
Question 1: The Hadamard matrices H0, H1, H2, . . . are recursively defined as follows:

H0 = (1)

and for k ≥ 1,

Hk =

(
Hk−1 Hk−1
Hk−1 −Hk−1

)
.

Thus, H0 is a 1 × 1 matrix whose only entry is 1,

H1 =

(
1 1
1 −1

)
,

and

H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Observe that Hk has 2k rows and 2k columns.
If x is a column vector of length 2k, then Hkx is the column vector of length 2k obtained

by multiplying the matrix Hk with the vector x.
Describe a recursive algorithm Mult(k, x) that does the following:

Input: An integer k ≥ 0 and a column vector x of length n = 2k.

Output: The column vector Hkx (having length n).

The running time T (n) of your algorithm must be O(n log n). Derive a recurrence for
T (n). (You do not have to solve the recurrence, because we have done that in class.)
Hint: The input only consists of k and x. The matrix Hk, which has n2 entries, is not given
as part of the input. Since you are aiming for an O(n log n)–time algorithm, you cannot
compute all entries of the matrix Hk.

Solution: We will write the vector x as

x =


x1
...
xn

 .

Algorithm Mult(k, x) is a recursive algorithm and does the following:

• If k = 0, return the vector (x1).

• Assume that k ≥ 1.

1



– Split the vector x into two vectors x′ and x′′, both of length n/2 = 2k−1:

x′ =


x1
...

xn/2


and

x′′ =


x1+n/2

...
xn

 .

– Run Mult(k − 1, x′) and let the output be y′.

– Run Mult(k − 1, x′′) and let the output be y′′.

– Compute the vector

y =

(
y′ + y′′

y′ − y′′

)
.

– Return the vector y.

Let T (n) denote the running time of algorithm Mult(k, x), where n = 2k. If k ≥ 1, there
are two recursive calls, both of which take time T (n/2), whereas the rest of the algorithm
takes O(n) time. Thus, we obtain the “merge-sort recurrence”

T (n) =

{
constant if n = 1,
2 · T (n/2) + O(n) if n ≥ 2.

We have seen in class that this recurrence solves to T (n) = O(n log n).

2


