Random
 Compositions

Evangelos Kranakis
School of Computer Science
Carleton University

Outline

1. Random functions and iterations.
2. Iterated random compositions.
3. Markov chain for random compositions.
4. Waiting time until absorption:
(a) Lower bound.
(b) Upper bound.
5. Open Problems.

Random Functions

- For n integer, $[n]=\{1,2, \ldots, n\}$.
- $\mathcal{F}(m, n)$ is the space of functions $f:[m] \rightarrow[n]$.
- $\mathcal{F}(n):=\mathcal{F}(n, n)$.
- A function f is chosen from $\mathcal{F}(n)$ randomly with the uniform distribution.
- Range of f is defined by $\operatorname{Range}(f):=\{y: \exists x \in[n] f(x)=y\}$.
- Question:

What is the expected size of the range of a random function?

Values of Random Functions

For random function $f:[m] \rightarrow[n]$ and given $x \in[m], y \in[n]$,

$$
\begin{aligned}
\operatorname{Pr}[f(x)=y] & =\frac{n^{m-1}}{n^{m}} \\
& =\frac{1}{n}
\end{aligned}
$$

For random function $f:[m] \rightarrow[n]$ and given $y \in[n]$, the size of the inverse image $f^{-1}(\{y\})$ satisfies,

$$
\operatorname{Pr}\left[\left|f^{-1}(\{y\})\right|=k\right]=\binom{m}{k} \frac{(n-1)^{m-k}}{n^{m}},
$$

for $k=0,1, \ldots, n$.

Graph of a Random Function

Given $f \in \mathcal{F}(n)$ the graph $G(f)$ has $[n]$ as its set of vertices and directed edges $(x, y) \in E \Leftrightarrow f(x)=y$. Define the k-the iterate f^{k} of f by $f^{0}=$ identity function and $f^{k}:=f \circ f^{k-1}$.

The orbit (or cycle) of x is defined by

$$
O_{f}(x):=\left\{x, f(x), f(f(x)), \ldots, f^{n-1}(x)\right\}
$$

If \mathcal{L}_{n} is the r.v. that counts the length of an orbit it can be shown (Sachkov 1997)

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{L}_{n}=j\right] & =\sum_{k=j}^{n} \frac{(n)_{k}}{n^{k+1}}, j=1, \ldots, n \\
E\left[\mathcal{L}_{n}\right] & =\sum_{j=1}^{n} j \sum_{k=j}^{n} \frac{(n)_{k}}{n^{k+1}}
\end{aligned}
$$

Connected Components of a Random Function

The connected components of the graph $G(f)$ consist of the orbits and trees attached to them.

The elements of a cycle are called cyclic elements of $G(f)$.
The distance of an element from its cycle is called its height.

\# of Connected Components of a Random Function

Let \mathcal{K}_{n} be the r.v. that counts the number of connected components of a random function in $\mathcal{F}(n)$.

A result of Stepanov (1966) states that

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{K}_{n}=j\right] & =\sum_{k=j}^{n}\binom{n-1}{k-1} \frac{S(k, j)}{n^{k}}, j=1,2, \ldots, n \\
E\left[\mathcal{K}_{n}\right] & =\frac{1}{2} \log n(1+o(1)) \\
\operatorname{Var}\left[\mathcal{K}_{n}\right] & =\frac{1}{2} \log n(1+o(1))
\end{aligned}
$$

where $S(k, j)$ is the \# of ways to partition a k element set into j disjoint subsets, a Stirling number of the 2nd kind.

\# of Cyclic Elements of a Random Function

Let \mathcal{Z}_{n} be the r.v. that counts the number of distinct cyclic elements of a random function in $\mathcal{F}(n)$.

A result of Harris (1973) states that

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{Z}_{n}=k\right] & =\frac{k(n)_{k}}{n^{k+1}}, k=0,1, \ldots, n \\
E\left[\mathcal{Z}_{n}\right] & =\sqrt{\frac{\pi n}{2}}(1+o(1)) \\
\operatorname{Var}\left[\mathcal{Z}_{n}\right] & =\left(2-\frac{\pi}{2}\right) n(1+o(1))
\end{aligned}
$$

where $(n)_{k}=n(n-1) \cdots(n-k+1)$.

Expected Size of Range of a Random Function $f:[m] \rightarrow[n]$
Consider the indicator function $I_{i}: I_{i}=1$ if $i \in \operatorname{Range}(f)$, and $I_{i}=0$, otherwise. Then we have

$$
\begin{aligned}
E[|\operatorname{Range}(f)|] & =E\left[\sum_{i=1}^{n} I_{i}\right] \\
& =\sum_{i=1}^{n} E\left[I_{i}\right] \\
& =n E\left[I_{1}\right] \\
& =n \operatorname{Pr}\left[I_{1}=1\right] \\
& =n(1-\operatorname{Pr}[1 \notin \operatorname{Range}(f)]) \\
& =n\left(1-\left(1-\frac{1}{n}\right)^{m}\right) .
\end{aligned}
$$

Random Functions Cause Shrinkage!

Given a random function $f \in \mathcal{F}(n)$,

$$
E[|\operatorname{Range}(f)|]=n-n\left(1-\frac{1}{n}\right)^{n} \approx n(1-1 / e) .
$$

What Causes Shrinkage?

Consider a random function $f:[m] \rightarrow[n]$ (with $m \leq n$): shrinkage is caused by collisions among the elements $f(1), f(2), \ldots, f(m)$, i.e., $f(x)=f(y)$, for some $x \neq y$.

$$
\begin{aligned}
\operatorname{Pr}[\text { collision }] & =\operatorname{Pr}[\exists x \neq y(f(x)=f(y))] \\
& =1-\operatorname{Pr}[\forall x \neq y(f(x) \neq f(y))] \\
& =1-\prod_{i=0}^{m-1} \frac{n-i}{n} \text { (Birthday paradox) } \\
& =1-\prod_{i=0}^{m-1}\left(1-\frac{i}{n}\right)
\end{aligned}
$$

Hence, the bigger the m the higher the probability of a collision!
We see later that this causes the "Markov Chain" to skip large states!

Variance of $|\operatorname{Range}(f)|$ for a Random Function $f:[m] \rightarrow[n]$
Let X be the r.v. that counts the size of Range (f) and $U=n-X$. Consider the indicator function $I_{i}^{\prime}: I_{i}^{\prime}=1$ if $i \notin \operatorname{Range}(f)$, and $I_{i}^{\prime}=1$, otherwise. Observe that

$$
\begin{aligned}
\operatorname{Var}(X)= & \operatorname{Var}(U) \\
= & E\left[U^{2}\right]-E[U]^{2} \\
= & \sum_{i \neq j} E\left[I_{i}^{\prime} I_{j}^{\prime}\right]+\sum_{i} E\left[I_{i}^{\prime}\right]-E[U]^{2} \\
= & n(n-1)\left(1-\frac{2}{n}\right)^{m}+n\left(1-\frac{1}{n}\right)^{m}-n^{2}\left(1-\frac{1}{n}\right)^{2 m} \\
= & n^{2}\left(\left(1-\frac{2}{n}\right)^{m}-\left(1-\frac{1}{n}\right)^{2 m}\right) \\
& +n\left(\left(1-\frac{1}{n}\right)^{m}-\left(1-\frac{2}{n}\right)^{m}\right) .
\end{aligned}
$$

Compositions of Random Functions

- k functions $f_{1}, f_{2}, \ldots, f_{k}$ are chosen from $\mathcal{F}(n)$ randomly and independently with the uniform distribution.
- Let $f^{(k)}:=f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}$.
- Convention: $f^{(0)}=$ identity function on $[n]$.
- $f^{(k)}$ is called a random composition.
- Question:

Since the expected size of the range of a random function is a constant fraction of the size of its domain, how long does it take for a random composition to become constant?

Iterations of Random Functions

Model proposed by (Diaconis \& Freedman 1999)

- There is a state space S.
- There is a family of functions \mathcal{F} such that each $F \in \mathcal{F}$ maps the state space into itself $F: S \rightarrow S$.
- There is a probability distribution μ on \mathcal{F}.
- If the chain is at state $s \in S$ it moves to state $F(s)$ by choosing $F \in \mathcal{F}$ at random.
- The process starts with F_{0} and inductively defines $X_{t+1}=F\left(X_{t}\right)$ where F is a random function $F \in \mathcal{F}$.

Example I: Linear Affine Functions

- The state space S is the real line.
- $\mathcal{F}=\left\{F_{+}, F_{-}\right\}$has just two functions defined as follows

$$
\begin{aligned}
& F_{+}: \quad \mathbf{R} \rightarrow \mathbf{R}: x \rightarrow F_{+}(x)=a x+1 \\
& F_{-}:
\end{aligned} \quad \mathbf{R} \rightarrow \mathbf{R}: x \rightarrow F_{-}(x)=a x-1, ~ l
$$

where $0<a<1$.

- The probability distribution μ on \mathcal{F} is $\mu\left(F_{+}\right)=\mu\left(F_{-}\right)=1 / 2$. Let $\xi_{i}= \pm 1$ with probability $1 / 2$, respectively.
- The process starts with ξ_{0} and inductively defines $X_{t+1}=F\left(X_{t}\right)$ where F is a random function $F \in \mathcal{F}$.
- Clearly, $X_{t+1}=a X_{t}+\xi_{t}$ and the stationary distribution $X_{\infty}=\xi_{1}+a \xi_{2}+a^{2} \xi_{3}+\cdots$ converges since $a<1$.

Example II: d-dimensional Affine Functions

- The state space S is the d-dimensional space \mathbf{R}^{d}.
- \mathcal{F} contains a set of functions of the form

$$
F: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}: x \rightarrow F(x)=A x+B
$$

A is an $d \times d$ matrix and B is a $d \times 1$ vector.

- \mathcal{F} can be identified with a set of pairs (A, B) of matrices and we have a probability distribution μ on \mathcal{F}.
- The basic chain is $X_{t+1}=A_{t} X_{t}+B_{t}$, where A_{t} is an $d \times d$ matrix and B_{t} a $d \times 1$ vector, and $\left(A_{t}, B_{t}\right)$ are idependent and identically distributed.

This has applications in fractal geometry.

Example III: Random Compositions

- States specify the "size of the range" of a random composition and these states form the state space S.
- A family of functions $\left\{o_{f}: f \in \mathcal{F}(n)\right\}$ maps the state space into itself as follows: Given a function $g \in \mathcal{F}(n)$ already in state s,

$$
s \rightarrow \circ_{f}(s):=\text { size of range of } f \circ g .
$$

- The probability distribution on $\left\{o_{f}: f \in \mathcal{F}(n)\right\}$ is uniform.
- If the chain is at state $s \in S$ it moves to state $\circ_{f}(s)$ by choosing f at random.
- The process starts with f_{0} (identity function) and inductively defines $X_{t+1}=\circ_{f}\left(X_{t}\right)$ where f is a random function $f \in \mathcal{F}(n)$.

Example IV: Random Compositions of Hashes

- States specify the "size of the range" of a random composition and these states form the state space S.
- $\mathcal{H}(n)$ is the set of functions $f:[n] \rightarrow[n / 2]$.
- A family of functions $\left\{o_{h}: h \in \mathcal{H}(n)\right\}$ maps the state space into itself as follows: Given a function $g \in \mathcal{H}(n)$ already in state s,

$$
s \rightarrow \circ_{h}(s):=\text { size of range of } h \circ g
$$

- The probability distribution on $\left\{{ }_{o}: h \in \mathcal{H}(n)\right\}$ is uniform.
- If the chain is at state $s \in S$ it moves to state $\circ_{f}(s)$ by choosing f at random.
- The process starts with a given function h_{0} and inductively defines $X_{t+1}=o_{h}\left(X_{t}\right)$ where h is a random function $h \in \mathcal{H}(n)$.

Waiting Time until Absorption

- For $t>0$, we are in state s_{r} iff $\left|\operatorname{Range}\left(f^{(t)}\right)\right|=r$.
- $\tau_{r}=\left|\left\{t:\left|\operatorname{Range}\left(f^{(t)}\right)\right|=r\right\}\right|$ is the amount of time in state s_{r}.
- State s_{r} is visited if $\tau_{r}>0$. and \mathcal{T} is the set of states that are actually visited.
- Let T be the smallest t for which $f^{(t)}$ is constant, i.e.,

$$
T=\sum_{r=1}^{n} \tau_{r}
$$

E. Kranakis, Fall 2004

How is T Computed

- The Markov chain starts with the identity function $f^{(0)}$ at time 0 in state s_{n}.
- By the nature of the problem, states are visited in non-increasing order.
- It is possible that states may be "skipped".
- Eventually it reaches s_{1}, the absorbing state.
- T is really the time it takes to reach the absorbing state s_{1}.
- The main result is the following Theorem: $E[T]=2 n(1+o(1))$, as $n \rightarrow \infty$.

Transition Probabilities

For $j \leq i$, what is the probability $f^{(t)} \in s_{j}$ given that $f^{(t-1)} \in s_{i}$? Given that $f^{(t-1)} \in s_{i}$, how many functions f are there such that $f \circ f^{(t-1)}$ has j elements in its range?

- The are $\binom{n}{j}$ ways to choose the range of $f \circ f^{(t-1)}$,
- $S(i, j) j$! ways to map the i-element range of $f^{(t-1)}$ onto a given j element set, where $S(i, j)$ is the $\#$ of ways to partition a i element set into j disjoint subsets, a Stirling number of the 2 nd kind, and
- n^{n-i} ways to map them into $[n]$.

It follows that

$$
p(i, j):=\operatorname{Pr}\left[f^{(t)} \in s_{j} \mid f^{(t-1)} \in s_{i}\right]=\binom{n}{j} \frac{S(i, j) j!}{n^{i}}
$$

Upper Bound on Stirling Numbers $S(i, j)$

$S(i, j)=\#$ of ways to partition a i element set into j subsets.

- Prove by induction $S(i, j) \leq(2 j)^{i}$.
- For $i=1: S(1, j) \leq 2 j$
- We have that

$$
\begin{aligned}
S(i, j) & =S(i-1, j-1)+j S(i-1, j) \text { (Identity) } \\
& \leq(2(j-1))^{i-1}+j(2 j)^{i-1} \text { (Induction) } \\
& =(2 j)^{i}\left(\frac{(j-1)^{i-1}}{2 j^{i}}+\frac{1}{2}\right) \\
& \leq(2 j)^{i}
\end{aligned}
$$

Eigenvalues of the Transition Matrix

The transition matrix $P:=\left(p(i, j)_{i, j}\right.$ is lower diagonal.
Eigenvalues are the diagonal elements of the matrix, i.e.,

$$
\begin{aligned}
\lambda_{r} & =p(r, r) \\
& =\binom{n}{r} \frac{S(r, r) r!}{n^{r}} \\
& =\prod_{i=1}^{r-1}\left(1-\frac{i}{n}\right) \\
& =1-\frac{\binom{r}{2}}{n}+O\left(\frac{r^{4}}{n^{2}}\right) .
\end{aligned}
$$

Note: $1>1-\frac{1}{n}=\lambda_{2} \geq \cdots \geq \lambda_{n}>0$ and $\frac{1}{1-\lambda_{r+d}} \leq n-1$

Transition Probabilities for Affine Matrices

- Consider $d \times d$ matrices over, say, the finite field Z_{p}^{*} and let $A^{(0)}:=I$ be the identity matrix.
- $A^{(t)}=A_{t} A^{(t-1)}$, where A_{t} is a random matrix.
- For $t>0$ we are in state r iff $\operatorname{rank}\left(A^{(t)}\right)=r$.
- $\tau_{r}=\left|\left\{t: \operatorname{rank}\left(A^{(t)}\right)=r\right\}\right|$ is the amount of time in state s_{r}.
- Open Question: For $j \leq i$, compute the transition probabilities

$$
p(i, j):=\operatorname{Pr}\left[\operatorname{rank}\left(A^{(t)}\right)=j \mid \operatorname{rank}\left(A^{(t-1)}\right)=i\right] .
$$

This is equivalent to computing the number of matrices B such that $\operatorname{rank}(B A)=j$, given that $\operatorname{rank}(A)=i$.

Lower Bound on $E[T]$

We have the identity

$$
\begin{aligned}
E[T] & =E\left[\sum_{r=2}^{n} \tau_{r}\right] \\
& =\sum_{r=2}^{n} E\left[\tau_{r}\right] \\
& =\sum_{r=2}^{n} E\left[\tau_{r} \mid \tau_{r}>0\right] \cdot \operatorname{Pr}\left[\tau_{r}>0\right]
\end{aligned}
$$

It remains

- to compute $E\left[\tau_{r} \mid \tau_{r}>0\right]$, and
- give a lower bound on $\operatorname{Pr}\left[\tau_{r}>0\right]$.

Computing $E\left[\tau_{r} \mid \tau_{r}>0\right]$

This is the expected amount of time you stay in state τ_{r}, given that you visit it?

Given $\tau_{r}>0, \tau_{r}$ follows the geometric distribution, with probability of success $p(r, r)=\lambda_{r}$.

$$
\begin{aligned}
E\left[\tau_{r} \mid \tau_{r}>0\right] & =\sum_{t=1}^{\infty} t \lambda_{r}^{t-1}\left(1-\lambda_{r}\right) \\
& =\frac{1}{1-\lambda_{r}} \\
& =\frac{n}{\binom{r}{2}}\left(1+O\left(\frac{r^{2}}{n}\right)\right)
\end{aligned}
$$

Estimating $\operatorname{Pr}\left[\tau_{r}=0\right]$

We give an upper bound on $\operatorname{Pr}\left[\tau_{r}=0\right]$.

- If $\tau_{r}=0$ then the state s_{r} is never visited.
- Therefore there must exist a transition

$$
s_{r+d} \longrightarrow s_{r-j}
$$

for some positive integers d, j.

- In fact, before moving to state s_{r-j} it may stay in state s_{r+d} a number of times $t=0,1,2,3, \ldots$.
- Therefore we must take into account how long we stay in state s_{r+d} given that this state is visited.

Upper Bound on $\operatorname{Pr}\left[\tau_{r}=0\right]$

We can show that

$$
\begin{aligned}
\operatorname{Pr}\left[\tau_{r}=0\right] & =\sum_{d=1}^{n-r} \sum_{j=1}^{r-1} \operatorname{Pr}\left[\tau_{r+d}>0\right] \sum_{t=0}^{\infty} p(r+d, r-j) p(r+d, r+d)^{t} \\
& =\sum_{d=1}^{n-r} \sum_{j=1}^{r-1} \operatorname{Pr}\left[\tau_{r+d}>0\right] \frac{p(r+d, r-j)}{1-\lambda_{r+d}} \\
& \leq \sum_{d=1}^{n-r} \sum_{j=1}^{r-1}\binom{n}{r-j} \frac{S(r+d, r-j)(r-j)!}{n^{r+d}\left(1-\lambda_{r+d}\right)} \\
& \leq(n-1) \sum_{d=1}^{n-r} \frac{1}{n^{d}} \sum_{j=1}^{r-1} \frac{S(r+d, r-j)}{n^{j}}
\end{aligned}
$$

Recall: 1) $\left.\operatorname{Pr}\left[\tau_{r+d}>0\right] \leq 1,2\right) 1>1-\frac{1}{n}=\lambda_{2} \geq \cdots \geq \lambda_{n}>0$ and $\frac{1}{1-\lambda_{r+d}} \leq n-1$

Lower Bound on $\operatorname{Pr}\left[\tau_{r}>0\right]$
Hence we obtain for $r \leq\lfloor\log \log n\rfloor$

$$
\begin{aligned}
\operatorname{Pr}\left[\tau_{r}>0\right] & \geq 1-(n-1) \sum_{d=1}^{n-r} \frac{1}{n^{d}} \sum_{j=1}^{r-1} \frac{S(r+d, r-j)}{n^{j}} \\
& \geq 1-(n-1) \sum_{d=1}^{n-r} \frac{1}{n^{d}} \sum_{j=1}^{r-1} \frac{(2(r-j))^{r+d}}{n^{j}} \\
& \geq 1-(n-1) \sum_{d=1}^{n-r} \frac{1}{n^{d}} \frac{r(2 r)^{r+d}}{n} \\
& \geq 1-O\left(\frac{(2 \ell)^{\ell+2}}{n}\right) \\
& =1-o(1) .
\end{aligned}
$$

Proving the Lower Bound: $E[T] \geq 2 n(1+o(1))$
We have the idequality

$$
\begin{aligned}
E[T] & \geq \sum_{r=1}^{\ell} E\left[\tau_{r} \mid \tau_{r}>0\right] \cdot \operatorname{Pr}\left[\tau_{r}>0\right] \\
& \geq \sum_{r=2}^{\ell} \frac{n}{\binom{r}{2}} \\
& =2 n \sum_{r=2}^{\ell} \frac{1}{r(r-1)} \\
& =2 n \sum_{r=2}^{\ell}\left(\frac{1}{r-1}-\frac{1}{r}\right) \\
& =2 n\left(1-\frac{1}{\ell}\right)
\end{aligned}
$$

This completes the proof of the lower bound.

Idea of Proof of Upper Bound

Recall that $T=\sum_{m=2}^{n} \tau_{m}$. We split $E[T]$ into three sums

$$
\begin{aligned}
E[T] & =\sum_{m=2}^{n} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right] \\
& =\sum_{m=2}^{\xi_{1}} \cdots+\sum_{m=\xi_{1}+1}^{\xi_{2}} \cdots+\sum_{m=\xi_{2}+1}^{n} \cdots
\end{aligned}
$$

whereby

$$
\begin{aligned}
& \xi_{1}=\left\lfloor\sqrt{\frac{n}{\log n}}\right\rfloor \\
& \xi_{2}=\left\lfloor\frac{n}{\log ^{2} n}\right\rfloor
\end{aligned}
$$

and make upper bound estimates on each of them.

$$
\text { 1st Sum: }=\sum_{m=2}^{\xi_{1}} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right]
$$

Observe that

$$
\begin{aligned}
1 \text { st Sum } & \leq \sum_{m=2}^{\xi_{1}} \frac{1}{1-\lambda_{m}} \\
& =\sum_{m=2}^{\xi_{1}} \frac{1}{\frac{\binom{m}{2}}{n}+O\left(m^{4} / n^{2}\right)} \\
& =\sum_{m=2}^{\xi_{1}} \frac{n}{\binom{m}{2}+O\left(m^{4} / n\right)} \\
& \leq 2 n \sum_{m=2}^{\xi_{1}} \frac{1}{m(m-1)} \\
& =2 n\left(1-1 / \xi_{1}\right) \\
& =2 n(1+o(1))
\end{aligned}
$$

$$
\text { 2nd Sum: }=\sum_{m=\xi_{1}+1}^{\xi_{2}} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right]
$$

Observe that $\lambda_{\xi_{1}}=1-\frac{1}{2 \log n}+O\left(1 / \log ^{2} n\right)$.

$$
\begin{aligned}
2 \text { nd Sum } & \leq \sum_{m=\xi_{1}+1}^{\xi_{2}} \frac{1}{1-\lambda_{m}} \\
& =\frac{1}{1-\lambda_{\xi_{1}}} \sum_{m=\xi_{1}+1}^{\xi_{2}} 1 \\
& =O\left(\xi_{2} \log n\right) \\
& =O(n / \log n) \\
& =o(1)
\end{aligned}
$$

$$
\text { 3rd Sum: }=\sum_{m=\xi_{2}+1}^{n} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right]
$$

Observe that $\max _{m>\xi_{2}} \frac{1}{1-\lambda_{m}}=\frac{1}{1-\lambda_{\xi_{2}+1}}$. Hence,

$$
\begin{aligned}
3 \text { rd Sum } & \leq \sum_{m=\xi_{2}+1}^{n} \frac{1}{1-\lambda_{m}} \operatorname{Pr}\left[\tau_{m}>0\right] \\
& \leq \frac{1}{1-\lambda_{\xi_{2}+1}}\left(\sum_{m=\xi_{2}+1}^{n} \operatorname{Pr}\left[\tau_{m}>0\right]\right) \\
& \leq \frac{1}{1-\exp \left(-\binom{\xi_{2}}{2} / n\right)}\left(\sum_{m=\xi_{2}+1}^{n} \operatorname{Pr}\left[\tau_{m}>0\right]\right) \\
& \leq 2 \sum_{m=\xi_{2}+1}^{n} \operatorname{Pr}\left[\tau_{m}>0\right]
\end{aligned}
$$

for n large enough. It remains to bound the RHS above.

On Skipping Large States

To deal with $\sum_{m=\xi_{2}+1}^{n} \operatorname{Pr}\left[\tau_{m}>0\right]$ we will show that "every hit (i.e., $\tau_{m}>0$)" is followed by "many (i.e., β) misses (i.e., $\tau_{m-\delta}=0$, forall δ such that $1 \leq \delta \leq \beta$)"

Let us define

$$
\beta:=\beta(n)=\frac{1}{2}\left(\xi_{2}-n+n\left(1-\frac{1}{n}\right)^{\xi_{2}}\right)
$$

Observe that

$$
\beta(n) \gg \frac{n}{\log ^{4} n}
$$

Suppose we are in state s_{m} at time $t-1$, i.e., $\left|\operatorname{Range}\left(f^{(t-1)}\right)\right|=m$, and select the next function f_{t} at random.

Claim 1: If $B>\beta$ then $\tau_{m-\delta}=0$, for $1 \leq \delta \leq \beta$.
Let h be the restriction of f_{t} to the range of $f^{(t-1)}$.
Let R be the cardinality of the range of h, and $B=m-R$.
To prove the claim notice that

$$
\begin{aligned}
B>\beta & \Rightarrow m-R>\beta \\
& \Rightarrow R<m-\beta
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\operatorname{Range}\left(f^{(t)}\right)\right| & =\left|f^{(t)}([n])\right| \\
& =\left|f_{t}\left(f^{(t-1)}([n])\right)\right| \\
& =\left|h\left(\operatorname{Range}\left(f^{(t-1)}\right)\right)\right| \\
& =R .
\end{aligned}
$$

$$
\text { Claim 2: } E[B] \geq \xi_{2}-n+n\left(1-\frac{1}{n}\right)^{\xi_{2}} \gg \frac{n}{\log ^{4} n}
$$

Observe that

$$
\begin{aligned}
E[B] & =E[m-R] \\
& =m-E[R] \\
& =m-n+n\left(1-\frac{1}{n}\right)^{m} \\
& >\xi_{2}-n+n\left(1-\frac{1}{n}\right)^{\xi_{2}} \\
& =2 \beta \\
& >\frac{n}{\log ^{4} n}
\end{aligned}
$$

Also recall, $\operatorname{Var}(B)=$
$n^{2}\left(\left(1-\frac{2}{n}\right)^{m}-\left(1-\frac{1}{n}\right)^{2 m}\right)+n\left(\left(1-\frac{1}{n}\right)^{m}-\left(1-\frac{2}{n}\right)^{m}\right)=O(m)$.

$$
\text { Claim 4: } \operatorname{Pr}\left[\forall 1 \leq \delta \leq \beta\left(\tau_{m-\delta}=0\right) \mid \tau_{m}>0\right]
$$

By Chebeshev's Inequality and since $m>\xi_{2}$ we have

$$
\begin{aligned}
\operatorname{Pr}[|B| \leq \beta] & \leq \operatorname{Pr}\left[|B| \leq \frac{1}{2} E[B]\right] \\
& \leq \frac{4 \operatorname{Var}(B)}{(E[B])^{2}} \\
& =O\left(\frac{m \log ^{8} n}{n^{2}}\right) \\
& =o(1)
\end{aligned}
$$

Hence, $\operatorname{Pr}[|B|>\beta]=1-o(1)$. It follows, by Claim 1,

$$
\operatorname{Pr}\left[\forall 1 \leq \delta \leq \beta\left(\tau_{m-\delta}=0\right) \mid \tau_{m}>0\right]=1-o(1)
$$

Back to the 3rd Sum: $=\sum_{m=\xi_{2}+1}^{n} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right]$ Define $\chi_{m}=1$ if $\tau_{m}>0$ and $\chi_{m}=0$, otherwise. Recall that

$$
\begin{aligned}
3 \text { rd Sum } & \leq 2 \sum_{m=\xi_{2}+1}^{n} \operatorname{Pr}\left[\tau_{m}>0\right] \\
& =2 \sum_{m=\xi_{2}+1}^{n} E\left[\chi_{m}\right] \\
& =2 E\left[\sum_{m=\xi_{2}+1}^{n} \chi_{m}\right] \\
& =2 E[V]
\end{aligned}
$$

where $V:=\sum_{m=\xi_{2}+1}^{n} \chi_{m}$. Define $W:=\sum_{m=\xi_{2}+1}^{n}\left(1-\chi_{m}\right)$ and observe that $V+W=n-\xi_{2}$.

Back to the 3rd Sum: $=\sum_{m=\xi_{2}+1}^{n} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right]$ Note that if $\tau_{m}>0$ and $\forall 1 \leq \delta \leq \beta\left(\tau_{m-\delta}=0\right)$ then these β missed states contribute exactly β to W. Hence, if we define $J_{m}=\chi_{m} \cdot \prod_{\delta=1}^{\beta}\left(1-\chi_{m-\delta}\right)$ then $W \geq \beta \sum_{m>\xi_{2}} J_{m}$. Hence,

$$
\begin{aligned}
E[W] & \geq \beta \sum_{m>\xi_{2}} E\left[J_{m}\right] \\
& =\beta \sum_{m>\xi_{2}} \operatorname{Pr}\left[J_{m}=1\right] \\
& =\beta \sum_{m>\xi_{2}} \operatorname{Pr}\left[\tau_{m}>0\right] \operatorname{Pr}\left[\forall 1 \leq \delta \leq \beta\left(\tau_{m-\delta}=0\right) \mid \tau_{m}>0\right] \\
& \geq \beta(1+o(1)) \sum_{m>\xi_{2}} \operatorname{Pr}\left[\tau_{m}>0\right] \\
& =\beta(1+o(1)) E[V]
\end{aligned}
$$

Back to the 3rd Sum: $=\sum_{m=\xi_{2}+1}^{n} E\left[\tau_{m} \mid \tau_{m}>0\right] \cdot \operatorname{Pr}\left[\tau_{m}>0\right]$
It follows that

$$
\begin{aligned}
E[V] & \left.=n-\xi_{2}-E[W]\right) \\
& \left.\leq n-\xi_{2}-\beta(1+o(1)) E[V]\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
3 \text { rd Sum } & \leq 2 E[V] \\
& \leq \frac{2\left(n-\xi_{2}\right)}{1+\beta(1+o(1))} \\
& =O\left(\log ^{4} n\right) \\
& =o(n) .
\end{aligned}
$$

This completes the proof of the theorem.

Another Idea: Hitting Times

For $r=1,2, \ldots, n$, let t_{r} be the (hitting) time that the chain spends in transient state r until absorbtion by state 1 .

- Let the $(n-1) \times(n-1)$ matrix Q be obtained from the transition matrix P by removing the first row and column.
- It is easy to see that $t_{1}=1$ and $t_{r}=1_{r=1}+\sum_{r^{\prime}=2}^{r} p\left(r, r^{\prime}\right) t_{r^{\prime}}$
- If I is the unit matrix and t is the vector of hitting times then $t=I+Q t$, which is equivalent to $t(I-Q)=I$. So to compute the hitting times it is enough to compute the inverse of the matrix $I-Q$.
- Easy to prove: if $\lim _{k \rightarrow \infty} Q^{k}=\mathbf{0}$ then $(I-Q)^{-1}=\sum_{k=0} Q^{k}$. Speed of convergence depends on 2nd largest eigenvalue!

Open Questions

- Consider the space $\mathcal{H}(n):=\mathcal{F}(n, n / 2)$ of hash functions.
- Consider different probability distributions on $\mathcal{F}(n)$. The reason is that in practice one has preference over certain types of random functions.
- Consider a space $\{(A, B)\}$ of pairs of $d \times d$ (random) matrices and the functions $x \rightarrow A x+B$. States are determined by the rank of a random matrix. This problem is equivalent to estimating the time T until the product of T random matrices is $\mathbf{0}$.

