COMP 3804 — Solutions Tutorial January 19

Question 1: The Hadamard matrices H_0, H_1, H_2, \ldots are recursively defined as follows:

 $H_0 = (1)$

and for $k \geq 1$,

$$H_k = \left(\begin{array}{c|c} H_{k-1} & H_{k-1} \\ \hline H_{k-1} & -H_{k-1} \end{array} \right).$$

Thus, H_0 is a 1×1 matrix whose only entry is 1,

$$H_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right),$$

and

(1.1) Let $k \ge 0$ be an integer and let $n = 2^k$. How many entries does the matrix H_k have? Express your answer in terms of n.

Solution: We first determine the number of rows in the matrix H_k . Observe that H_0 has $1 = 2^0$ row. For $k \ge 1$, the number of rows in H_k is twice the number of rows in H_{k-1} . By a straightforward induction, it follows that the number of rows in H_k is equal to 2^k .

By the same argument, the number of columns in the matrix H_k is equal to 2^k . Thus, the number of entries in H_k is equal to

$$2^k \cdot 2^k = n \cdot n = n^2.$$

(1.2) Describe a recursive algorithm BUILD that has the following specification:

Algorithm $BUILD(k)$:
Input: An integer $k \ge 0$.
Output: The matrix H_k .

For any positive integer n that is a power of 2, say $n = 2^k$, let T(n) be the running time of your algorithm BUILD(k). Derive a recurrence for T(n). Use the Master Theorem to give the solution to your recurrence.

Solution: We obtain the algorithm directly from the recurrence that is used to define the matrix H_k :

Algorithm BUILD(k):
if
$$k = 0$$

then return the matrix (1)
else $X = BUILD(k - 1);$
 $Y = -X;$
return the matrix $\left(\frac{X \mid X}{X \mid Y}\right)$
endif

Let $n \ge 2$; thus, $k \ge 1$. Algorithm BUILD(k) generates one recursive call BUILD(k-1), which takes T(n/2) time. The number of entries in X is equal to $(n/2)^2 = O(n^2)$. Thus, the matrix Y can be constructed in $O(n^2)$ time. Finally, in $O(n^2)$ time, three copies of X and one copy of Y can be combined to obtain the output of BUILD(k). This shows that

$$T(n) = T(n/2) + O(n^2).$$

We are going to apply the Master Theorem: We have a = 1, b = 2, and d = 2. Since $d > \log_b a$, the Master Theorem tells us that $T(n) = O(n^2)$.

(1.3) If x is a column vector of length 2^k , then $H_k x$ is the column vector of length 2^k obtained by multiplying the matrix H_k with the vector x.

Describe a recursive algorithm MULT that has the following specification:

Algorithm MULT(k, x): Input: An integer $k \ge 0$ and a column vector x of length $n = 2^k$. Output: The column vector $H_k x$ (having length n). Running time: must be $O(n \log n)$.

Explain why the running time of your algorithm is $O(n \log n)$. You are allowed to use the Master Theorem.

Hint: The input only consists of k and x. The matrix H_k is not given as part of the input.

Solution: An obvious algorithm first constructs the matrix H_k , by running algorithm BUILD(k). Then it computes the product $H_k x$ using the definition of multiplication. Each of these steps takes $O(n^2)$ time. Since we are only allowed to spend $O(n \log n)$ time, we must compute $H_k x$ without constructing the entire matrix H_k . Of course, we can do this, because of the recursive definition of H_k .

We will write the column vector x as

$$x = \left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right).$$

Algorithm MULT(k, x) is a recursive algorithm and does the following:

- If k = 0, return the vector (x_1) .
- Assume that $k \ge 1$.
 - Split the vector x into two vectors x' and x'', both of length $n/2 = 2^{k-1}$:

$$x' = \left(\begin{array}{c} x_1\\ \vdots\\ x_{n/2} \end{array}\right)$$

and

$$x'' = \left(\begin{array}{c} x_{1+n/2} \\ \vdots \\ x_n \end{array}\right).$$

- Run MULT(k-1, x') and let the output be y'.
- Run MULT(k-1, x'') and let the output be y''.
- Compute the vector

$$y = \left(\begin{array}{c} y' + y'' \\ y' - y'' \end{array}\right).$$

- Return the vector y.

Let T(n) denote the running time of algorithm MULT(k, x), where $n = 2^k$. If $k \ge 1$, there are two recursive calls, both of which take time T(n/2), whereas the rest of the algorithm takes O(n) time. Thus, we obtain the "merge-sort recurrence"

$$T(n) = \begin{cases} \text{some constant} & \text{if } n = 1, \\ 2 \cdot T(n/2) + O(n) & \text{if } n \ge 2. \end{cases}$$

We have seen in class that this recurrence solves to $T(n) = O(n \log n)$.

Alternatively, we can use the Master Theorem to solve this recurrence: We have a = 2, b = 2, and d = 1. Since $d = \log_b a$, the Master Theorem tells us that $T(n) = O(n \log n)$.