Carleton University Midterm COMP 3804

March 1, 2024

- All questions must be answered on the scantron sheet.
- Write your name and student number on the scantron sheet.
- You do not have to hand in this examination paper.
- Calculators are allowed.

Marking scheme: Each of the 17 questions is worth 1 mark.

Some useful facts:

1. $1+2+3+\cdots+n=n(n+1) / 2$.
2. for any real number $x>0, x=2^{\log x}$.
3. For any real number $x \neq 1$ and any integer $k \geq 1$,

$$
1+x+x^{2}+\cdots+x^{k-1}=\frac{x^{k}-1}{x-1}
$$

4. For any real number $0<\alpha<1$,

$$
\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
$$

Master Theorem:

1. Let $a \geq 1, b>1, d \geq 0$, and

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ a \cdot T(n / b)+\Theta\left(n^{d}\right) & \text { if } n \geq 2\end{cases}
$$

2. If $d>\log _{b} a$, then $T(n)=\Theta\left(n^{d}\right)$.
3. If $d=\log _{b} a$, then $T(n)=\Theta\left(n^{d} \log n\right)$.
4. If $d<\log _{b} a$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
5. Recall that $\mathbb{N}=\{1,2,3, \ldots\}$ denotes the set of all positive integers. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ be two functions such that $f(n)=O(g(n))$. Is it true that, for any two such functions f and g,

$$
2^{f(n)}=O\left(2^{g(n)}\right) ?
$$

(a) This is true.
(b) This is not true.
2. Consider the recurrence

$$
T(n)=\sqrt{n}+T(n / 3)
$$

Which of the following is true?
(a) $T(n)=\Theta(\sqrt{n})$.
(b) $T(n)=\Theta(\sqrt{n} \log n)$.
(c) $T(n)=\Theta(n)$.
(d) $T(n)=\Theta(n \log n)$.
3. Consider the recurrence

$$
T(n)=n+T(n / 31)+T(29 n / 31)
$$

Which of the following is true?
(a) $T(n)=\Theta(n)$.
(b) $T(n)=\Theta(n \log n)$.
(c) $T(n)=\Theta\left(n^{2}\right)$.
(d) None of the above.
4. Consider the following recursive algorithm $\operatorname{Power}(a, b)$, which takes as input two integers $a \geq 1$ and $b \geq 1$, and returns a^{b} :

```
Algorithm \(\operatorname{Power}(a, b)\) :
if \(b=1\)
then return \(a\)
else \(c=a^{2}\);
    ANSWER \(=\operatorname{POWER}(c,\lfloor b / 2\rfloor)\);
    if \(b\) is even
    then return ANSWER
    else return \(a \cdot\) ANSWER
    endif
endif
```

Assume that each multiplication, division, and floor-operation in this algorithm takes $O(1)$ time. What is the running time of algorithm $\operatorname{Power}(a, b)$?
(a) $T(n)=\Theta(\log (a+b))$.
(b) $T(n)=\Theta(\log (a b))$.
(c) $T(n)=\Theta(\log a)$.
(d) $T(n)=\Theta(\log b)$.
5. You are given m sorted arrays $A_{1}, A_{2}, \ldots, A_{m}$, each of length n. Consider the following algorithm that merges these arrays into one single sorted array of length $m n$:

- $B=\operatorname{Merge}\left(A_{1}, A_{2}\right)$, where Merge is the algorithm from class that merges the two sorted arrays A_{1} and A_{2} into one sorted array B.
- For $i=3,4, \ldots, m, B=\operatorname{Merge}\left(B, A_{i}\right)$.

What is the running tims of this algorithm?
(a) $\Theta(m n)$.
(b) $\Theta(m n \log (m n))$.
(c) $\Theta\left(m^{2} n\right)$.
(d) $\Theta\left(m n^{2}\right)$.
6. You are given m sorted arrays $A_{1}, A_{2}, \ldots, A_{m}$, each of length n. Assume that m is a power of two. Consider the following algorithm MergeManyArrays that merges these arrays into one single sorted array of length $m n$:
Base case: If $m=1$, then there is nothing to do.
Non-base case: If $m \geq 2$:

- For each $i=1,2, \ldots, m / 2$, run the Merge algorithm from class on the two arrays $A_{2 i-1}$ and $A_{2 i}$, resulting in a sorted array B_{i} of length $2 n$.
- Recursively run the algorithm MergemanyArrays on the sorted arrays $B_{1}, B_{2}, \ldots, B_{m / 2}$.

Let $T(m, n)$ denote the running time of this algorithm. Which of the following is correct?
(a) $T(m, n)=\Theta(m n)+T(m / 2, n)$.
(b) $T(m, n)=\Theta(m n)+T(m / 2,2 n)$.
(c) $T(m, n)=\Theta(m+n)+T(m / 2, n)$.
(d) $T(m, n)=\Theta(m+n)+T(m / 2,2 n)$.
7. Professor Uriah Heep has designed a new data structure that stores any sequence of numbers, and supports the following two operations:

- $\operatorname{Insert}(x):$ Add the number x to the data structure. This operation takes $\Theta(\sqrt{n})$ time, where n is the current number of elements.
- ExtractMin: Delete, and return, the smallest element stored in the data structure. This operation takes $\Theta(\log n)$ time, where n is the current number of elements.

You use Professor Heep's data structure (and nothing else) to design a sorting algorithm. What is the running time of this sorting algorithm on an input of n numbers?
(a) $\Theta(n \log n)$.
(b) $\Theta\left(n^{3 / 2}\right)$.
(c) $\Theta\left(n^{2}\right)$.
(d) None of the above.
8. Let S be a set of n distinct numbers. Assume this set S is stored in a min-heap $A[1 \ldots n]$. How much time does it take to use this heap to find the largest number of S ?
(a) $\Theta(1)$.
(b) $\Theta(\log n)$.
(c) $\Theta(n)$.
(d) $\Theta(n \log n)$.
9. Let $G=(V, E)$ be a connected undirected graph, and let $n=|V|$. What are the minimum and maximum number of edges that this graph can have?
(a) 1 and n^{2}.
(b) n and $n(n-1) / 2$.
(c) $n-1$ and n^{2}.
(d) $n-1$ and $n(n-1) / 2$.
10. Let $G=(V, E)$ be a directed graph that is given using adjacency lists: Each vertex u has a list $\operatorname{Out}(u)$ storing all edges (u, v) going out of u.
What is the running time of the fastest algorithm that computes, for each vertex v, a list $\operatorname{IN}(v)$ of all edges (u, v) going into v ?
(a) $\Theta(|V|+|E|)$.
(b) $\Theta(|V| \log |V|+|E|)$.
(c) $\Theta(|V|+|E| \log |E|)$.
(d) $\Theta((|V|+|E|) \log |V|)$.
11. Let $G=(V, E)$ be an undirected graph with $n=|V|$ vertices, and assume that the vertex set is stored in an array $V[1 \ldots n]$. For each i, let $v_{i}=V[i]$.
Is it possible to give each edge $\left\{v_{i}, v_{j}\right\}$ a direction (i.e., replace it by exactly one of $\left(v_{i}, v_{j}\right)$ and $\left.\left(v_{j}, v_{i}\right)\right)$ such that the resulting directed graph is acyclic?
(a) This is not possible.
(b) This is possible.
12. Let $G=(V, E)$ be an undirected graph, and assume that this graph is stored using the adjacency matrix. What is the running time of the fastest depth-first search algorithm for this graph?
(a) $\Theta(|V|+|E|)$.
(b) $\Theta\left(|V|^{2}+|E|^{2}\right)$.
(c) $\Theta\left(|V|^{2}\right)$.
(d) $\Theta\left(|E|^{2}\right)$.
13. Let $G=(V, E)$ be a directed acyclic graph, and let s and t be two distinct vertices of V. What is the running time of the fastest algorithm that computes the number of directed paths in G from s to t ?
(a) $\Theta(|V| \cdot|E|)$.
(b) $\Theta((|V|+|E|) \log |V|)$.
(c) $\Theta(|V|+|E|)$.
(d) $\Theta(|E|)$.
14. Let $G=(V, E)$ be a directed graph. We run depth-first search on G, i.e, algorithm $\operatorname{DFS}(G)$. Recall that this classifies each edge of E as a tree edge, forward edge, back edge, or cross edge.
Let (u, v) be an edge of E that is not classified as a tree edge.
Is the following true or false?
It is possible to run algorithm $\operatorname{DFS}(G)$, where vertices and edges are processed in a different order, such that (u, v) is classified as a tree edge.
(a) True.
(b) False.
15. Let $G=(V, E)$ be a directed graph. We run depth-first search on G, i.e, algorithm $\operatorname{DFS}(G)$. Is the following true or false?
If the graph G has a directed cycle that contains a forward edge, then G also contains a directed cycle that does not contain a forward edge.
(a) True.
(b) False.
16. Let $G=(V, E)$ be a directed acyclic graph and, for each edge (u, v) in E, let WT (u, v) denote its positive weight. Let s be a source vertex, and for each vertex v, let $\delta_{\max }(s, v)$ be the weight of a longest path in G from s to v.
What is the running time of the fastest algorithm that computes $\delta_{\max }(s, v)$ for all vertices v ?
(a) Since there can be exponentially many paths from s to some vertex v, the running time must be at least exponential.
(b) $\Theta((|V|+|E|) \log |V|)$.
(c) $\Theta(|E|+|V| \log |V|)$.
(d) $\Theta(|V|+|E|)$.
17. After this midterm, you go to a Karaoke Bar and sing the following randomized and recursive song $\operatorname{AWESOmest}(n)$, which takes as input an integer $n \geq 1$:

```
Algorithm Awesomest( \(n\) ):
sing the following line \(n\) times:
COMP 3804 is the awesomest course I have ever taken;
if \(n \geq 2\)
then let \(k\) be a uniformly random element in \(\{1,2, \ldots, n\}\);
    Awesomest ( \(k\) )
endif
```

What is the expected number of times you sing COMP 3804 is the awesomest course I have ever taken?
(a) $\Theta(n)$.
(b) $\Theta(n \log n)$.
(c) $\Theta\left(n^{2}\right)$.
(d) None of the above.

