
Scope and Code Generation

Pat Morin

COMP 3002



2

Scope
• Scoping rules define how variable names 

are looked up when a program is run or 
compiled

• We have seen how to implement scoping 
rules in a typechecker

• How does it work in a code generator?



3

Run-time Environments
• During execution, each time a function call 

is made, a new stack frame is created to 
hold all the parameters and local variables 
for that function call

• Local variables are assigned a position 
within their stack frame

• A frame pointer (fp) keeps track of the top 
of the current stack frame



4

Example of stack frame layout

int factorial(int n) {
  if (n == 1) return 1;
  int t = factorial(n-1);
  return n * t;
}

n (4 bytes)
t (4 bytes)



5

A Runtime Example

n 5
t undefined

n 4
t undefined

n 3
t undefined

n 2
t 1

factorial(5)

factorial(4)

factorial(3)

factorial(2)
fp



6

Discussion
• The compiler assigns, to each variable and 

parameter, a location within the current 
stack frame

• Operations on local variables are compiled 
into operations on memory locations 
relative to the frame pointer (fp)

• But now all variable references are to local 
variables
– We assume static lexical scoping



7

A more complicated example

int odd_factorial(int q) {
  int factorial(int n) {
    if (n == 1) return q;
    int t = factorial(n-1);
    return n * t;
  }
  if (q % t == 0)
    return t;
  return factorial(t);
} n (4 bytes)

t (4 bytes)

q (4 bytes)



8

A Runtime Example

n 5
t undefined

n 4
t undefined

n 3
t undefined

n 2
t 1

factorial(5)

factorial(4)

factorial(3)

factorial(2)

fp

q 5 even_factorial(5)

n 1
t undefined

• How do we access q within factorial?



9

Solution 1
• Each function has a static level of scope

– Global scope - level 0
– even_factorial – level 1
– factorial – level 2

• Each stack frame contains an extra pointer 
fpp that points to the stack frame at the 
next highest level (fpp is actually an implicit 
parameter)



10

A Runtime Example

fpp
n 3
t undefined

fpp 
n 2
t 1

factorial(3)

factorial(2)

fp

q 3 even_factorial(3)

fpp
n 1
t undefined

• Now we know how to find q from within any 
recursive call
– q is at memory location fpp + 0

factorial(1)



11

Solution 2
• The problem with solution 2 is that it 

becomes increasingly expensive to access 
elements that are further away in scope
– Current level i
– Variable to access is at level j>i
– We must follow j-i fpp pointers

• To speed this up, we can use a global array 
frame_pointers
– frame_pointers[i] is the frame pointer to the 

currently active level i frame



12

Frame pointer array example

n 3
t undefined

n 2
t 1

factorial(3)

factorial(2)

fp

q 3 even_factorial(3)

n 1
t undefined

factorial(1)

 

 
 

 
 

 
 



13

Solution 2 (Cont'd)
• Within a function at level i

– Save tmp = frame_pointers[i]
– Set frame_pointer[i] = fp (current frame pointer)
– Before returning, restore frame_pointers[i] = tmp

• When accessing a variable at level i from a 
level j > i we can get the correct frame 
pointer just by looking at frame_pointers[i]



14

Solution 1 versus Solution 2
• Whether to use Solution 1 or 2 depends on 

how often variables at higher levels of 
scope are accessed
– Solution 1 is more costly when accessing variables 

that are at much higher scope levels
– Solution 2 increases the cost of every function call 

but makes all variable accesses constant time



15

What About Objects?
• For compilers, objects are just structures

• When calling a method on an object, an 
implicit pointer to the object is passed (this 
or self) to the method

• Inheritance is handled by having the child 
class inherit the structure of the parent and 
then add on its own elements



16

Inheritance Example
• Any method that assumes the memory 

layout of a Book can be used on a Novel or 
a Collection

Book
title -> String

Novel
author -> String

Collection
editor -> String

Book
title (4 bytes)

Novel
title (4 bytes)

Collection
title (4 bytes)

author (4 bytes) editor (4 bytes



17

"Virtual" Methods
• For each "virtual" object method, a new 

instance variable can be created

• When a child class overrides a method in a 
parent class, the instance variable is just 
overridden

Book
title (4 bytes)
fnPrint -> printBook

Novel
title (4 bytes)
fnPrint -> printNovel

Collection
title (4 bytes)
fnPrint -> printColl

author (4 bytes) editor (4 bytes)



18

"Virtual" Methods (Cont'd)
• Virtual methods require two extra levels of 

indirection
– Lookup the function address in this or self (1 level)
– Load the function address and call it

• For this reason, some languages (C++ and 
Java) mix "virtual" and non-virtual functions
– In C++ the virtual keyword is used to specify virtual 

functions (all others are non-virtual)
– In Java, the final keyword is used to specify non-

virtual functions (these can't be overridden by a 
subclass)



19

Summary
• A compiler must resolve occurrences of a 

variable to the memory location of that 
variable

• For static lexical scoping, this is done using 
parent frame pointers (fpp)
– 2 solutions:

• 1 - slower lookup for deeply nested functions
• 2 - slower function calls but faster lookup

• For objects, this is even easier
– Objects inherit their structure from their parents
– "Virtual" functions are just instance variables


	Title of  presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

