3 if and only if there
is a path in G between u and v consisting of at most three edges.

4



Question 3.1: Describe a recursive algorithm HamiltonPath that has the following spec-
ification:

Algorithm HamiltonPath(T, u, v):
Input: A tree T with at least two vertices; two distinct vertices u and v in T such
that {u, v} is an edge in T .
Output: A Hamilton path in T 3 that starts at vertex u and ends at vertex v.

Hint: You do not have to analyze the running time. The base case is easy. Now assume
that T has at least three vertices. If you remove the edge {u, v} from T , then you obtain
two trees Tu (containing u) and Tv (containing v).

1. One of these two trees, say, Tu, may consist of the single vertex u. How does your
recursive algorithm proceed?

2. If each of Tu and Tv has at least two vertices, how does your recursive algorithm
proceed?

Solution: Algorithm HamiltonPath(T, u, v) does the following:

1. If T consists of two vertices: Return the path consisting of the single edge {u, v}.

2. If T has at least three vertices: Let Tu and Tv be the two trees obtained by removing
the edge {u, v} from T .

(a) If each of Tu and Tv has at least two vertices (see the left figure below): Let
u′ be a neighbor of u in Tu, and let v′ be a neighbor of v in Tv. Run al-
gorithm HamiltonPath(Tu, u, u

′) and let P be the path returned; note that
P is a Hamilton path in T 3

u that starts at u and ends at u′. Run algorithm
HamiltonPath(Tv, v

′, v) and let Q be the path returned; note that Q is a Hamil-
ton path in T 3

v that starts at v′ and ends at v. Note that, since u′ and v′ have
distance three in T , the edge {u′, v′} is in T 3. Thus, we return the path that
starts by following P , then takes the edge {u′, v′}, and then follows Q. This is a
Hamilton path in T 3 that starts at u and ends at v.

(b) If Tu consists of the single vertex u and Tv has at least two vertices (see the right
figure below): Let v′ be a neighbor of v in Tv. Run algorithm HamiltonPath(Tv, v

′, v)
and let Q be the path returned; note that Q is a Hamilton path in T 3

v that starts
at v′ and ends at v. Note that, since u and v′ have distance two in T , the edge
{u, v′} is in T 3. Thus, we return the path that starts with the edge {u, v′} and
then follows Q. This is a Hamilton path in T 3 that starts at u and ends at v.

(c) If Tu has at least two vertices and Tv consists of the single vertex v: Swap u and
v and proceed as in the previous case.

5



u
v

u′

v′

u
v

v′

Question 3.2: Prove the following lemma:

Lemma: For every tree T that has at least three vertices, the graph T 3 contains a Hamilton
cycle.
Solution: Take an arbitrary edge {u, v} in T . Algorithm HamiltonPath(T, u, v) gives us
a Hamilton path in T 3 that starts at u and ends at v. This path does not contain the edge
{u, v}: This is because T has at least three vertices. If we connect the end-vertices u and v
of this path using the edge {u, v}, then we obtain a Hamilton cycle in T 3.

Question 3.3: Prove the following theorem:

Theorem: For every connected undirected graph G that has at least three vertices, the
graph G3 contains a Hamilton cycle.
Solution: We run algorithm DFS (G). Since G is connected, this gives us a spanning tree,
say T , of G. We have seen above that T 3 contains a Hamilton cycle. Since T 3 is a subgraph
of G3, this is also a Hamilton cycle in G3.

6


