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Random Functions

For n integer, [n] = {1,2,...,n}.

F(m,n) is the space of functions f : [m] — [n].

F(n):=F(n,n).

A function f is chosen from F(n) randomly with the uniform
distribution.

Range of f is defined by Range(f) := {y : 3= € [n]f(z) = y}.

Question:
What is the expected size of the range of a random function?
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Values of Random Functions

For random function f : [m] — [n] and given = € [m],y € [n],

For random function f : [m] — [n] and given y € [n], the size of the

inverse image f~!({y}) satisfies,

. l)m—kz

Prlf 7 ({yh) =k =

for k=0,1,...,n.
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Graph of a Random Function

Given f € F(n) the graph G(f) has [n] as its set of vertices and
directed edges (z,y) € E < f(z) = y. Define the k-the iterate f*
of f by fO = identity function and f* := fo fF=1.

The orbit (or cycle) of x is defined by

Of(x) = {z, f(x), f(f(z)),.... " (2)}.

If £,, is the r.v. that counts the length of an orbit it can be shown
(Sachkov 1997)
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Connected Components of a Random Function

The connected components of the graph G(f) consist of the orbits
and trees attached to them.

The elements of a cycle are called cyclic elements of G(f).

The distance of an element from its cycle is called its height.
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# of Connected Components of a Random Function

Let IC,, be the r.v. that counts the number of connected

components of a random function in F(n).

A result of Stepanov (1966) states that
\k—1

k=J

1

5 logn(1+ o(1))

% logn(1+ o(1)),

where S(k, j) is the # of ways to partition a k element set into j
disjoint subsets, a Stirling number of the 2nd kind.
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# of Cyclic Elements of a Random Function

Let Z,, be the r.v. that counts the number of distinct cyclic
elements of a random function in F(n).

A result of Harris (1973) states that
Pr|Z, = k]

E|Z,

2]

where (n)y =n(n—1)---(n—k+1).
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Expected Size of Range of a Random Function f : [m] — [n]

Consider the indicator function I;: I; = 1 if ¢ € Range(f), and
I, = 0, otherwise. Then we have

E||[Range(f)]] K ZI]

ZE[IZ-]
nPr[Il - 1]
n(1 —Pr[1 € Range(f)])

(1))
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Random Functions Cause Shrinkage!

Given a random function f € F(n),

1

E[|Range(f)|] = n — n (1 ~ —)n ~n(l—1/e).

n

[n] [n]
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What Causes Shrinkage?

Consider a random function f : [m] — [n] (with m < n): shrinkage

is caused by collisions among the elements f(1), f(2),..., f(m), i.e.,

= f(y), for some x # y.

Pr|collision] Pr[dz # y(f(z) = F(y))]
1 —PrlVz # y(f(z) # f(y))]

m—1

1 — H i (Birthday paradox)

. n
1=0

m—1 .
1
1— 1 ——
()
1=0
Hence, the bigger the m the higher the probability of a collision!
We see later that this causes the “Markov Chain” to skip

large states!
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Variance of |Range(f)| for a Random Function f : [m] — [n]

Let X be the r.v. that counts the size of Range(f) and U =n — X.
Consider the indicator function I;: I] =1 if i ¢ Range(f), and
I! =1, otherwise. Observe that

Var(X) Var(U)
E[U? - E[U)?
> B[]+ E[I]]- EU)?

17

n(n — 1) (1i)m+n(121
#0003
(-3 (-2))
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Compositions of Random Functions

k functions f1, fa, ..., fx are chosen from F(n) randomly and

independently with the uniform distribution.

Let f(®) := fro fe_10---0 f1.

Convention:

f©) = identity function on [n).

f(F) ig called a random composition.

Question:

Since the expected size of the range of a random function is a
constant fraction of the size of its domain, how long does it
take for a random composition to become constant?
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Iterations of Random Functions

Model proposed by (Diaconis & Freedman 1999)

There is a state space S.

There is a family of functions F such that each F' € F maps
the state space into itself F': S — S.

There is a probability distribution p on F.

If the chain is at state s € S it moves to state F'(s) by choosing
F ¢ F at random.

The process starts with Fy and inductively defines
X¢11 = F(X;) where F' is a random function F' € F.
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Example I: Linear Affine Functions
The state space S is the real line.
F ={Fy, F_} has just two functions defined as follows
F, : R-R:z— F (r)=ar+1
F.: R—-R:z—F (z)=axr—1,
where 0 < a < 1.

The probability distribution g on F is u(Fy) = pu(F-) =1/2.
Let & = +1 with probability 1/2, respectively.

The process starts with £y and inductively defines
X¢11 = F(X;) where F is a random function F' € F.

Clearly, X;11 = aX; + & and the stationary distribution

Xoo = &1 4 aéy + a®E5 + - - - converges since a < 1.
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Example II: d-dimensional Affine Functions
The state space S is the d-dimensional space R?.

JF contains a set of functions of the form

F:RY - R%:2 — F(x) = Az + B,

Ais an d X d matrix and B is a d X 1 vector.

F can be identified with a set of pairs (A, B) of matrices and
we have a probability distribution y on F.

The basic chain is X;11 = A: X; + B¢, where A; isan d X d
matrix and B; a d x 1 vector, and (A;, B;) are idependent and
identically distributed.

This has applications in fractal geometry.
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Example III: Random Compositions

States specify the “size of the range” of a random composition

and these states form the state space S.

A family of functions {oy : f € F(n)} maps the state space into
itself as follows: Given a function g € F(n) already in state s,

s — os(s) := size of range of f og.

The probability distribution on {os : f € F(n)} is uniform.

If the chain is at state s € S it moves to state o¢(s) by

choosing f at random.

The process starts with fy (identity function) and inductively
defines X; 1 = oy(X;) where f is a random function f € F(n).
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Example IV: Random Compositions of Hashes

States specify the “size of the range” of a random composition
and these states form the state space S.

H(n) is the set of functions f : [n] — [n/2].

A family of functions {oj : h € H(n)} maps the state space into
itself as follows: Given a function g € H(n) already in state s,

s — op(s) := size of range of h o g.

The probability distribution on {oj : h € H(n)} is uniform.

If the chain is at state s € S it moves to state o¢(s) by

choosing f at random.

The process starts with a given function hg and inductively
defines X; 11 = o, (X;) where h is a random function h € H(n).
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Waiting Time until Absorption
For t > 0, we are in state s, iff |Range(f®)| =r.
7, = |{t : |[Range(f®)| = r}| is the amount of time in state s,..

State s, is visited if 7,- > 0. and 7 is the set of states that are
actually visited.

Let T be the smallest ¢t for which ) is constant, i.e.,

T = irr
r=1

e
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How is T' Computed

The Markov chain starts with the identity function f(® at time

0 in state s,,.

By the nature of the problem, states are visited in

non-increasing order.

It is possible that states may be “skipped”.

Eventually it reaches s, the absorbing state.

T is really the time it takes to reach the absorbing state s;.

The main result is the following

Theorem: E[T| =2n(1+ o(1)), as n — oo.
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Transition Probabilities

For j < i, what is the probability f®) e s; given that f=D ¢ g7
Given that f¢~1 € s;, how many functions f are there such that
fo ft=1) has j elements in its range?

e The are (7;’) ways to choose the range of f o f(!=1),

e S(i,7)j! ways to map the i-element range of f(*~1) onto a given
j element set, where S(i, j) is the # of ways to partition a i
element set into j disjoint subsets, a Stirling number of the 2nd

kind, and

n

e 1" ways to map them into [n].

It follows that

p(i,§) = Prlf® € s, f0D € s;] = ( .
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Upper Bound on Stirling Numbers S(i, j)

S(t,7) = # of ways to partition a i element set into j subsets.

e Prove by induction S(i,7) < (27)°.

e Fori=1: 5(1,5) <2j

e We have that

5(i,7)

S(i—1,5—1)+jS(G —1,7) (Identity)

(2(5 — 1)) ' 4+ 4(25)" ! (Induction)

(=)
(27)".
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Eigenvalues of the Transition Matrix
The transition matrix P := (p(%,7)i ; is lower diagonal.

Eigenvalues are the diagonal elements of the matrix, i.e.,

Ar

Note: 1>1— 5 =X > >\, >0and y—— <n—1
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Transition Probabilities for Affine Matrices

Consider d X d matrices over, say, the finite field Z7 and let
A := T be the identity matrix.

AW = A, A®=D where A, is a random matrix.
For ¢t > 0 we are in state r iff rank(A®)) = r.
7, = |{t : rank(A®) = r}| is the amount of time in state s,..

Open Question: For ;7 < i, compute the transition

probabilities

p(i,j) := Prlrank(A®Y) = j | rank(A¢~Y) = 4].

This is equivalent to computing the number of matrices B such
that rank(BA) = j, given that rank(A) = 1.
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Lower Bound on E|T]

We have the identity

E|T)] E in]

r=2

Z Elr]

iE 7|7 > 0] - Pr[r, > 0].

r=2
It remains
e to compute E [7.|7. > 0], and

e give a lower bound on Pr|r,. > 0].
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Computing E [7,|7, > 0]

This is the expected amount of time you stay in state 7,., given that

you visit it?

Given 7. > 0, 7, follows the geometric distribution, with

probability of success p(r,r) = ..

E [1|1. > 0]
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Estimating Pr[r. = 0]

We give an upper bound on Pr{r, = 0].

If 7. = 0 then the state s, is never visited.
Therefore there must exist a transition
Sr4+d = Sr—j,

for some positive integers d, j.

In fact, before moving to state s,_; it may stay in state s,;1q a

number of times ¢t =0,1,2,3,....

Therefore we must take into account how long we stay in state

sr+4 given that this state is visited.
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Upper Bound on Pr[r, = 0]

We can show that

n—rr—1 o0

Z ZPI[Tr+d > O] Zp(r + d,?“ —j)p(?“ + d,’l“ + d>t

d=1 j=1 t=0

p(T-I—d,T—j)
1_)\T—|—d

n—rr—1

<

Recall 1) Prir,1qg>0]<1,2)1>1— > .- >\, >0 and
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Lower Bound on Pr[r, > 0]

Hence we obtain for r < |loglogn |

Pr|r. > 0]

> 1 — n—l Z
1—(n—1) Z

1—(n—1)
d=1

o2

1 —o(1).

1

n

d

1
nd

ZS +d’r—])

T—] 7"—|—d

Z

— 1 ’r(2fr)""+d

n

)

d

n
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Proving the Lower Bound: E[T] > 2n(1 + o(1))

We have the idequality
E[T] > E [1.|7 > 0] - Pr[1. > 0]

n

(5)

r—l

14

2
QTLZ

r=>2

on (

This completes the proof of the lower bound.
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Idea of Proof of Upper Bound

Recall that =" _, 7,,. We split E[T] into three sums

E[T] i E [T |Tm > 0] - Pr{71,, > 0]

3

m=2 m=&1+1 m=&o+1

[ n
<1 i lognJ

n
2 _log2 nJ

and make upper bound estimates on each of them.

whereby
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1st Sum: = Zfﬁ:g E [Tm|Tm > 0] - Pr[r,, > 0]
Observe that

1st Sum

3 1
anZZQ m(m — 1)
2n(1 —1/&;)
2n(1+o(1))
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2nd Sum: = Z%:&H E [Tm|Tm > 0] - Pr[r,, > 0]

Observe that \¢, = 1 — 57— + O(1/log” n).

2logn

2nd Sum

E. Kranakis, Fall 2004
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3rd Sum: =} . . E7y|7m > 0] Prlr, > 0]

1

. Hen
3,11 ence,

Observe that max,,>¢, —5— =

3rd Sum < Pr|7, > 0]

i Pr|r, > 0]

1 — )\52+1 M=t 1

1 n
1 —exp (—(%2)/%) m§+1pr[7m -

2 i Pr|r, > 0],

ngg—l—l

for n large enough. It remains to bound the RHS above.
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On Skipping Large States

To deal with Y " _. | Pr[r,, > 0] we will show that “every hit
(i.e., T, > 0)” is followed by “many (i.e., 3) misses (i.e., Tp—s5 = 0,
forall § such that 1 < § < 3)”

Let us define

ODbserve that
n
n)>> .
B(n) og™

Suppose we are in state s, at time ¢ — 1, i.e., |[Range(f=1))| = m,

and select the next function f; at random.
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Claim 1: If B> @ then 7,_5 =0, for 1 <9 < (.
Let h be the restriction of f; to the range of f(t—1).
Let R be the cardinality of the range of A, and B =m — R.

To prove the claim notice that

B> = m-—-R>p
= R<m-p0

FO([n))]

Fe(FOD ()]
h(Range(f“~1))]
R.
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Claim 2: E[B] > & —n+n(l — 1) >>

Observe that

E[B]

Also recall, Var(B) =

2 ((1=2)" = (1= 1)) +n((1- L

E. Kranakis, Fall 2004
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Claim 4: Pr[V1 <6 < B(1pm_s = 0)|1 > 0]

By Chebeshev’s Inequality and since m > &5 we have

Pr[|B| < ] <

Pr [\B\ < %E[B]]

4Var(B)
(E|B])?

loo®
O(mogjr n)
n

o(1).

Hence, Pr|[|B| > 8] =1 — o(1). It follows, by Claim 1,

Pr[Vl <6 < B(Tim—s = 0)|mm > 0] =1 —0o(1).
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Back to the 3rd Sum: =3 " _. | E[ry|7m > 0] Pr[r, > 0]

Define v,, = 1if 7,,, > 0 and x,, = 0, otherwise. Recall that

3rd Sum < 2 Z Pr[ry, > 0]
m=&2+1

where V := 7" . | Xm. Define W:=3"" . (1—xm)and
observe that V + W =n — &.
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Back to the 3rd Sum: =3 " _. | E[ry|7m > 0] Pr[r, > 0]

Note that if 7,,, > 0 and V1 < § < 3(7,,_s = 0) then these 8 missed
states contribute exactly 5 to W. Hence, if we define

Im = Xm H?Zl(l — Xm—s) then W >G5 . Jy. Hence,

EW] >

B Y Priry > 0]PrlV1 <6 < B(7m—s = 0)|7ym > 0]

m>&2

B(L+0(1)) Y Prlrm > 0]

m>&2

B(1+o(1))E[V].
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Back to the 3rd Sum: =3 " _. | E[ry|7m > 0] Pr[r, > 0]

It follows that

EV] n—& — E[W])
n—& — B(1+0(1))E[V])

3rd Sum < 2FE|V]

2(n — &)
1+ B(1+o0(1))
O(log* n)

o(n).

This completes the proof of the theorem.
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Another Idea: Hitting Times

For r =1,2,...,n, let ¢, be the (hitting) time that the chain
spends in transient state r until absorbtion by state 1.

e Let the (n —1) x (n — 1) matrix ) be obtained from the

transition matrix P by removing the first row and column.
o It is easy to see that ty =1 and ¢, = 1,1 + >, _, p(r,7')t,

e If I is the unit matrix and t is the vector of hitting times then
t = I + Qt, which is equivalent to ¢(I — Q) = I. So to compute
the hitting times it is enough to compute the inverse of the
matrix I — Q.

e Easy to prove: if limg_,o, Q* =0 then (I —Q)™' =>", _, Q".
Speed of convergence depends on 2nd largest

eigenvalue!
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Open Questions
e Consider the space H(n) := F(n,n/2) of hash functions.

e Consider different probability distributions on F(n). The
reason is that in practice one has preference over certain types

of random functions.

Consider a space {(A, B)} of pairs of d x d (random) matrices

and the functions + — Ax 4+ B. States are determined by the
rank of a random matrix. This problem is equivalent to
estimating the time 7' until the product of T' random matrices
1s 0.
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