COMP 3804 - Solutions Tutorial January 19

Question 1: The Hadamard matrices $H_{0}, H_{1}, H_{2}, \ldots$ are recursively defined as follows:

$$
H_{0}=(1)
$$

and for $k \geq 1$,

$$
H_{k}=\left(\begin{array}{c|c}
H_{k-1} & H_{k-1} \\
\hline H_{k-1} & -H_{k-1}
\end{array}\right) .
$$

Thus, H_{0} is a 1×1 matrix whose only entry is 1 ,

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
H_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

(1.1) Let $k \geq 0$ be an integer and let $n=2^{k}$. How many entries does the matrix H_{k} have? Express your answer in terms of n.

Solution: We first determine the number of rows in the matrix H_{k}. Observe that H_{0} has $1=2^{0}$ row. For $k \geq 1$, the number of rows in H_{k} is twice the number of rows in H_{k-1}. By a straightforward induction, it follows that the number of rows in H_{k} is equal to 2^{k}.

By the same argument, the number of columns in the matrix H_{k} is equal to 2^{k}. Thus, the number of entries in H_{k} is equal to

$$
2^{k} \cdot 2^{k}=n \cdot n=n^{2} .
$$

(1.2) Describe a recursive algorithm Build that has the following specification:

Algorithm Build (k) :

Input: An integer $k \geq 0$.
Output: The matrix H_{k}.
For any positive integer n that is a power of 2 , say $n=2^{k}$, let $T(n)$ be the running time of your algorithm $\operatorname{BUILD}(k)$. Derive a recurrence for $T(n)$. Use the Master Theorem to give the solution to your recurrence.

Solution: We obtain the algorithm directly from the recurrence that is used to define the matrix H_{k} :

```
Algorithm Build \((k)\) :
if \(k=0\)
then return the matrix (1)
else \(X=\operatorname{BuILD}(k-1)\);
    \(Y=-X ;\)
    return the matrix \(\left(\begin{array}{c|c}X & X \\ \hline X & Y\end{array}\right)\)
endif
```

Let $n \geq 2$; thus, $k \geq 1$. Algorithm $\operatorname{Build}(k)$ generates one recursive call $\operatorname{Build}(k-1)$, which takes $T(n / 2)$ time. The number of entries in X is equal to $(n / 2)^{2}=O\left(n^{2}\right)$. Thus, the matrix Y can be constructed in $O\left(n^{2}\right)$ time. Finally, in $O\left(n^{2}\right)$ time, three copies of X and one copy of Y can be combined to obtain the output of $\operatorname{BUILD}(k)$. This shows that

$$
T(n)=T(n / 2)+O\left(n^{2}\right) .
$$

We are going to apply the Master Theorem: We have $a=1, b=2$, and $d=2$. Since $d>\log _{b} a$, the Master Theorem tells us that $T(n)=O\left(n^{2}\right)$.
(1.3) If x is a column vector of length 2^{k}, then $H_{k} x$ is the column vector of length 2^{k} obtained by multiplying the matrix H_{k} with the vector x.

Describe a recursive algorithm Mult that has the following specification:

$$
\text { Algorithm } \operatorname{Mult}(k, x) \text { : }
$$

Input: An integer $k \geq 0$ and a column vector x of length $n=2^{k}$.
Output: The column vector $H_{k} x$ (having length n).
Running time: must be $O(n \log n)$.
Explain why the running time of your algorithm is $O(n \log n)$. You are allowed to use the Master Theorem.
Hint: The input only consists of k and x. The matrix H_{k} is not given as part of the input.
Solution: An obvious algorithm first constructs the matrix H_{k}, by running algorithm $\operatorname{Build}(k)$. Then it computes the product $H_{k} x$ using the definition of multiplication. Each of these steps takes $O\left(n^{2}\right)$ time. Since we are only allowed to spend $O(n \log n)$ time, we must compute $H_{k} x$ without constructing the entire matrix H_{k}. Of course, we can do this, because of the recursive definition of H_{k}.

We will write the column vector x as

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

$\operatorname{Algorithm} \operatorname{Mult}(k, x)$ is a recursive algorithm and does the following:

- If $k=0$, return the vector $\left(x_{1}\right)$.
- Assume that $k \geq 1$.
- Split the vector x into two vectors x^{\prime} and $x^{\prime \prime}$, both of length $n / 2=2^{k-1}$:

$$
x^{\prime}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n / 2}
\end{array}\right)
$$

and

$$
x^{\prime \prime}=\left(\begin{array}{c}
x_{1+n / 2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

- Run $\operatorname{Mult}\left(k-1, x^{\prime}\right)$ and let the output be y^{\prime}.
- Run $\operatorname{Mult}\left(k-1, x^{\prime \prime}\right)$ and let the output be $y^{\prime \prime}$.
- Compute the vector

$$
y=\binom{y^{\prime}+y^{\prime \prime}}{y^{\prime}-y^{\prime \prime}}
$$

- Return the vector y.

Let $T(n)$ denote the running time of $\operatorname{algorithm~} \operatorname{Mult}(k, x)$, where $n=2^{k}$. If $k \geq 1$, there are two recursive calls, both of which take time $T(n / 2)$, whereas the rest of the algorithm takes $O(n)$ time. Thus, we obtain the "merge-sort recurrence"

$$
T(n)= \begin{cases}\text { some constant } & \text { if } n=1 \\ 2 \cdot T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

We have seen in class that this recurrence solves to $T(n)=O(n \log n)$.
Alternatively, we can use the Master Theorem to solve this recurrence: We have $a=2$, $b=2$, and $d=1$. Since $d=\log _{b} a$, the Master Theorem tells us that $T(n)=O(n \log n)$.

