
Parsing

COMP 3002

School of Computer Science

2

The Structure of a Compiler

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

tokenizer parser
token
stream

3

Role of the Parser

• Converts a token stream into an
intermediate representation
– Captures the meaning (instead of text) of the

program
– Usually, intermediate representation is a parse tree

<id, "x"> <assign> <id, "x"> <plus> <number, "1">

id, "x"

=

id, "x"

+

number, "1"

x = x + 1

4

Kinds of Parsers

• Universal
– Can parse any grammar
– Cocke-Younger-Kasami and Earley's algorithms
– Not efficient enough to be used in compilers

• Top-down
– Builds parse trees from the top (root) down

• Bottom-up
– Builds parse trees from the bottom (leaves) up

5

Errors in Parsing

• Lexical errors
– Misspelled identifiers, keywords, or operators

• Syntactical errors
– Misplaced or mismatched parentheses, case

statement outside of any switch statement,...

• Semantic errors
– Type mismatches between operators and operands

• Logical errors
– Bugs – the programmer said one thing but meant

something else
• if (x = y) { ... }
• if (x == y) { ... }

6

Error Reporting

• A parser should
– report the presence of errors clearly and correctly

and
– recover from errors quickly enough to detect further

errors

7

Error Recovery Modes

• Panic-Mode
– discard input symbols until a "synchronizing token" is

found
– Examples (in Java): semicolon, '}'

• Phrase-Level
– replace a prefix of the remaining input to correct it
– Example: Insert ';' or '{'
– must be careful to avoid infinite loops

8

Error Recover Modes (Cont'd)

• Error Productions
– Specify common errors as part of the language

specification

• Global Correction
– Compute the smallest set of changes that will make

the program syntactically correct (impractical and
usually not usually useful)

9

Context-Free Grammars

• CF grammars are used to define languages

• Specified using BNF notation
– A set of non-terminals N
– A set of terminals T
– A list of rewrite rules (productions)
– The LHS of each rule contains one non-terminal

symbol
– The RHS of each rule contains a regular expression

over the alphabet N T
– A special non-terminal is usually designated as the

start symbol
• Usually, start symbols is LHS of the first production

10

Context Free Grammars and
Compilers
• In a compiler

– N consists of language constructs (function, block, if-
statement, expression, ...)

– T consists of tokens

11

Grammar Example

• Non-terminals: E, T, F
– E = expression
– T = term
– F = factor

• Terminals: id, +, *, (,)

• Start symbol E

• "Mathematical formulae using + and *
operators"

E E + T | T
T T * F | F
F (E) | id

E T E'
E' + T E' |
T F T'
T' * F T' |
T T * F | F
F (E) | id

E E + E | E * E | (E) | id

12

Derivations

• From a grammar specification, we can
derive any string in the language
– Start with the start symbol
– While the current string contains some non-terminal

N
• expand N using a rewrite rule with N on the LHS

E E + E | E * E | (E) | id

E
E + E
E + id
E * E + id
E * id + id
(E) * id + id
(E + E) * id + id
(id + E) * id + id
(id + id) * id + id

13

Derivation Example

• Derive id + id * id with these grammars:

E E + T | T
T T * F | F
F (E) | id

E T E'
E' + T E' |
T F T'
T' * F T' |
T T * F | F
F (E) | id

E E + E | E * E | (E) | id

14

Derivation Example

• Derive:
– id * id + id
– id + id * id

E T E'
E' + T E' |
T F T'
T' * F T' |
T T * F | F
F (E) | id

15

Terminology

• The strings of terminals that we derive from
the start symbol are called sentences

• The strings of terminals and non-terminals
are called sentential forms

16

Leftmost and Rightmost
Derivations
• A derivation is leftmost if at each stage we

always expand the leftmost non-terminal

• A derivation is rightmost if at each stage we
always expand the rightmost non-terminal

• Give a leftmost and rightmost derivation of
– id * id + id

E E + E | E * E | (E) | id

17

Derivations and Parse Trees

• A parse-tree is a graphical representation of
a derivation

• Internal nodes are labelled with non-
terminals
– Root is the start symbol

• Leaves are labelled with terminals
– String is represented by left-to-right traversal of

leaves

• When applying an expansion E ABC...Z

– Children of node E become nodes labelled
A,B,C,...Z

18

Derivations and Parse Trees -
Example

E
E + E
E + id
E * E + id
E * id + id
(E) * id + id
(E + E) * id + id
(id + E) * id + id
(id + id) * id + id

E

E E

id

+

E E*

id()E

id

E E+

id

E E + E | E * E | (E) | id

19

Ambiguity

• Different parse trees for the same sentence
result in ambiguity

E E + E | E * E | (E) | id

E
E + E
E + E * E
a + b * c

E
E * E
E + E * E
a + b * c

E

E E

id

*

E E+ c

a b

E

E E

a

+

E E*

b c

20

Ambiguity – Cont'd

• Ambiguity is usually bad

• The same program means two different
things

• We try to write grammars that avoid
ambiguity

21

Context Free Grammars and
Regular Expressions

• CFGs are more powerful than regular
expressions
– Converting a regular expression to a CFG is trivial

– The CFG S aSb | generates a language that is not
regular

• But not that powerful
– The language { ambncmdn : n,m>0 } can not be

expressed by a CFG

22

Enforcing Order of Operations

• We can write a CFG to enforce specific
order of operations
– Example: + and *
– Exercises:
• Add comparison operator with lower level of

precedence than +
• Add exponentiation operator with higher level of

precedence than *

 E PE
PE TE + PE | TE
TE id * TE | id | (E)

23

Picking Up - Context free
grammars

• CFGs can specify programming languages

• It's not enough to write a correct CFG
– An ambiguous CFG can give two different parse trees

for the same string
• Same program has two different meanings!

– Not all CFGs are easy to parse efficiently

• We look at restricted classes of CFGs
– Sufficiently restricted grammars can be parsed easily
– The parser can be generated automatically

24

Parser Generators

• Benefits of parser generators
– No need to write code (just grammar)
– Parser always corresponds exactly to the grammar

specification
– Can check for errors or ambiguities in grammars
– No surprise programs

• Drawbacks
– Need to write a restricted class of grammar [LL(1),

LR(1), LR(k),...]
– Must be able to understand when and why a

grammar is not LL(1) or LR(1) or LR(k)
– Means learning a bit of parsing theory
– Means learning how to make your grammar LL(1),

LR(1), or LR(k)

25

Ambiguity

• This grammar is ambiguous
– consider the input
• a - b - c

• Rewrite this grammar to be unambiguous

• Rewrite this grammar so that - becomes left
associative:

• a - b - c ~ ((a - b) - c)

E E - E | id

26

Solutions

E id M
M - E |

E M | id
M E - id

27

A Common Ambiguity – The
Dangling Else

• Show that this grammar is ambiguous

• Remove the ambiguity
– Implement the “else matches innermost if” rule

stmt if expr then stmt
 | if expr then stmt else stmt
 | other

28

Solution

stmt matched_stmt | open_stmt
matched_stmt if expr then matched_stmt
 else matched_stmt
 | other
open_stmt if expr then stmt
 | if expr then matched_stmt
 else open_stmt

29

Left Recursion

• A top-down parser expands the left-most
non-terminal based on the next token

• Left-recursion is difficult for top-down
parsing

• Immediate left recursion:
– A A
– Rewrite as: AA' and A' A'

• More complicated left recursion occurs
when A can derive a string starting with A
– A + A

30

Removing Left Recursion

• Removing immediate left-recursion is easy

• Simple case:
– A A
– Rewrite as: AA' and A' A'

• More complicated:
– A A

A

A

– Rewrite as:

• A

A'|

A'| |

A'

• A'

A'

A'

A'

31

Algorithm for Removing all Left
Recursion
• Textbook page 213

32

Left Factoring

• Left factoring is a technique for making a
grammar suitable for top-down parsing

• For each non-terminal A find the longest

prefix common to two or more

alternatives
– Replace A

1

n
 with

– A A' and A'
1

n

• Repeat until no two alternatives have a common prefix

33

Left Factoring Example

• Left factor the following grammars

 E PE
PE TE + PE | TE
TE id * TE | id | (E)

34

Summary of Grammar-
Manipulation Tricks

• Eliminating ambiguity
– Different parse trees for same program

• Enforcing order of operations
– Left-associative
– right-associative

• Eliminating left-recursion
– Gets rid of potential "infinite recursions"

• Left factoring
– Allows choosing between alternative productions

based on current input symbol

35

Exercise

• Remove left recursion

• Left-factor

rexpr rexpr + rterm | rterm
rterm rterm rfactor | rfactor
rfactor rfactor * | rprimary
rprimary a | b

36

Top-Down Parsing

• Top-down parsing is the problem of
constructing a pre-order traversal of the
parse tree

• This results in a leftmost derivation

• The expansion of the leftmost non-terminal
is determined by looking at a prefix of the
input

37

LL(1) and LL(k)

• If the correct expansion can always be
determined by looking ahead at most k
symbols then the grammar is an LL(k)
grammar

• LL(1) grammars are most common

38

FIRST()

• Let be any string of grammar symbols

• FIRST() is the set of terminals that begin

strings that can be derived from a
– If can derive then is also in FIRST()

• Why is FIRST useful
– Suppose A | and FIRST() and FIRST() are

disjoint
– Then, by looking at the next symbol we know which

production to use next

39

Computing FIRST(X)

• If X is a terminal then FIRST(X) = {X}

• If X is a non-terminal and X Y
1
 Y

2
...Y

k

– i = 0 ; define FIRST(Y
0
) = { }

– while is in FIRST(Y
i
)

• Add FIRST(Y
i+1

) to FIRST(X)

• i = i+1

– if (i =k or X)
• Add to FIRST(X)

• Repeat above step for all non-terminals
until nothing is added to any FIRST set

40

Example

• Compute FIRST(E), FIRST(PE), FIRST(TE),
FIRST(TE')

 E PE
PE TE + E | TE
TE id TE'
TE' * E
TE' id
TE' (E)

41

Computing FIRST(X
1
X

2
...X

k
)

• Given FIRST(X) for every symbol X we can

compute FIRST(X
1
X

2
...X

k
) for any string of

symbols X
1
X

2
...X

k
:

– i = 0 ; define FIRST(X
0
) = { }

– while is in FIRST(X
i
)

• Add FIRST(X
i+1

) to FIRST(X
1
X

2
...X

k
)

• i = i+1
– if (i =k)

• Add to FIRST(X)

42

FOLLOW(A)

• Let A be any non-terminal

• FOLLOW(A) is the set of terminals a that
can appear immediately to the right of A in
some sentential form
– I.e. S * A a for some and and start symbol S

– Also, if A can be a rightmost symbol in some
sentential form then $ (end of input marker) is in
FOLLOW(A)

43

Computing FOLLOW(A)

• Place $ into FOLLOW(S)

• Repeat until nothing changes:
– if A B then add FIRST()\{} to FOLLOW(B)

– if A B then add FOLLOW(A) to FOLLOW(B)

– if A B and is in FIRST() then add FOLLOW(A)
to FOLLOW(B)

44

Example

• Compute FOLLOW(E), FOLLOW(PE),
FOLLOW(TE), FOLLOW(TE')

 E PE
PE TE + E | TE
TE id TE'
TE' * E
TE' id
TE' (E)

45

FIRST and FOLLOW Example

• FIRST(F) = FIRST(T) = FIRST(E) = {(, id }

• FIRST(E') = {+, }

• FIRST(T') = {*, }

• FOLLOW(E) = FOLLOW(E') = {), $}

• FOLLOW(T) = FOLLOW(T') = {+,),$}

• FOLLOW(F) = {+, *,), $}

E T E'
E' + T E' |
T F T'
T' * F T' |
F (E) | id

46

LL(1) Grammars

• Left to right parsers producing a leftmost
derivation looking ahead by at most 1
symbol

• Grammar G is LL(1) iff for every two
productions of the form A |
– FIRST() and FIRST() are disjoint

– If is in FIRST() then FIRST() and FOLLOW(A) are
disjoint (and vice versa)

• Most programming language constructs are
LL(1) but careful grammar writing is
required

47

LL(1) Predictions Tables

• LL(1) languages can be parsed efficiently
through the use of a prediction table
– Rows are non-terminals
– Columns are input symbols (terminals)
– Values are productions

48

Constructin LL(1) Prediction
Table
• The following algorithm constructs the LL(1)

prediction table

• For each production A in the grammar
– For each terminal a in FIRST(), set M[A,a] = A
– If is in FIRST() then for each terminal b in

FOLLOW(A), set M[A,b] = A

LL(1) Prediction Table Example

E T E'
E' + T E' |
T F T'
T' * F T' |
F (E) | id

Id + * () $

E

E' E' e

T

T'

F

E T E' E T E'

E' + T E' E'
T F T' T F T'

T' T' * F T' T' T'
F id F (E)

LL(1) Prediction Table Example

• Use the table to find the derivation of
– id + id * id + id

Id + * () $

E

E' E' e

T

T'

F

E T E' E T E'

E' + T E' E'
T F T' T F T'

T' T' * F T' T' T'
F id F (E)

51

LL(1) Parser Generators

• Given a grammar G, an LL(1) parser
generator can
– Computer FIRST(A) and FOLLOW(A) for every non-

terminal A in G
– Determine if G is LL(1)
– Construct the prediction table for G
– Create code that parses any string in G and produces

the parse tree

• In Assignment 2 we will use such a parser
generator (javacc)

52

Summary

• Programming languages can be specified
with context-free grammars

• Some of these grammars are easy to parse
and generate a unique parse tree for any
program

• An LL(1) grammar is one for which a
leftmost derivation can be done with only
one symbol of lookahead

• LL(1) parser generators exist and can
produce efficient parsers given only the
grammar

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

