
Bottom-Up Parsing

COMP3002
School of Computer Science

2

Bottom-Up Parsing

  We start with the leaves of the parse tree
(individual tokens) and work our way up to the
root.

Example

3

Reductions

  Find a handle
– Elements in the string that form the right-hand side of a

production in the grammar.

  Replace
– Replace the handle with the left-hand side of the grammar it

matches.

  Stop
– When we end up with only the start symbol, we stop.

  Derivation in reverse
– Reverse the reductions to get a sequence of derivations.
– Specifically, a rightmost derivation.

4

Example (again…)

  We constructed the tree using 5 reductions…

 id * id

 F * id

 T * id
 T * F

 F

 E

5

Shift-Reduce Parsing

  Shift
– Shift the next element on the input to the top of the stack.

  Reduce
– There is a handle on top of the stack. Replace those

elements with the left-hand side of the associated
production.

  Accept
– There is no more input to process.
– The stack consists only of the start symbol.

  Error
– Syntax error discovered.

6

Example (yet again!)

7

8

Shift-Reduce Conflict

  Can’t decide whether to shift or reduce…

 stmt → if expr then stmt

 | if expr then stmt else stmt

 | other

  Consider following stack configuration…

9

STACK INPUT
$ … if expr then stmt else … $

Reduce-Reduce Conflict

  What production to reduce by?

 …

 E → S

 F → S

 …

  What production to reduce by?

10

STACK INPUT
$ … S … $

LR Parsers

  LR(k) Parsers
– L for left-to-right scanning
– R for rightmost derivation
–  k symbols of lookahead

  Different types…
–  Simple LR (SLR)
–  Canonical-LR
–  LALR

11

Why is this good?

  Lookahead is easier
– LR(k) looks ahead k symbols in a right-sentential form, and

matches a production.
– LL(k) tries to recognize a production from the first k

characters of the string it derives.
– So, more grammars.

  Error Handling
– Detect syntax errors as soon as they occur.

12

Conflict Resolution

  Construct a finite automaton (FA) that recognizes
the right-hand-side of productions by scanning the
input from right to left.

  Items
– An item of G is a production of G with a dot at some position

of the body.
– Eg, A → X . YZ
– A state in our FA is a set of items.

  This is Simple LR (SLR) Parsing

13

Break

14

Constructing the Finite Automaton

We need the Canonical Collection of LR(0) Items.

1.  Augment the grammar

2.  CLOSURE of items

3.  GOTO function between items

15

Augmented Grammars

  To augment grammar G with start symbol S, we
add a new production S’ → S and make S’ the
new start symbol.

 E’ → E
 E → E + T | T
 T → T * F | F
 F → (E) | id

16

Closure

  CLOSURE(I), where I is a set of items for a
grammar G.
1.  Initially, add every item in I to CLOSURE(I)
2.  If A → x . B y is in CLOSURE(I), and B → . w is a

production, add B → .w to CLOSURE(I) if it isn’t there
already.

3.  Apply Rule 2 until no more new items are added to
CLOSURE(I).

17

Example

  If I = { E’ →.E }, then CLOSURE(I):

E’ → E
E → . E + T
E → . T
T → .T * F
T → . F
F → .(E)

F → . id

18

The GOTO Function

  GOTO(I, X) defined where I is an item and X is a
grammar symbol.

  Defines the transitions between sets of items in
the finite automaton.

  If [A → a . X b] is in I, GOTO(I, X) contains
CLOSURE(A → a X . b)

19

Example

 I

E’ → E .

E → E . + T

20

A fat groundhog

21

Canonical Collection of LR(0) items

C = CLOSURE({ S’ → . S })

repeat
 for each set of items I in C

 for each grammar symbol X

 if GOTO(I,X) is not empty and not in C

 add GOTO(I,X) to C

until no new sets of items are added to see

22

23

Simple LR Parsing

  Parse Table
– ACTION and GOTO functions
– Built from the finite automaton

  GOTO
– Defined as before

  ACTION
–  If [A → A . x B] is in Ii, and GOTO(Ii, x) = Ij, then

 ACTION(i, x) = “shift j”
–  If [A → X .] is in Ii, then

 ACTION(i, a) = “reduce A →X” for all a in FOLLOW(A).

24

Elements of SLR Parser

  Stack
– Maintains a stack of states
– Used to resolve conflicts.

  Symbols
– Grammar symbols corresponding to states on the stack

25

Shift-Reduce Parsing

  ACTION[s,a] = shift j
– Push j onto the stack
– Append a to the input symbols

  ACTION[s,a] = reduce A → X
– Pop |X| symbols off the stack
– Let t be state on top of the stack
– Push GOTO[t, A] onto the stack

  Accept, Error
– As before

26

Example

27

28

Canonical LR Parsing

  In SLR, we always reduce by [A → B .] on input
a if it is in FOLLOW(A).

  However, there may be some prefix XYZA that
can never be followed by a.

  In Canonical LR Parsing, for each item we store
a lookahead that we have to see before
reducing. Eg, [A → B . (a)]

LALR

  Lookahead LR

  Canonical LR tables are typically an order of
magnitude larger than SLR tables.

  Construct Canonical LR table, prune them.

29

Final Thoughts

  Hard to implement
– Compared to LL(k) parsers.
–  In practice, don’t construct them.
–  Instead, use parser generators.

  More powerful
– Every LL(k) grammar is LR(k)
– Reverse not necessarily true.

30

Fin!

31

