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Random Functions

• For n integer, [n] = {1, 2, . . . , n}.

• F(m, n) is the space of functions f : [m] → [n].

• F(n) := F(n, n).

• A function f is chosen from F(n) randomly with the uniform

distribution.

• Range of f is defined by Range(f) := {y : ∃x ∈ [n]f(x) = y}.

• Question:

What is the expected size of the range of a random function?
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Values of Random Functions

For random function f : [m] → [n] and given x ∈ [m], y ∈ [n],

Pr[f(x) = y] =
nm−1

nm

=
1

n
.

For random function f : [m] → [n] and given y ∈ [n], the size of the

inverse image f−1({y}) satisfies,

Pr[|f−1({y})| = k] =

(

m

k

)

(n − 1)m−k

nm
,

for k = 0, 1, . . . , n.
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Graph of a Random Function

Given f ∈ F(n) the graph G(f) has [n] as its set of vertices and

directed edges (x, y) ∈ E ⇔ f(x) = y. Define the k-the iterate f k

of f by f0 = identity function and fk := f ◦ fk−1.

The orbit (or cycle) of x is defined by

Of (x) := {x, f(x), f(f(x)), . . . , fn−1(x)}.

If Ln is the r.v. that counts the length of an orbit it can be shown

(Sachkov 1997)

Pr[Ln = j] =
n
∑

k=j

(n)k

nk+1
, j = 1, . . . , n

E[Ln] =

n
∑

j=1

j

n
∑

k=j

(n)k

nk+1
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Connected Components of a Random Function

The connected components of the graph G(f) consist of the orbits

and trees attached to them.

x

f(x)

f(f(x))

f(f(f(x)))

The elements of a cycle are called cyclic elements of G(f).

The distance of an element from its cycle is called its height.
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# of Connected Components of a Random Function

Let Kn be the r.v. that counts the number of connected

components of a random function in F(n).

A result of Stepanov (1966) states that

Pr[Kn = j] =
n
∑

k=j

(

n − 1

k − 1

)

S(k, j)

nk
, j = 1, 2, . . . , n

E[Kn] =
1

2
log n(1 + o(1))

V ar[Kn] =
1

2
log n(1 + o(1)),

where S(k, j) is the # of ways to partition a k element set into j

disjoint subsets, a Stirling number of the 2nd kind.
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# of Cyclic Elements of a Random Function

Let Zn be the r.v. that counts the number of distinct cyclic

elements of a random function in F(n).

A result of Harris (1973) states that

Pr[Zn = k] =
k(n)k

nk+1
, k = 0, 1, . . . , n

E[Zn] =

√

πn

2
(1 + o(1))

V ar[Zn] =
(

2 −
π

2

)

n(1 + o(1)),

where (n)k = n(n − 1) · · · (n − k + 1).
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Expected Size of Range of a Random Function f : [m] → [n]

Consider the indicator function Ii: Ii = 1 if i ∈ Range(f), and

Ii = 0, otherwise. Then we have

E[|Range(f)|] = E

[

n
∑

i=1

Ii

]

=

n
∑

i=1

E[Ii]

= nE[I1]

= n Pr[I1 = 1]

= n(1 − Pr[1 6∈ Range(f)])

= n

(

1 −

(

1 −
1

n

)m)

.
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Random Functions Cause Shrinkage!

Given a random function f ∈ F(n),

E[|Range(f)|] = n − n

(

1 −
1

n

)n

≈ n(1 − 1/e).

f

[n]

n n(e−1)/e

Range(f)

[n]
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What Causes Shrinkage?

Consider a random function f : [m] → [n] (with m ≤ n): shrinkage

is caused by collisions among the elements f(1), f(2), . . . , f(m), i.e.,

f(x) = f(y), for some x 6= y.

Pr[collision] = Pr[∃x 6= y(f(x) = f(y))]

= 1 − Pr[∀x 6= y(f(x) 6= f(y))]

= 1 −
m−1
∏

i=0

n − i

n
(Birthday paradox)

= 1 −
m−1
∏

i=0

(

1 −
i

n

)

Hence, the bigger the m the higher the probability of a collision!

We see later that this causes the “Markov Chain” to skip

large states!
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Variance of |Range(f)| for a Random Function f : [m] → [n]

Let X be the r.v. that counts the size of Range(f) and U = n − X.

Consider the indicator function I ′
i: I ′

i = 1 if i 6∈ Range(f), and

I ′
i = 1, otherwise. Observe that

V ar(X) = V ar(U)

= E[U2] − E[U ]2

=
∑

i6=j

E[I ′
iI

′
j ] +

∑

i

E[I ′
i] − E[U ]2

= n(n − 1)

(

1 −
2

n

)m

+ n

(

1 −
1

n

)m

− n2

(

1 −
1

n

)2m

= n2

(

(

1 −
2

n

)m

−

(

1 −
1

n

)2m
)

+n

((

1 −
1

n

)m

−

(

1 −
2

n

)m)

.
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Compositions of Random Functions

• k functions f1, f2, . . . , fk are chosen from F(n) randomly and

independently with the uniform distribution.

• Let f (k) := fk ◦ fk−1 ◦ · · · ◦ f1.

• Convention:

f (0) = identity function on [n].

• f (k) is called a random composition.

• Question:

Since the expected size of the range of a random function is a

constant fraction of the size of its domain, how long does it

take for a random composition to become constant?
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Iterations of Random Functions

Model proposed by (Diaconis & Freedman 1999)

• There is a state space S.

• There is a family of functions F such that each F ∈ F maps

the state space into itself F : S → S.

• There is a probability distribution µ on F .

• If the chain is at state s ∈ S it moves to state F (s) by choosing

F ∈ F at random.

• The process starts with F0 and inductively defines

Xt+1 = F (Xt) where F is a random function F ∈ F .
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Example I: Linear Affine Functions

• The state space S is the real line.

• F = {F+, F−} has just two functions defined as follows

F+ : R → R : x → F+(x) = ax + 1

F− : R → R : x → F−(x) = ax − 1,

where 0 < a < 1.

• The probability distribution µ on F is µ(F+) = µ(F−) = 1/2.

Let ξi = ±1 with probability 1/2, respectively.

• The process starts with ξ0 and inductively defines

Xt+1 = F (Xt) where F is a random function F ∈ F .

• Clearly, Xt+1 = aXt + ξt and the stationary distribution

X∞ = ξ1 + aξ2 + a2ξ3 + · · · converges since a < 1.
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Example II: d-dimensional Affine Functions

• The state space S is the d-dimensional space Rd.

• F contains a set of functions of the form

F : Rd → Rd : x → F (x) = Ax + B,

A is an d × d matrix and B is a d × 1 vector.

• F can be identified with a set of pairs (A, B) of matrices and

we have a probability distribution µ on F .

• The basic chain is Xt+1 = AtXt + Bt, where At is an d × d

matrix and Bt a d × 1 vector, and (At, Bt) are idependent and

identically distributed.

This has applications in fractal geometry.
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Example III: Random Compositions

• States specify the “size of the range” of a random composition

and these states form the state space S.

• A family of functions {◦f : f ∈ F(n)} maps the state space into

itself as follows: Given a function g ∈ F(n) already in state s,

s → ◦f (s) := size of range of f ◦ g.

• The probability distribution on {◦f : f ∈ F(n)} is uniform.

• If the chain is at state s ∈ S it moves to state ◦f (s) by

choosing f at random.

• The process starts with f0 (identity function) and inductively

defines Xt+1 = ◦f (Xt) where f is a random function f ∈ F(n).
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Example IV: Random Compositions of Hashes

• States specify the “size of the range” of a random composition

and these states form the state space S.

• H(n) is the set of functions f : [n] → [n/2].

• A family of functions {◦h : h ∈ H(n)} maps the state space into

itself as follows: Given a function g ∈ H(n) already in state s,

s → ◦h(s) := size of range of h ◦ g.

• The probability distribution on {◦h : h ∈ H(n)} is uniform.

• If the chain is at state s ∈ S it moves to state ◦f (s) by

choosing f at random.

• The process starts with a given function h0 and inductively

defines Xt+1 = ◦h(Xt) where h is a random function h ∈ H(n).
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Waiting Time until Absorption

• For t > 0, we are in state sr iff |Range(f (t))| = r.

• τr = |{t : |Range(f (t))| = r}| is the amount of time in state sr.

• State sr is visited if τr > 0. and T is the set of states that are

actually visited.

• Let T be the smallest t for which f (t) is constant, i.e.,

T =

n
∑

r=1

τr

s s sn 1isn−1 sn−2

E. Kranakis, Fall 2004
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How is T Computed

• The Markov chain starts with the identity function f (0) at time

0 in state sn.

• By the nature of the problem, states are visited in

non-increasing order.

• It is possible that states may be “skipped”.

• Eventually it reaches s1, the absorbing state.

• T is really the time it takes to reach the absorbing state s1.

• The main result is the following

Theorem: E[T ] = 2n(1 + o(1)), as n → ∞.
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Transition Probabilities

For j ≤ i, what is the probability f (t) ∈ sj given that f (t−1) ∈ si?

Given that f (t−1) ∈ si, how many functions f are there such that

f ◦ f (t−1) has j elements in its range?

• The are
(

n
j

)

ways to choose the range of f ◦ f (t−1),

• S(i, j)j! ways to map the i-element range of f (t−1) onto a given

j element set, where S(i, j) is the # of ways to partition a i

element set into j disjoint subsets, a Stirling number of the 2nd

kind, and

• nn−i ways to map them into [n].

It follows that

p(i, j) := Pr[f (t) ∈ sj |f
(t−1) ∈ si] =

(

n

j

)

S(i, j)j!

ni
,
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Upper Bound on Stirling Numbers S(i, j)

S(i, j) = # of ways to partition a i element set into j subsets.

• Prove by induction S(i, j) ≤ (2j)i.

• For i = 1: S(1, j) ≤ 2j

• We have that

S(i, j) = S(i − 1, j − 1) + jS(i − 1, j) (Identity)

≤ (2(j − 1))i−1 + j(2j)i−1 (Induction)

= (2j)i

(

(j − 1)i−1

2ji
+

1

2

)

≤ (2j)i.
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Eigenvalues of the Transition Matrix

The transition matrix P := (p(i, j)i,j is lower diagonal.

Eigenvalues are the diagonal elements of the matrix, i.e.,

λr = p(r, r)

=

(

n

r

)

S(r, r)r!

nr

=

r−1
∏

i=1

(

1 −
i

n

)

= 1 −

(

r
2

)

n
+ O

(

r4

n2

)

.

Note: 1 > 1 − 1
n

= λ2 ≥ · · · ≥ λn > 0 and 1
1−λr+d

≤ n − 1

E. Kranakis, Fall 2004



Dalal-Schmutz (2002) and Diaconis-Freedman (1999) 24

Transition Probabilities for Affine Matrices

• Consider d × d matrices over, say, the finite field Z∗
p and let

A(0) := I be the identity matrix.

• A(t) = AtA
(t−1), where At is a random matrix.

• For t > 0 we are in state r iff rank(A(t)) = r.

• τr = |{t : rank(A(t)) = r}| is the amount of time in state sr.

• Open Question: For j ≤ i, compute the transition

probabilities

p(i, j) := Pr[rank(A(t)) = j | rank(A(t−1)) = i].

This is equivalent to computing the number of matrices B such

that rank(BA) = j, given that rank(A) = i.
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Lower Bound on E[T ]

We have the identity

E[T ] = E

[

n
∑

r=2

τr

]

=

n
∑

r=2

E [τr]

=
n
∑

r=2

E [τr|τr > 0] · Pr[τr > 0].

It remains

• to compute E [τr|τr > 0], and

• give a lower bound on Pr[τr > 0].

E. Kranakis, Fall 2004



Dalal-Schmutz (2002) and Diaconis-Freedman (1999) 26

Computing E [τr|τr > 0]

This is the expected amount of time you stay in state τr, given that

you visit it?

Given τr > 0, τr follows the geometric distribution, with

probability of success p(r, r) = λr.

E [τr|τr > 0] =

∞
∑

t=1

tλt−1
r (1 − λr)

=
1

1 − λr

=
n
(

r
2

)

(

1 + O

(

r2

n

))

E. Kranakis, Fall 2004
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Estimating Pr[τr = 0]

We give an upper bound on Pr[τr = 0].

• If τr = 0 then the state sr is never visited.

• Therefore there must exist a transition

sr+d → sr−j,

for some positive integers d, j.

• In fact, before moving to state sr−j it may stay in state sr+d a

number of times t = 0, 1, 2, 3, . . ..

• Therefore we must take into account how long we stay in state

sr+d given that this state is visited.
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Upper Bound on Pr[τr = 0]

We can show that

Pr[τr = 0] =
n−r
∑

d=1

r−1
∑

j=1

Pr[τr+d > 0]
∞
∑

t=0

p(r + d, r − j)p(r + d, r + d)t

=
n−r
∑

d=1

r−1
∑

j=1

Pr[τr+d > 0]
p(r + d, r − j)

1 − λr+d

≤
n−r
∑

d=1

r−1
∑

j=1

(

n

r − j

)

S(r + d, r − j)(r − j)!

nr+d(1 − λr+d)

≤ (n − 1)
n−r
∑

d=1

1

nd

r−1
∑

j=1

S(r + d, r − j)

nj

Recall: 1) Pr[τr+d > 0] ≤ 1, 2) 1 > 1 − 1
n

= λ2 ≥ · · · ≥ λn > 0 and
1

1−λr+d
≤ n − 1
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Lower Bound on Pr[τr > 0]

Hence we obtain for r ≤ blog log nc

Pr[τr > 0] ≥ 1 − (n − 1)
n−r
∑

d=1

1

nd

r−1
∑

j=1

S(r + d, r − j)

nj

≥ 1 − (n − 1)
n−r
∑

d=1

1

nd

r−1
∑

j=1

(2(r − j))r+d

nj

≥ 1 − (n − 1)
n−r
∑

d=1

1

nd

r(2r)r+d

n

≥ 1 − O

(

(2`)`+2

n

)

= 1 − o(1).
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Proving the Lower Bound: E[T ] ≥ 2n(1 + o(1))

We have the idequality

E[T ] ≥
∑̀

r=1

E [τr|τr > 0] · Pr[τr > 0]

≥
∑̀

r=2

n
(

r
2

)

= 2n
∑̀

r=2

1

r(r − 1)

= 2n
∑̀

r=2

(

1

r − 1
−

1

r

)

= 2n

(

1 −
1

`

)

This completes the proof of the lower bound.
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Idea of Proof of Upper Bound

Recall that T =
∑n

m=2 τm. We split E[T ] into three sums

E[T ] =
n
∑

m=2

E [τm|τm > 0] · Pr[τm > 0]

=

ξ1
∑

m=2

· · · +

ξ2
∑

m=ξ1+1

· · · +
n
∑

m=ξ2+1

· · ·

whereby

ξ1 =

⌊√

n

log n

⌋

ξ2 =

⌊

n

log2 n

⌋

and make upper bound estimates on each of them.
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1st Sum: =
∑ξ1

m=2 E [τm|τm > 0] · Pr[τm > 0]

Observe that

1st Sum ≤

ξ1
∑

m=2

1

1 − λm

=

ξ1
∑

m=2

1

(m

2 )
n

+ O(m4/n2)

=

ξ1
∑

m=2

n
(

m
2

)

+ O(m4/n)

≤ 2n

ξ1
∑

m=2

1

m(m − 1)

= 2n(1 − 1/ξ1)

= 2n(1 + o(1))
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2nd Sum: =
∑ξ2

m=ξ1+1 E [τm|τm > 0] · Pr[τm > 0]

Observe that λξ1
= 1 − 1

2 log n
+ O(1/ log2 n).

2nd Sum ≤

ξ2
∑

m=ξ1+1

1

1 − λm

=
1

1 − λξ1

ξ2
∑

m=ξ1+1

1

= O(ξ2 log n)

= O(n/ log n)

= o(1).
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3rd Sum: =
∑n

m=ξ2+1 E [τm|τm > 0] · Pr[τm > 0]

Observe that maxm>ξ2

1
1−λm

= 1
1−λξ2+1

. Hence,

3rd Sum ≤
n
∑

m=ξ2+1

1

1 − λm

Pr[τm > 0]

≤
1

1 − λξ2+1





n
∑

m=ξ2+1

Pr[τm > 0]





≤
1

1 − exp
(

−
(

ξ2

2

)

/n
)





n
∑

m=ξ2+1

Pr[τm > 0]





≤ 2
n
∑

m=ξ2+1

Pr[τm > 0],

for n large enough. It remains to bound the RHS above.
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On Skipping Large States

To deal with
∑n

m=ξ2+1 Pr[τm > 0] we will show that “every hit

(i.e., τm > 0)” is followed by “many (i.e., β) misses (i.e., τm−δ = 0,

forall δ such that 1 ≤ δ ≤ β)”

Let us define

β := β(n) =
1

2

(

ξ2 − n + n

(

1 −
1

n

)ξ2

)

Observe that

β(n) >>
n

log4 n
.

Suppose we are in state sm at time t − 1, i.e., |Range(f (t−1))| = m,

and select the next function ft at random.
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Claim 1: If B > β then τm−δ = 0, for 1 ≤ δ ≤ β.

Let h be the restriction of ft to the range of f (t−1).

Let R be the cardinality of the range of h, and B = m − R.

To prove the claim notice that

B > β ⇒ m − R > β

⇒ R < m − β

and

|Range(f (t))| = |f (t)([n])|

= |ft(f
(t−1)([n]))|

= |h(Range(f (t−1)))|

= R.
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Claim 2: E[B] ≥ ξ2 − n + n(1 − 1
n
)ξ2 >> n

log4 n
.

Observe that

E[B] = E[m − R]

= m − E[R]

= m − n + n

(

1 −
1

n

)m

> ξ2 − n + n(1 −
1

n
)ξ2

= 2β

>>
n

log4 n
.

Also recall, V ar(B) =

n2
(

(

1 − 2
n

)m
−
(

1 − 1
n

)2m
)

+ n
((

1 − 1
n

)m
−
(

1 − 2
n

)m)

= O(m).
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Claim 4: Pr[∀1 ≤ δ ≤ β(τm−δ = 0)|τm > 0]

By Chebeshev’s Inequality and since m > ξ2 we have

Pr[|B| ≤ β] ≤ Pr

[

|B| ≤
1

2
E[B]

]

≤
4V ar(B)

(E[B])2

= O

(

m log8 n

n2

)

= o(1).

Hence, Pr[|B| > β] = 1 − o(1). It follows, by Claim 1,

Pr[∀1 ≤ δ ≤ β(τm−δ = 0)|τm > 0] = 1 − o(1).
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Back to the 3rd Sum: =
∑n

m=ξ2+1 E [τm|τm > 0] · Pr[τm > 0]

Define χm = 1 if τm > 0 and χm = 0, otherwise. Recall that

3rd Sum ≤ 2
n
∑

m=ξ2+1

Pr[τm > 0]

= 2
n
∑

m=ξ2+1

E[χm]

= 2E





n
∑

m=ξ2+1

χm





= 2E[V ],

where V :=
∑n

m=ξ2+1 χm. Define W :=
∑n

m=ξ2+1(1 − χm) and

observe that V + W = n − ξ2.
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Back to the 3rd Sum: =
∑n

m=ξ2+1 E [τm|τm > 0] · Pr[τm > 0]

Note that if τm > 0 and ∀1 ≤ δ ≤ β(τm−δ = 0) then these β missed

states contribute exactly β to W . Hence, if we define

Jm = χm ·
∏β

δ=1(1 − χm−δ) then W ≥ β
∑

m>ξ2
Jm. Hence,

E[W ] ≥ β
∑

m>ξ2

E[Jm]

= β
∑

m>ξ2

Pr[Jm = 1]

= β
∑

m>ξ2

Pr[τm > 0] Pr[∀1 ≤ δ ≤ β(τm−δ = 0)|τm > 0]

≥ β(1 + o(1))
∑

m>ξ2

Pr[τm > 0]

= β(1 + o(1))E[V ].
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Back to the 3rd Sum: =
∑n

m=ξ2+1 E [τm|τm > 0] · Pr[τm > 0]

It follows that

E[V ] = n − ξ2 − E[W ])

≤ n − ξ2 − β(1 + o(1))E[V ])

Hence,

3rd Sum ≤ 2E[V ]

≤
2(n − ξ2)

1 + β(1 + o(1))

= O(log4 n)

= o(n).

This completes the proof of the theorem.
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Another Idea: Hitting Times

For r = 1, 2, . . . , n, let tr be the (hitting) time that the chain

spends in transient state r until absorbtion by state 1.

• Let the (n − 1) × (n − 1) matrix Q be obtained from the

transition matrix P by removing the first row and column.

• It is easy to see that t1 = 1 and tr = 1r=1 +
∑r

r′=2 p(r, r′)tr′

• If I is the unit matrix and t is the vector of hitting times then

t = I + Qt, which is equivalent to t(I − Q) = I. So to compute

the hitting times it is enough to compute the inverse of the

matrix I − Q.

• Easy to prove: if limk→∞ Qk = 0 then (I − Q)−1 =
∑

k=0 Qk.

Speed of convergence depends on 2nd largest

eigenvalue!
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Open Questions

• Consider the space H(n) := F(n, n/2) of hash functions.

• Consider different probability distributions on F(n). The

reason is that in practice one has preference over certain types

of random functions.

• Consider a space {(A, B)} of pairs of d × d (random) matrices

and the functions x → Ax + B. States are determined by the

rank of a random matrix. This problem is equivalent to

estimating the time T until the product of T random matrices

is 0.
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