Question 1: The Hadamard matrices $H_{0}, H_{1}, H_{2}, \ldots$ are recursively defined as follows:

$$
H_{0}=(1)
$$

and for $k \geq 1$,

$$
H_{k}=\left(\begin{array}{c|c}
H_{k-1} & H_{k-1} \\
\hline H_{k-1} & -H_{k-1}
\end{array}\right) .
$$

Thus, H_{0} is a 1×1 matrix whose only entry is 1 ,

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
H_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Observe that H_{k} has 2^{k} rows and 2^{k} columns.
If x is a column vector of length 2^{k}, then $H_{k} x$ is the column vector of length 2^{k} obtained by multiplying the matrix H_{k} with the vector x.

Describe a recursive algorithm $\operatorname{Mult}(k, x)$ that does the following:
Input: An integer $k \geq 0$ and a column vector x of length $n=2^{k}$.
Output: The column vector $H_{k} x$ (having length n).
The running time $T(n)$ of your algorithm must be $O(n \log n)$. Derive a recurrence for $T(n)$. (You do not have to solve the recurrence, because we have done that in class.)
Hint: The input only consists of k and x. The matrix H_{k}, which has n^{2} entries, is not given as part of the input. Since you are aiming for an $O(n \log n)$-time algorithm, you cannot compute all entries of the matrix H_{k}.

Solution: We will write the vector x as

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Algorithm $\operatorname{Mult}(k, x)$ is a recursive algorithm and does the following:

- If $k=0$, return the vector $\left(x_{1}\right)$.
- Assume that $k \geq 1$.
- Split the vector x into two vectors x^{\prime} and $x^{\prime \prime}$, both of length $n / 2=2^{k-1}$:

$$
x^{\prime}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n / 2}
\end{array}\right)
$$

and

$$
x^{\prime \prime}=\left(\begin{array}{c}
x_{1+n / 2} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

- Run $\operatorname{Mult}\left(k-1, x^{\prime}\right)$ and let the output be y^{\prime}.
- Run $\operatorname{Mult}\left(k-1, x^{\prime \prime}\right)$ and let the output be $y^{\prime \prime}$.
- Compute the vector

$$
y=\binom{y^{\prime}+y^{\prime \prime}}{y^{\prime}-y^{\prime \prime}}
$$

- Return the vector y.

Let $T(n)$ denote the running time of $\operatorname{algorithm~} \operatorname{Mult}(k, x)$, where $n=2^{k}$. If $k \geq 1$, there are two recursive calls, both of which take time $T(n / 2)$, whereas the rest of the algorithm takes $O(n)$ time. Thus, we obtain the "merge-sort recurrence"

$$
T(n)= \begin{cases}\text { constant } & \text { if } n=1 \\ 2 \cdot T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

We have seen in class that this recurrence solves to $T(n)=O(n \log n)$.

