
COMP 3804 — Solutions Tutorial February 9

Problem 1: You are given three beer barrels B1, B2, and B3. Barrel B1 has a capacity of
8 litres, barrel B2 has a capacity of 5 litres, and barrel B3 has a capacity of 3 litres.

At any moment, each barrel contains a given amount of beer (in litres). In one step, you
can pour beer from one barrel, say Bi, to another barrel, say Bj. This step terminates at
the moment when Bi becomes empty or Bj becomes full, whichever happens first.

To give some examples:

• If B1 contains 6 litres of beer, B2 contains 2 litres of beer, and B3 contains 0 litres of
beer, then we can pour the entire contents of barrel B2 to barrel B3. At the end of
this step, B1 contains 6 litres of beer, B2 contains 0 litres of beer, and B3 contains 2
litres of beer.

• If B1 contains 3 litres of beer, B2 contains 4 litres of beer, and B3 contains 1 litre of
beer, then we can pour 2 litres of beer from B1 to B3. At the end of this step, B1

contains 1 litre of beer, B2 contains 4 litres of beer, and B3 contains 3 litres of beer.

Decision problem:

• Let b1, b2, and b3 be integers such that b1 ≥ 0, b2 ≥ 0, 0 ≤ b3 ≤ 3, and b1 + b2 + b3 = 4.
Similarly, let b′1, b′2, and b′3 be integers such that b′1 ≥ 0, b′2 ≥ 0, 0 ≤ b′3 ≤ 3, and
b′1 + b′2 + b′3 = 4.

• Initially, barrel B1 is filled with b1 litres of beer, barrel B2 is filled with b2 litres of beer,
and barrel B3 is filled with b3 litres of beer.

• We want to decide whether or not it is possible to perform a sequence of steps that
results in barrel B1 having b′1 liters of beer, barrel B2 having b′2 litres of beer, and barrel
B3 having b′3 litres of beer?

(1.1) Formulate this as a problem on a directed graph. What are the vertices of the graph?
What are the directed edges of the graph?

Solution: At any moment, the total amount of beer is equal to 4 litres. The current “state”
is completely determined by the amount of beer in each barrel.

For any three integers b1, b2, and b3 with b1 ≥ 0, b2 ≥ 0, 0 ≤ b3 ≤ 3, and b1 + b2 + b3 = 4,
there will be one vertex, which we denote by (b1, b2, b3).

How many vertices are there? I am sure you remember from COMP 2804 that the number
of integer solutions to the equation b1 + b2 + b3 = 4 with b1 ≥ 0, b2 ≥ 0, and b3 ≥ 0, is equal
to (

4 + 3− 1

3− 1

)
=

(
6

2

)
= 15.

Among these 15 solutions, there is one that cannot occur, namely (0, 0, 4). Thus, our graph
will have 14 vertices.

1

There is a directed edge from a source vertex to a target vertex if we can go in one step
from the source vertex to the target vertex.

The decision problem becomes: given two vertices (b1, b2, b3) and (b′1, b
′
2, b

′
3), is there a

directed path from the first vertex to the second vertex.

(1.2) Draw the entire graph.

Solution: As was to be expected, this is a pain to do. The two figures below show the graph.
The first figure only shows the directed edges (u, v), such that the reverse, i.e., (v, u) is not
an edge. The second figure shows all “symmetric” edges, i.e., those edges (u, v) for which
(v, u) is also an edge. I made two figures, because everything in one figure is a complete
mess.

2

(1, 1, 2) (1, 2, 1)

(2, 1, 1) (0, 2, 2)

(0, 1, 3) (2, 0, 2)

(1, 0, 3) (2, 2, 0)

(1, 3, 0)

(0, 3, 1)

(3, 0, 1)

(3, 1, 0)

(4, 0, 0)

(0, 4, 0)

(1, 1, 2) (1, 2, 1)

(2, 1, 1) (0, 2, 2)

(0, 1, 3) (2, 0, 2)

(1, 0, 3) (2, 2, 0)

(1, 3, 0)

(0, 3, 1)

(3, 0, 1)

(3, 1, 0)

(4, 0, 0)

(0, 4, 0)

3

(1.3) Assume that (b1, b2, b3) = (4, 0, 0) and (b′1, b
′
2, b

′
3) = (3, 1, 0). Use your graph to decide

whether the answer to the decision problem is YES or NO.

Solution: We have to decide if there is a directed path from vertex (4, 0, 0) to vertex (3, 1, 0).
The answer is YES. Here is one example of such a path:

(4, 0, 0)→ (0, 4, 0)→ (0, 1, 3)→ (3, 1, 0)

(1.4) Assume that (b1, b2, b3) = (4, 0, 0) and (b′1, b
′
2, b

′
3) = (2, 1, 1). Use your graph to decide

whether the answer to the decision problem is YES or NO.

Solution: We have to decide if there is a directed path from vertex (4, 0, 0) to vertex (2, 1, 1).
Since the vertex (2, 1, 1) does not have any incoming edges, the answer is NO.

Problem 2: Let G = (V,E) be an undirected graph. A vertex coloring of G is a function
f : V → {1, 2, . . . , k} such that for every edge {u, v} in E, f(u) 6= f(v). In words, each
vertex u gets a “color” f(u), from a set of k “colors”, such that the two vertices of each edge
have different colors.

Assume that the graph G has exactly one cycle with an odd number of vertices. (The
graph may contain cycles with an even number of vertices.)

What is the smallest integer k such that a vertex coloring with k colors exists? As always,
justify your answer.

Solution: Since the graph has an odd cycle, it cannot be colored using two colors. (This is
the same as saying that the graph is not bipartite.)

We will show that the graph can be colored using three colors. Let (v1, v2, . . . , vk, v1) be
the unique odd cycle in G.

We remove one edge of this cycle, say {v1, v2} from G, and denote the resulting graph by
G′. (We only remove this edge, we do not remove the vertices v1 and v2.)

We observe that the graph G′ does not contain any odd cycle. Therefore, as was men-
tioned in lecture 10, G′ is bipartite. Thus, we can split the vertex set V into two sets, say B
and R, such that every edge in G′ has one vertex in B and the other vertex in R.

We give every vertex of B the color blue, and every vertex of R the color red. This is a
valid vertex coloring of G′ using two colors. However, the vertices v1 and v2 have the same
color. Thus, if we add the edge {v1, v2} to G′, we do not get a vertex coloring of the original
graph G. We do get a vertex coloring of G, by giving v1 a new color, say green.

Problem 3: Let G = (V,E) be a directed graph, which is given to you in the adjacency list
format. Thus, each vertex u has a list that stores all vertices of the set

{v : (u, v) ∈ E}.

The backwards graph Gb is obtained from G by replacing each edge (u, v) in G by the edge
(v, u). In words, in Gb, we follow the edges of G backwards.

4

Describe an algorithm that computes, in O(|V | + |E|) time, an adjacency list repre-
sentation of Gb. As always, justify your answer and the running time of your algorithm.

Solution: For each vertex u, we write its adjacency list in G as A(u), and we write its
adjacency list in Gb as Ab(u). The main observation is that for any two vertices u and v,

v is in A(u) if and only if u is in Ab(v).

The algorithm does the following:

• For each vertex u, initialize an empty list Ab(u).

• For each vertex u, do the following:

– For each vertex v in A(u), add the vertex u to the list Ab(v).

For the running time, initializing the lists Ab takes O(|V |) total time. The total time for
the nested for-loops is proportional to∑

u∈V

(1 + |A(u)|) = |V |+ |E|.

Thus, the total time for the entire algorithm is O(|V |+ |E|).

5

