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Abstract

Consider a set P of n points on the boundary of an axis-aligned square Q. We
study the boundary-anchored packing problem on P in which the goal is to find
a set of interior-disjoint axis-aligned rectangles in Q such that each rectangle
is anchored at some point in P , each point in P is used to anchor at most one
rectangle, and the total area of the rectangles is maximized. In this paper, we
show how to solve this problem in time linear in n, provided that the points of P
are given in sorted order along the boundary of Q. We also consider the problem
for anchoring squares and give an O(n4)-time algorithm when the points in P
lie on two opposite sides of Q.
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1. Introduction1

Let Q be an axis-aligned square in the plane and P be a set of points in2

Q. Call a rectangle r anchored at a point p ∈ P if p is a corner of r. The3

anchored rectangle packing (ARP) problem is to find a set S of interior-disjoint4

axis-aligned rectangles in Q such that each rectangle in S is anchored at some5

point in P , each point in P is a corner of at most one rectangle in S, and the6

total area of the rectangles in S is maximized; see Figure 1(a). It is not known7

whether this problem is NP-hard. The best known approximation algorithm8

for this problem achieves ratio 7/12− ε [2]. They also studied several variants9

of this problem.10

In this paper, we study a variant of the anchored packing problem in which11

all the points of P lie on the boundary of Q. We refer to this variant as the12

boundary-anchored rectangle packing (BARP) problem when the anchored ob-13

jects are rectangles (see Figure 1(b)), while when we require to anchor squares14
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Figure 1: Instances of (a) the ARP problem, and (b) the BARP problem.

instead of rectangles, we call the problem the boundary-anchored square packing15

(BASP) problem. We first present an algorithm that solves the BARP problem16

in linear time, provided that the points of P are given in sorted order along17

the boundary of Q (Section 2). Despite the simplicity of our algorithm, its cor-18

rectness proof is non-trivial (Section 3). Then, we consider the BASP problem19

and give an O(n4) algorithm for this problem when the points in P are on two20

opposite sides of Q (Section 4).21

Related results. The rectangle packing problem is related to strip packing and22

bin packing problems, which are well-known optimization problems in compu-23

tational geometry. Rectangle packing problems have applications in map la-24

beling [3, 4]. Balas et al. [2] studied several variants of the anchored packing25

problem; namely, the lower-left anchored rectangle packing problem in which26

points of P are required to be on the lower-left corners of the rectangles in R,27

the anchored square packing problem in which every anchored rectangles is re-28

quired to be a square, and the lower-left anchored square packing problem which29

is a combination the two previous problems. For the lower-left rectangle packing30

problem, Freedman [5] conjectured that there is a solution that covers 50% of31

the area of Q. The best known lower bound of 9.1% of the area of Q is due to32

Dumitrescu and Tóth [6]. Balas et al. [2] presented approximation algorithms33

with ratios (7/12−ε) and 5/32 for anchored rectangles and anchored square, re-34

spectively. They also presented a 1/3-approximation algorithm for the lower-left35

anchored square packing problem, and proved that this lower bound is tight.36

Balas and Tóth [7] studied the combinatorial structure of maximal anchored37

rectangle packings and showed that the number of such distinct packings with38

the maximum area can be exponential in the number n of points of P ; they39

give an exponential upper bound of 2nCn, where Cn denotes the nth Catalan40

number.41
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Figure 2: BARP can be solved via maximum-weight independent set in an outer-string graph.

2. Boundary-Anchored Rectangles42

In this section, we give a linear-time algorithm for the BARP problem. Be-43

fore describing the algorithm, we first briefly argue that BARP is solvable in44

polynomial time.45

An outline. It is easy to see [2] that in any rectangle packing the boundaries of46

rectangles must lie on the grid Λ obtained by extending rays inwards from all47

points until they hit the opposite boundary. For each point p ∈ P , there are48

O(n2) potential rectangles of Λ anchored at p and so we have O(n3) candidate49

rectangles, of which we must pick an independent set (among their intersection50

graph) such that the sum of the weights (defined to be the area of each rectangle)51

is maximized. If all points are on the boundary, then it is easy to represent each52

rectangle as a string (i.e., a Jordan curve) such that all strings have a point53

on the infinite face and two strings intersect if and only if not both rectangles54

should be taken; see Figure 2. This class of graphs is known as the outer-55

string graphs for which it is known that maximum-weighted independent set is56

solvable in O(N3) time, where N denotes the number segments in a geometric57

representation of the input graph [8]. As such, BARP is solvable in O(n9) time,58

but this is rather slow.59

In this section, we give key insights that lead to faster algorithms. Define60

a cell to be a maximal rectangle not intersected by lines of grid Λ. Given an61

optimum solution S, define a hole of S to be a maximal connected region of Q62

that is not covered by S, see Figure 3(b). We show the following in Section 3:63

Insight 1. An optimal solution S either covers all of Q, or it has exactly one64

hole which is a single cell.65

It is quite easy to test whether all of Q can be covered (see Lemma 10). If66

this is not possible, then we want to minimize the size of the hole. However,67

there are a quadratic number of cells, and more crucially, not all cells are feasible68

(holes). The second key result is therefore the following (by Theorem 2):69
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Lemma 1. For any cell ψ, we can test in O(1) time whether some packing70

covers Q− ψ.71

This immediately gives an O(n2) algorithm to find the best solution of type72

Q−ψ: consider the cells in order, test whether they are feasible and then find the73

corresponding packing that maximizes the area among those that are feasible.74

However, it is not necessary to test each cell individually. We can characterize75

exactly when a cell ψ is feasible, based solely on where the supporting lines of ψ76

(which are either the boundary of Q or rays emanating from some points) have77

their endpoints. Hence, we do not need to look at individual cells, but at the78

list of points on the four sides, to find the minimum area hole. In the following,79

we describe this in more details.80

We write PB (resp., PL, PT and PR) for the points of P on the bottom81

(resp., left, top and right) side. For a point p in the plane, we denote by x(p)82

and y(p) the x- and y-coordinates of p, respectively. The following theorem83

proved in Section 3 characterizes possible optimal solutions; Figure 7 on page84

10 illustrates these configurations.85

Theorem 2. Any BARP instance has an optimal solution S with i ≤ 4 rectan-86

gles. Moreover (up to rotating the instance by a multiple of 90◦ and/or reflecting87

horizontally) the anchor-points p1, . . . , pi used by S satisfy one of the following:88

1. i = 1, and p1 is the leftmost point of PL ∪ PB.89

2. i = 2, and one of the following holds:90

(a) p1 is the bottommost point of PL and p2 is the leftmost point of91

PT ∪ PB, or92

(b) p1 and p2 are the two points of PT ∪PB with the closest x-coordinates.93

3. i = 3, p1 ∈ PB and p2 ∈ PT ∪ PB have closest x-coordinates with x(p1) <94

x(p2), and p3 is the lowest point in PL.95

4. i = 4, p1 ∈ PL and p3 ∈ PR have closest y-coordinates with y(p1) > y(p3),96

and p2 ∈ PT and p4 ∈ PB have the closest x-coordinates with x(p4) <97

x(p2).98

Algorithm. Our algorithm proceeds as follows. For each of the four rotations, for99

each of the two reflections and for each rule 1, 2(a), 2(b), 3, and 4 in Theorem 2,100

compute the corresponding point set. Each of these up to 40 point sets defines101

a cell H, and a packing that covers Q−H (see also Lemma 8). The algorithm102

returns the one that has the smallest hole H.103

Having PL, PT , PR, and PB sorted along the boundary of Q, we can also104

compute sorted lists of PL ∪ PR and PT ∪ PB in linear time. The closest pair105

within each or between two of them can be computed in linear time. This106

implies our claimed running time.107

The correctness will be proved in Section 3. The proof does not use that Q108

is a square, only that it is an axis-aligned rectangle. We hence have:109

Theorem 3. The boundary anchored rectangle packing problem for n points,110

given in sorted order on the boundary of a rectangle, can be solved in O(n)111

time.112
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Figure 3: (a) The grid Λ. (b) White regions are holes. Graph G(S) is in red (thick); filled
vertices are points of P . The max-segment s1 is introduced while s2 is not.

3. Correctness of the Algorithm113

We first consider the cases for which the square Q can be covered entirely114

by a packing.115

Observation 1. Assume one of the following holds.116

(i) there exists a point p1 ∈ P on a corner of Q, or117

(ii) there exist two points in p1, p2 ∈ PL∪PR that have the same y-coordinates,118

or119

(iii) there exist two points in p1, p2 ∈ PT∪PB that have the same x-coordinates.120

Then we can cover all of Q with anchored rectangles.121

Proof. In case (i), one rectangle anchored at p1 can cover all of Q. In case (ii)122

and (iii), two rectangles anchored at p1, p2 can cover all of Q. �123

Since these conditions are easily tested, we assume for most of the remaining124

section that none of (i-iii) holds. (We will see that this implies that there must125

be a hole.)126

We need some notation. Throughout this section, let S be a solution for the127

BARP problem. The term “rectangle” now means one of the rectangles used by128

S. Define G(S) to be the graph whose vertices are the rectangle-corners that129

are not corners of Q, and whose edges are coincident with the rectangle-sides130

not on the boundary of Q; see Figure 3(b).131

We define a max-segment of G(S) to be a maximal chain s of collinear edges132

of G(S). We say that s is introduced if at least one endpoint of s belongs to P133

and is used as anchor-point for some rectangle of S. Every edge e belongs to134

exactly one max-segment se; we say that e is introduced if se is. See Figure 3(b)135

We already know [2] that all boundaries of rectangles can be assumed to lie on136

the grid Λ, but we need to strengthen this and prove the following:137
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Figure 4: Illustration of the proof of Lemma 4.

Lemma 4. There exists an optimal solution S such that all max-segments of S138

are introduced.139

Proof. Let S be an optimal solution that, among all optimal solutions, mini-140

mizes the number of max-segments. Assume for contradiction that there exists141

a max-segment s that is not introduced. After rotation we may assume that s is142

horizontal. Let V be the vertical slab defined by the two vertical lines through143

the endpoints of s; see Figure 4.144

Consider moving s upward in parallel, i.e., shortening the rectangles A with145

their bottom sides on s and lengthening the rectangles B with their top sides146

on s. Observe first that these rectangles indeed can be shortened/lengthened,147

because none of them can be anchored at a point on s: the only points of s that148

are possibly in P are its ends, but neither of them anchors a rectangle since149

s is not introduced. If this move of s increases the coverage, then S was not150

optimal, a contradiction. If this decreases the coverage, then moving downward151

in parallel would increase the coverage, a contradiction. So the covered area152

must remain the same during the move. Shift s up until it hits either the153

boundary of Q or intersects some other horizontal max-segment s′ of G(S). If154

s hits the boundary of Q, then s disappears and will be deleted from G(S). If155

s intersects s′ of G(S) (which may be inside V or only share an endpoint with156

the translated s) then the two max-segments merge into one. Either way we157

decrease the number of max-segments, which contradicts the choice of S and158

proves the lemma. �159

From now on, without further mentioning, we assume that S is an optimum160

solution where all max-segments are introduced. We also assume that, among161

all such optimal solutions, S minimizes the number of rectangles.162

Lemma 5. Every internal vertex of G(S) has degree three or four.163

Proof. Every internal vertex b of G(S) resides on the corner(s) of axis-aligned164

rectangle(s), and so has degree at least 2 and at most 4. Assume for contra-165

diction that b has degree exactly 2, and let a and c be its neighbours. After166
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Figure 5: Illustration of the proof of Lemma 5.

possible rotation, we may assume that a lies to the left of b, and c lies above b,167

as depicted in Figure 5. Thus, b is the bottom-right corner of some rectangle168

r1, and no other rectangle has b on its boundary. This implies that the region169

to the right of bc and below ab is a hole H. So rectangle r1 is anchored either170

on the left or the top side of Q; after a possible diagonal flip we assume that it171

is anchored on the left.172

Define aP and cP be the points of P that introduced ab and cb, respectively;173

we know that these must be on PL respectively PT since b has degree 2. By174

definition of “introduced” some rectangle rc is anchored at cP . We claim that175

rc cannot have cP as its top-right corner. Assume for contradiction that it did.176

Then we can expand rc (if needed) to cover the entire rectangle spanned by177

aP and cP ; this can only increase the coverage. In particular, the expanded rc178

covers all of r1. We know that r1 6= rc since r1 was anchored on the left side of179

Q. This contradicts that S has the minimum number of rectangles, so rc has180

cP as its top-left corner.181

If the right side rs(r1) of r1 is a sub-segment of bc, then we can stretch r1 to182

the right to increase the coverage of S, contradicting optimality. So rs(r1) must183

be a strict super-segment of bc, which in particular implies that c is interior and184

has no leftward edge. Since c is a vertex, it must have a rightward edge; let d185

be the vertex of H to the right of c. Let r2 be the rectangle whose bottom-left186

corner is c; this exists since edge cd is the boundary of some rectangle(s), but the187

area below cd belongs to hole H. Rectangle r2 cannot be anchored on the right,188

because otherwise we could expand rc to cover all of r2 and reduce the number189

of rectangles, a contradiction. So r2 is anchored on the top, which implies that190

r2 = rc, else they would overlap.191

If the bottom side bs(r2) of r2 is a sub-segment of cd, then we can stretch192

r2 down to increase the coverage of S. So bs(r2) is a strict super-segment of cd,193

which implies that d is interior. We iterate this process three times as follows.194
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(i) Let e be the vertex of H that is below d, and let r3 be the rectangle whose195

top-left corner is d. Argue as before that r3 is anchored at the right endpoint196

dP of the max-segment through cd, therefore the left side ls(r3) is a strict super-197

segment of de and e is interior. (ii) Let f be the vertex of H that is to the left198

of e, and let r4 be the rectangle whose top-right corner is e. Argue as before199

that r4 is anchored at the bottom endpoint eP of the max-segment through de,200

therefore the top side ts(r4) is a strict super-segment of ef and f is interior. (iii)201

Finally, let g be the vertex of H that is above f (possibly g = a). Now observe202

that the max-segment through fg cannot reach the boundary of Q without203

intersecting r4, r1 or r2. Therefore, fg is not introduced — a contradiction. �204

We assumed that neither (ii) nor (iii) of Observation 1 holds, which means205

that any grid-line of grid Λ has exactly one end in P . So, we can direct the206

edges of the grid (and with it the edges of G(S)) from the end in P to the end207

not in P . See also Figure 7. Define a guillotine cut to be a max-segment of208

G(S) for which both endpoints are on the boundary Q.209

Lemma 6. If there is no guillotine cut, then S has a hole H. Furthermore, H210

is a rectangle, H is not incident to the boundary of Q, and the boundary of H211

is a directed cycle of G(S).212

Proof. We claim that no vertex w of G(S) on the boundary of Q is a sink. For213

if the unique edge incident to w were directed v → w, then by Lemma 4 and the214

way we directed the edges of G(S), the point p that introduced vw would be215

on the opposite side and hence the max-segment pw would be a guillotine cut.216

Likewise no interior vertex w can be a sink, because deg(w) ≥ 3 by the previous217

lemma, which implies that two incident edge of w have the same orientation218

(horizontal or vertical). One of them then becomes outgoing at w since we219

direct edges along grid-lines. So G(S) has no sink, which implies that it has a220

directed cycle C. The region enclosed by C has no point on the boundary, so no221

rectangle anchored on the boundary can cover parts of it without intersecting222

C. So the interior region of C is a hole H not incident to the boundary. We223

know that H is a rectangle since it has no vertex of degree 2 by the previous224

lemma, hence in particular no reflex vertex. �225

This lemma serves as base-case for a stronger claim.226

Lemma 7. If S has holes, then it has a hole H that is a rectangle. Furthermore,227

every interior corner of H has an incoming edge that lies on H.228

Proof. If there is no guillotine cut, then Lemma 6 gives a rectangular hole229

that is interior and whose boundary is a directed cycle; this satisfies all claims.230

So, assume that there is a guillotine-cut aa′, say it is horizontal. Since (ii) does231

not hold, not both a and a′ can belong to P , say a′ 6∈ P . Segment aa′ divides232

Q into two rectangles Q1 and Q2 with Q1 above Q2; see Figure 6(a). There233

is a rectangle r1 that is anchored at a; up to a vertical flip we may assume234

that r1 is inside Q1. Observe that r1 must cover all of Q1, else we could find235
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Figure 6: With a guillotine cut, a hole can be found in Q2 recursively.

a solution with more coverage or fewer rectangles. Thus S′ := S \ {r1} is an236

anchored-rectangle packing for Q2 with anchor-points in P \ {a}. S′ must be237

optimal for Q2, else we could get a better packing for Q by adding r1 to it. It238

cannot cover all of Q2 since S had holes. So, induction applies to S′, and it has239

a hole H.240

Assume first that some vertical edge e of H is in the interior and directed241

downward, see Figure 6(b) and (c). Since e is introduced, the max-segment se242

containing it must then extend to the top of Q. This is impossible since se243

would intersect r1. So all interior vertical edges of H are directed upwards.244

This immediately shows that H cannot be in the interior of Q2, because then245

its edges form a directed cycle and one of the vertical ones is directed downward.246

Likewise it is impossible that both vertical sides and the bottom side of H are247

interior to Q2, since the tail-end of the bottom side has an incoming edge from248

H, which hence must be a downward vertical edge. Therefore, H shares at least249

one side with the boundary of Q.250

It remains to argue that any interior corner c of H has an incoming edge on251

H. If c was interior to Q2 as well then this holds by induction. If c is interior252

to Q, but not to Q2, then c lies on aa′ but c 6= a, a′. Then the vertical edge of253

H incident to c is interior to Q2, so it is directed upward as argued above and254

hence incoming to c as desired. �255

Hence, hole H must satisfy this hole-condition on the edge-directions (at256

least for some optimal solution S); that is, every interior corner of H has an257

incoming edge that lies on H. It turns out that this condition is also sufficient.258

Lemma 8. Let H be a rectangle whose sides lie on Q ∪ Λ. If every interior259

corner of H has an incoming edge that lies on H, then there exists a packing260

that covers Q \H.261

Proof. Let p1, . . . , pi (for some i ≤ 4) be the points of P that defined the262

grid-lines on which the sides of H reside. We distinguish cases (1-4) depending263

on how many sides of H are interior, where (2) splits further into (2a) and (2b)264

depending on whether the sides are adjacent or parallel. After possible rotation,265
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Figure 7: Any rectangle whose boundary is directed suitably can be realized as hole.

the hole is situated as shown in Figure 7. Every interior corner of H has an266

incoming edge that is on H, which (up to reflection) forces the location of some267

of p1, . . . , pi as indicated in the figure. In all cases, one verifies that i rectangles268

anchored at p1, . . . , pi suffice to cover Q \H. �269

We are now ready to prove Insight 1. To this end, we first show the following:270

Lemma 9. If S has holes, then it has exactly one hole H, and H is a cell of271

Λ.272

Proof. Lemma 7 shows we may assume H to be a rectangle where all interior273

corners have incoming edges on H. By Lemma 8, we can cover Q \ H with274

anchored rectangles, which by maximality of S means that H is unique.275

If H is not a cell, then it is bisected by some grid-line ` into two pieces H1276

and H2. If some H ′ ∈ {H1, H2} satisfies the hole-condition (i.e., all interior277

corners have incoming edges on H ′), then we can create a packing that covers278

Q \H ′ ⊃ Q \H, which contradicts minimality of S. In fact, by inspecting the279

possible configurations of H in cases 1, 2a, 2b, 3, and 4, as well as possible280

placements of the “undecided” anchor-points and the orientation/direction of281

10



b

d

`

H ′

b

H ′

`

b

`

H ′

b

`

H ′

b

`
H ′

b

H ′`

b

H ′

`
b

H ′

`

b

H ′
`

b

H ′

`
H ′

`

H ′

`

H ′

`

H ′

`

H ′

`

H ′

`
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` (see Figure 8, which shows all but one case), we observe that H1 satisfies282

this condition as we can cover Q \ H1 in each of these cases. So, there is a283

contradiction in all cases, and H must be one cell. �284

By Lemma 9, we have characterized solutions that have holes. It remains to285

characterize solutions that do not have holes; i.e., to show that the conditions286

(i-iii) of Observation 1 are necessary.287

Lemma 10. If Q can be covered with anchored rectangles, then one of (i-iii)288

holds.289

Proof. Let S be a packing that covers all of Q. If G(S) has no edge, then290

all of Q must be covered by one rectangle, which hence must be anchored at a291

corner of Q and (i) holds. So assume that G(S) has edges. By Lemma 6, since292
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S has no hole there must be a guillotine-cut aa′, say it is horizontal. If both a293

and a′ are in P then (ii) holds and we are done, so assume a ∈ P and a′ /∈ P .294

Define Q1, Q2 and r1 as in Lemma 7 and observe that S′ := S \ {r1} covers295

all of Q2 using anchor-points in P ′ := P \ {a}. Apply induction to S′, P ′, Q2.296

If (i) holds for them, then P ′ has a point on a corner of Q2, which by a, a′ /∈ P ′297

is also a corner of Q and we are done. If (ii) holds for them, then two points in298

P ′ ⊂ P have the same y-coordinate and we are done. Finally (iii) cannot hold299

for S′, P ′, Q2 because the top side of Q2 has no point of P ′ on it since a′ 6∈ P .300

�301

We are finally ready to prove Theorem 2. Let S be the optimum solution302

with the minimum number of rectangles. If S covers all of Q, then by Lemma 10303

one of (i-iii) holds. If (i) holds, then the corner in P will be chosen under rule304

(1). (In these and all other cases, “chosen” means “after a suitable rotation305

and/or reflection”.) If (ii) or (iii) holds then the two points with the coinciding306

coordinate will be chosen under rule (2b).307

If S has holes, then by Lemma 7 its unique hole H is a cell such that all308

interior corners of H have incoming edges on H. Let p1, . . . , pi be the points309

that introduce interior sides of H. We know that H has one of the types shown310

in Figure 7, and p1, . . . , pi hence will be considered under the corresponding311

rule. Moreover, all point sets that fit the type can be realized by Lemma 8. So312

H must be the one that minimizes the area, which corresponds to the points313

minimizing the x-distance resp. y-distance. So one of rules 1, 2a, 2b, 3 or 4314

applies to the points p1, . . . , pi and Theorem 2 holds.315

4. Boundary-Anchored Squares316

Recall that Q is an axis-aligned square in the plane and P is a set of points on317

the boundary of Q. In the boundary anchored square packing (BASP) problem318

we want to find a set of disjoint axis-aligned squares in Q that are anchored at319

points of P and maximize the total area. For this problem we are unable to find320

a grid—as we did for boundary rectangles—that discretizes the problem such321

that the sides of every square in an optimal solution lie on that grid. It might322

be tempting to obtain a grid as follows. For every point p on the bottom-side323

of Q we add the following lines to the grid (see Figure 9(a)):324

(1) one vertical line through p,325

(2) one horizontal line through the top-side of the largest square in Q that326

has p on its bottom-left corner, and one for a similar square that has p on327

its bottom-right corner, and328

(3) for every other point q on the bottom-side of Q, we add one horizontal329

line through the top-side of the square that has the segment pq as its330

bottom-side.331

12



p q
p

δ u v
w

x y

(a) (b)

Figure 9: (a) The grid lines for every point p. (b) An optimal solution in which the square
anchored at w is not introduced by Λ.

We add similar lines for points that are on the left-side, the right-side, and332

the top-side of Q. Let Λ be the resulting grid. We propose a set of points333

for which no optimal solution of the BASP is introduced by Λ. Figure 9(b)334

illustrates a set of six points with an optimal solution associated to it. A point335

p lies on the bottom-side of Q and at distance δ from the bottom-left corner of336

Q, for a small δ > 0. Five points u, v, w, x, y arranged on the top-side of Q from337

left to right such that w is the mid-point of the top-side of Q, |vw| = |wx| = 1.5δ,338

and |uv| = |xy| = ε, for a small ε that is much less than δ. Any optimal solution339

for this setting contains the largest square in Q that has p on its bottom-left340

corner. Also any optimal solution contains the two squares that are anchored341

at u and y as depicted in Figure 9(b). The solution that is shown in Figure 9(b)342

is optimum, and covers almost the entire Q (assuming δ is small enough). Any343

optimal solution contains two squares of side-length δ and one square of side-344

length δ/2 that are anchored at v, w, x. The square of side-length δ/2 is not345

defined by Λ, no matter on which of v, w, x it is anchored.346

In the rest of this section we consider two special cases where the points of347

P lie only on one side of Q, or on two opposite sides of Q. Later we will see348

that the two opposite-side case can be reduced to some instances of the one-side349

case.350

4.1. Points on one side351

In this section we consider a version of the BASP problem where the points352

of P lie only on one side of Q. We consider a more general version where Q is353

rectangle and the points of P lie on a larger side of Q. To avoid confusion in354

our notation, we use R to represent such a Q. Let w and h denote the width355

and height of R, respectively. We assume that the larger side of R is parallel356

to the x-axis and points of P lie on the bottom-side of R; see Figure 10. We357

introduce a grid Λ such that any optimal solution for this problem is defined by358

Λ. This grid contains the following lines:359
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(1) one vertical line through p,360

(2) one horizontal line through the top-side of the largest square in R that361

has p on its bottom-left corner, and one for a similar square that has p on362

its bottom-right corner,363

(3) for every other point q, that is at distance at most h from p, we add one364

horizontal line through the top-side of the square that has the segment pq365

as its bottom-side, and366

(4) one vertical line through the right-side of the largest square in R that has367

p on its bottom-left corner, and one for a similar square that has p on its368

bottom-right corner.369

Based on the construction of Λ, we define a set S, of squares, that are370

obtained as follows. For every point p ∈ P we add to S three types of squares371

(see Figure 10(a)):372

(a) the largest square in R that has p on its bottom-left corner, and the largest373

square in R that has p on its bottom-right corner,374

(b) for every other point q, that is within distance h from p, we add one square375

that has the segment pq as its bottom-side, and376

(c) for every other point q to the right (resp. left) of p, that is within distance377

2h from p, we add one square of side length |pq| − h that has p on its378

bottom-left corner (resp. bottom-right corner).379

The S contains O(n2) squares and all of them are introduced by Λ. We say that380

a square is introduced by a grid if at least three of its sides lie on the grid. The381

following lemma enables us to discretize the problem.382

Lemma 11. Every square in any optimal solution for the BASP problem, with383

respect to R and P , belongs to S.384

Proof. Our proof is by contradiction. Consider an optimal solution S for this385

problem and assume it contains a square s that does not belong to S. Without386

loss of generality we assume that s has a point p on its bottom-left corner. Since387

s is not of type (a), the top-side of s does not lie on the top-side of R. Also,388

the right-side of s does not lie on the right-side of R. If the right-side of s does389

not touch any other square in S, then we can enlarge s and increase the total390

area of S which contradicts its optimality. Let r be the square that touches the391

right-right side of s. Let q be the point that r is anchored on. Since s is not of392

type (b), q is the bottom-right corner of r. Moreover, since s is not of type (c),393

r is not a largest square that is anchored at q.394

To this end, we have two touching squares s and r and none of them are395

maximum squares. See Figure 10(b). Without loss of generality assume that s396

is not smaller than r. By concurrently enlarging s and shrinking r by a small397

amount, the gain in the area of s would be larger than the loss in the area of r.398

This will increase the total area of S which contradicts its optimality. �399
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Figure 10: (a) The construction of S (b) Illustration of the proof of Lemma 11.

As a consequence of Lemma 11, to solve the BASP problem, it suffices to400

find a subset of non-overlapping squares in S with maximum area. For every401

square s ∈ S, we introduce a closed interval Is with the bottom-side of s. We402

set the weight of Is to be the area of s. Let I be the set of these intervals. Any403

maximum-weight independent set of intervals in I corresponds to a set of non-404

overlapping squares in S with maximum area. A maximum-weight independent405

set of m intervals, that are given in sorted order of their left endpoints, can406

be computed in O(m) time [9]. The set S contains O(n2) squares and can be407

computed within the same time bound. Consequently, I can be computed in408

O(n2) time. Having the points of P sorted from left to right, the sorted order409

of the intervals in I can be obtained within the same time bound. Thus, the410

total running time of our algorithm is O(n2).411

4.2. Points on two opposite sides412

In this section we study a version of the BASP problem where the points of413

P lie on two opposite sides of Q. We show how to reduce an instance of this414

problem into O(n2) instances of the one-sided version. Since the one-sided ver-415

sion can be solved in O(n2) time, this reduction implies an O(n4)-time solution416

for the two-sided version. We refer to a square that is anchored at a top point417

(resp. bottom point) by a top square (resp. a bottom sqauare).418

Lemma 12. For any optimal solution for the BASP problem, where the input419

points lie only on top and bottom sides of the input square, there exits a hori-420

zontal line that separates the anchored squares at top points from the anchored421

squares at bottom points.422

Proof. Consider an optimal solution, and assume for contrary, that there is423

no horizontal line that separates the top squares from the bottom squares. This424

implies the existence of a horizontal line ` that intersects a top square s and a425

bottom square r. Since ` crosses both s and r, the height of s plus the height426

of r is larger than h (the height of the boundary square). This also implies that427

their total width is also larger than h. Since s and r are non-overlapping, there428

is a vertical line which separates s from r. These two facts imply that the width429

of the boundary square is larger than h which is a contradiction. �430

By Lemma 12, for every optimal solution there exists a horizontal line that431

separates its top squares from its bottom squares; refer to such a line by a432
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Figure 11: (a) The lines that are added to L for p. (b) Illustration of the proof of Lemma 13.

separating line. We introduce a set L of O(n2) horizontal lines and claim that433

for every optimal solution of the BASP problem, there exists a separating line434

that belongs to L. Assume that Q has unit length, and its bottom-left corner435

is the origin. For a point p, let px denotes its x-coordinate. First, we add to L436

the horizontal line y = 1/2. Then, for every point p on the bottom-side of Q we437

add the following lines to L (see Figure 11(a)):438

(1) y = px; this line represents the top-side of the largest square that has p439

on its bottom-right corner.440

(2) y = 1− px; this line represents the top-side of the largest square that has441

p on its bottom-left corner.442

(3) for every other point q on the bottom-side of Q, we add y = |px− qx|; this443

line represents the top-side of the square that is anchored at p and at q.444

(4) for every other point q on the bottom-side of Q, we add y = |px − qx|/2;445

this line represents the the top-side of the square that is anchored at p446

and at the mid-point of the segment pq.447

Also, for every point p on the top-side of Q, we add to L, the lines analogous448

to items (1)-(4).449

Lemma 13. For any optimal solution of the BASP problem, there exists a sep-450

arating line which belongs to L.451

Proof. Consider an optimal solution S for this problem. Let s be the largest452

square in S, and without loss of generality assume that s is anchored at a point453

p on the bottom side of the boundary square and p is on the bottom-left corner454

of s; see Figure 11(b). By Lemma 12, there exists a separating line for S. Let455

` be such a line that touches the top-side of s; observe the existence of such a456

separating line. If ` is below the line y = 1/2, then y = 1/2 is also a separating457

line for S and belongs to L. Assume that ` is above y = 1/2.458
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The rest of our proof is by contradiction. By a similar reasoning as in the459

proof of Lemma 12, we argue that s is the only bottom square that touches460

`. However, there might be arbitrary many top squares that touch `. Let a461

denotes the side-length of s. Then, ` : y = a. We continuously move ` up and462

down within the vertical range [a − ε, a + ε], for a very small amount ε. Then,463

the equation of ` is y = x, with x ∈ [a− ε, a+ ε]. While moving ` in this range,464

we change (enlarge or shrink) some squares of S as follows and keep track of465

their area (see Figure 10(b)):466

• We change s in such a way that its top-side always lies on `. Thus, the467

are of s would be x2.468

• Observe that the right-side of s does not touch the boundary square be-469

cause otherwise ` would have been added to L by item (2). There can be470

only one square in S that touches the right-side of s. If such a square ex-471

ists, then let s1 denote that square, and assume it is anchored at a point q;472

see Figure 10(b). The point q is on the bottom-right corner of s1, because473

otherwise ` would have been added to L by item (3). We change s1 in474

such a way that its left-side always touches the right-side of s. Thus the475

area of s1 is (|pq| − x)2476

• Let S2 be the set of all top squares that touch `. We change these squares477

in such a way that their bottom-sides touch `. The area of every such478

square is (1− x)2.479

• We construct a set S3 of top squares as follows. Consider every square480

s2 ∈ S2 and let s2 be anchored at a point u. If there is a top square s3 in481

S that touches s2 from the side that does not contain u, then we add s3482

to S3. Let s3 be anchored at v. The point v is not on the boundary of s2483

because otherwise ` would have been added to L by item (3). Also, the484

square s3 does have the same size as s2 because otherwise ` would have485

been added to L by item (4); in fact s3 is smaller than s2. We change s3486

in such a way that it always touches s2. Thus, by moving ` in the above487

range, the area of s3 will be (|uv| − (1− x))2.488

Let S′ be the set of above squares, i.e., S′ = {s, s1}∪S2∪S3. After performing489

the above adjustments, the squares in S remain non-overlapping. Also the490

squares in S \ S′ remain unchanged. Thus, by moving ` on the vertical range491

[a− ε, a+ ε], we obtain a valid solution for the BASP problem. Let f(x) be the492

total area of the squares in S′. The value of f(x), with x ∈ [a− ε, a+ ε], can be493

expressed as494

f(x) = x2 + (|pq| − x)2 + |S2| · (1− x)2 +
∑

s3∈S3

area(s3)2,

where |S2| denotes the cardinality of S2. As discussed above, the area of495

s3 is of the form (c − (1 − x))2 for some constant c. This implies that f(x) =496

αx2 + βx + γ for some constants α > 0, β, and γ. This means that f(x) is a497
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convex function on the domain [a− ε, a+ ε]. Thus, the maximum value of f(x)498

is attained at an endpoint of the domain, but not at a. Therefore, the original499

solution S, for which we have ` : y = a, cannot be an optimal solution for the500

BASP problem. �501

The set L contains O(n) lines per every point of P , and thus, O(n2) lines in502

total. These lines can be computed in O(n2) time. By Lemma 13, for every503

optimal solution there exists a separating line in L. Therefore, by checking504

every line ` in L and taking the one that maximizes the total area of the two505

one-sided instances of the problem (one for each side of `), we can solve the506

two-sided version of the problem in O(n4) time.507

Remark. A restrict version of the BASP problem, where every point of P should508

be assigned a non-zero square, can be solved in O(n) time for the one-sided case,509

and in O(n2) for the two-sided case. In the one-sided case, we have a constant510

number of squares/intervals per every point p because we only need to check511

its two neighbors. By a similar reason, in the two-sided case we get a constant512

number of lines per every point, and thus, O(n) lines in total.513

5. Conclusion514

In this paper, we considered the anchored rectangle and square packing515

problems in which all points are on the boundary of the square Q. By exploiting516

the properties of an optimal solution, we gave an optimal linear-time exact517

algorithm for the rectangle packing problem. Observe that our algorithm covers518

nearly everything for large n (contrasting with the fraction of 7/12−ε achieved519

in the non-boundary case [2]). For there are (up to rotation) at least n/2 points520

in RB ∪ PT , which define n/2 + 1 vertical slabs. Rule (1) or (2b) will consider521

the narrowest of them as hole, which has area at most 1/(n/2 + 1) if Q has area522

1. So, we cover a fraction of 1 − O( 1
n ) of Q. We also considered the square523

packing problem when the points on P are on two opposite sides of Q, and gave524

an O(n4)-time algorithm for this problem.525

The most interesting open question is to determine the complexity of the526

BARP or BASP problem for when the points of P can lie in the interior of527

Q. Is it polynomial-time solvable? As a first step, it would be interesting to528

characterize which polygonal curves on Q ∪ Λ could be boundaries of a hole in529

a solution. Moreover, the complexity of the BASP problem when the points of530

P are on all four sides of Q remains open.531
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