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Bottom-Up Parsing  

  We start with the leaves of the parse tree 
(individual tokens) and work our way up to the 
root. 



Example 
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Reductions 

  Find a handle  
– Elements in the string that form the right-hand side of a 

production in the grammar.   

  Replace 
– Replace the handle with the left-hand side of the grammar it 

matches. 

  Stop 
– When we end up with only the start symbol, we stop. 

  Derivation in reverse 
– Reverse the reductions to get a sequence of derivations. 
– Specifically, a rightmost derivation. 
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Example (again…) 

  We constructed the tree using 5 reductions… 

  id * id 

  F * id 

  T * id 
  T * F 

  F 

  E 
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Shift-Reduce Parsing  

  Shift 
– Shift the next element on the input to the top of the stack. 

  Reduce 
– There is a handle on top of the stack.  Replace those 

elements with the left-hand side of the associated 
production. 

  Accept 
– There is no more input to process. 
– The stack consists only of the start symbol. 

  Error 
– Syntax error discovered. 

6 



Example (yet again!) 
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Shift-Reduce Conflict 

  Can’t decide whether to shift or reduce… 

 stmt  →  if expr then stmt 

     | if expr then stmt else stmt 

     | other 

  Consider following stack configuration… 
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STACK INPUT 
$ … if expr then stmt else … $ 



Reduce-Reduce Conflict 

  What production to reduce by? 

   … 

  E → S 

  F → S 

   … 

  What production to reduce by? 
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STACK INPUT 
$ … S … $ 



LR Parsers 

  LR(k) Parsers 
– L for left-to-right scanning 
– R for rightmost derivation 
–  k symbols of lookahead 

  Different types… 
–   Simple LR (SLR) 
–   Canonical-LR 
–   LALR 
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Why is this good? 

  Lookahead is easier 
– LR(k) looks ahead k symbols in a right-sentential form, and 

matches a production.    
– LL(k) tries to recognize a production from the first k 

characters of the string it derives. 
– So, more grammars. 

  Error Handling 
– Detect syntax errors as soon as they occur. 
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Conflict Resolution 

  Construct a finite automaton (FA) that recognizes 
the right-hand-side of productions by scanning the 
input from right to left. 

  Items 
– An item of G is a production of G with a dot at some position 

of the body. 
– Eg, A → X . YZ   
– A state in our FA is a set of items. 

  This is Simple LR (SLR) Parsing 
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Break 
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Constructing the Finite Automaton 

We need the Canonical Collection of LR(0) Items. 

1.  Augment the grammar 

2.  CLOSURE of items 

3.  GOTO function between items 
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Augmented Grammars 

  To augment grammar G with start symbol S, we 
add a new production S’ → S and make S’ the 
new start symbol. 

 E’  → E 
 E  →  E + T | T 
 T →  T * F | F 
 F →  (E) | id  
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Closure 

  CLOSURE(I), where I is a set of items for a 
grammar G. 
1.  Initially, add every item in I to CLOSURE(I) 
2.  If A → x . B y is in CLOSURE(I), and B → . w is a 

production, add B → .w to CLOSURE(I) if it isn’t there 
already. 

3.  Apply Rule 2 until no more new items are added to 
CLOSURE(I).  
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Example 

  If I = { E’ →.E }, then CLOSURE(I): 

E’ → E 
E → . E + T 
E → . T 
T → .T * F 
T → . F 
F → .( E ) 

F → . id  
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The GOTO Function 

  GOTO(I, X) defined where I is an item and X is a 
grammar symbol. 

  Defines the transitions between sets of items in 
the finite automaton. 

  If [A → a . X b ] is in I, GOTO(I, X) contains 
CLOSURE( A → a X . b ) 
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Example 

 I 

E’ → E . 

E → E . + T 
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A fat groundhog 
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Canonical Collection of LR(0) items 

C = CLOSURE( { S’ → . S } ) 

repeat 
 for each set of items I in C 

  for each grammar symbol X 

   if GOTO(I,X) is not empty and not in C 

    add GOTO(I,X) to C 

until no new sets of items are added to see 
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Simple LR Parsing 

  Parse Table 
– ACTION and GOTO functions 
– Built from the finite automaton 

  GOTO 
– Defined as before 

  ACTION 
–  If [A → A . x B ]  is in Ii, and GOTO(Ii, x) = Ij, then   

 ACTION(i, x) = “shift j” 
–  If [A → X . ] is in Ii, then 

 ACTION(i, a) = “reduce A →X” for all a in FOLLOW(A). 
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Elements of SLR Parser 

  Stack 
– Maintains a stack of states 
– Used to resolve conflicts. 

  Symbols 
– Grammar symbols corresponding to states on the stack 

25 



Shift-Reduce Parsing  

  ACTION[s,a] = shift j 
– Push j onto the stack 
– Append a to the input symbols  

  ACTION[s,a] = reduce A → X 
– Pop |X| symbols off the stack 
– Let t be state on top of the stack 
– Push GOTO[t, A] onto the stack 

  Accept, Error 
– As before 
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Example 
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Canonical LR Parsing 

  In SLR, we always reduce by [A → B . ] on input 
a if it is in FOLLOW(A). 

  However, there may be some prefix XYZA that 
can never be followed by a. 

  In Canonical LR Parsing, for each item we store 
a lookahead that we have to see before 
reducing. Eg, [A → B . (a) ]   



LALR 

  Lookahead LR 

  Canonical LR tables are typically an order of 
magnitude larger than SLR tables. 

  Construct Canonical LR table, prune them. 

29 



Final Thoughts 

  Hard to implement 
– Compared to LL(k) parsers. 
–  In practice, don’t construct them. 
–  Instead, use parser generators. 

  More powerful 
– Every LL(k) grammar is LR(k) 
– Reverse not necessarily true. 
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Fin! 
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