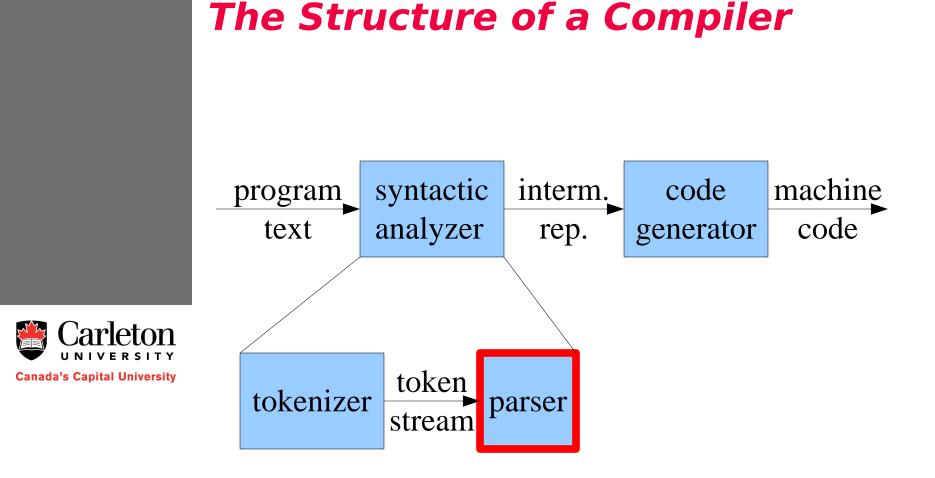
Parsing

COMP 3002 School of Computer Science

Canada's Capital University



Role of the Parser

- Converts a token stream into an intermediate representation
 - Captures the *meaning* (instead of text) of the program
 - Usually, intermediate representation is a *parse tree*

"X"

id,

number,

$$x = x + 1$$

x - x + 1

</p

3

"1"

Kinds of Parsers

- Universal
 - Can parse any grammar
 - Cocke-Younger-Kasami and Earley's algorithms
 - Not efficient enough to be used in compilers
- Top-down

 \bullet

- Builds parse trees from the top (root) down
- Bottom-up
 - Builds parse trees from the bottom (leaves) up

Errors in Parsing

- Lexical errors
 - Misspelled identifiers, keywords, or operators
- Syntactical errors
 - Misplaced or mismatched parentheses, case statement outside of any switch statement,...
- Semantic errors
 - Type mismatches between operators and operands

Logical errors

- Bugs the programmer said one thing but meant something else
 - if (x = y) { ... }
 - if (x == y) { ... }

Error Reporting

- A parser should
 - report the presence of errors clearly and correctly and
 - recover from errors quickly enough to detect further errors

Error Recovery Modes

- Panic-Mode
 - discard input symbols until a "synchronizing token" is found
 - Examples (in Java): semicolon, '}'
- Phrase-Level
 - replace a prefix of the remaining input to correct it
 - Example: Insert ';' or '{'
 - must be careful to avoid infinite loops

Error Recover Modes (Cont'd)

- Error Productions
 - Specify common errors as part of the language specification
- Global Correction
 - Compute the smallest set of changes that will make the program syntactically correct (impractical and usually not usually useful)

Context-Free Grammars

- CF grammars are used to define languages
- Specified using BNF notation
 - A set of non-terminals N
 - A set of terminals T
 - A list of rewrite rules (productions)
 - The LHS of each rule contains one non-terminal symbol
 - The RHS of each rule contains a regular expression over the alphabet $N \cup T$
 - A special non-terminal is usually designated as the start symbol
 - Usually, start symbols is LHS of the first production

Context Free Grammars and Compilers

- In a compiler
 - N consists of language constructs (function, block, ifstatement, expression, ...)
 - T consists of tokens

Grammar Example

- Non-terminals: E, T, F
 - E = expression
 - -T = term
 - F = factor
- Terminals: **id**, +, *, (,)
- Start symbol E

 $T \rightarrow T * F \mid F$

 $F \rightarrow (E) \mid id$

Canada's Capital University

"Mathematical formulae using + and *

 $E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$ $E \rightarrow E + T \mid T$

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' | \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' | \epsilon$$

$$T \rightarrow T * F | F$$

$$F \rightarrow (E) | id$$

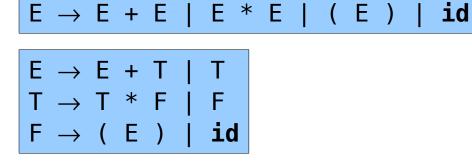
Derivations

- From a grammar specification, we can derive any string in the language
 - Start with the start symbol
 - While the current string contains some non-terminal N
 - expand N using a rewrite rule with N on the LHS

$$E \rightarrow E + E \mid E^* E \mid (E) \mid id$$

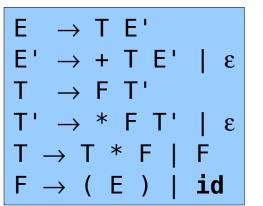
Derivation Example

• Derive id + id * id with these grammars:



Derivation Example

- Derive:
 - id * id + id
 - -id + id * id



Terminology

- The strings of terminals that we derive from the start symbol are called *sentences*
- The strings of terminals and non-terminals are called *sentential forms*

Leftmost and Rightmost Derivations

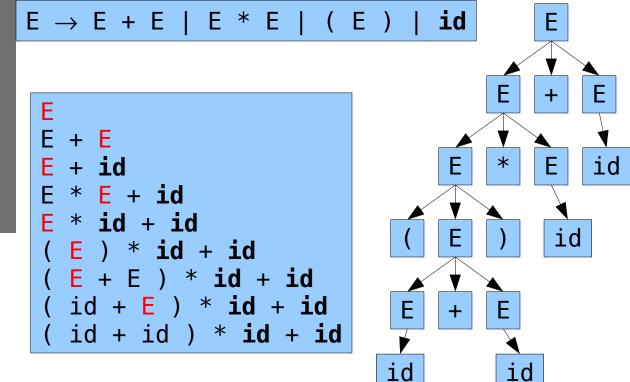
- A derivation is *leftmost* if at each stage we always expand the leftmost non-terminal
- A derivation is *rightmost* if at each stage we always expand the rightmost non-terminal
- Give a leftmost and rightmost derivation of
 id * id + id

$$\mathsf{E} \rightarrow \mathsf{E} + \mathsf{E} \mid \mathsf{E} \ast \mathsf{E} \mid (\mathsf{E}) \mid \mathbf{id}$$

Derivations and Parse Trees

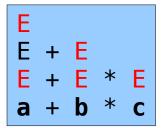
- A parse-tree is a graphical representation of a derivation
- Internal nodes are labelled with nonterminals
 - Root is the start symbol
- Leaves are labelled with terminals
 - String is represented by left-to-right traversal of leaves
- When applying an expansion $E \rightarrow ABC...Z$
 - Children of node E become nodes labelled A,B,C,...Z

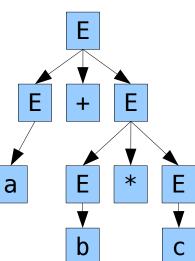
Derivations and Parse Trees -Example

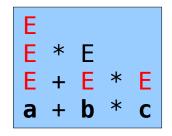


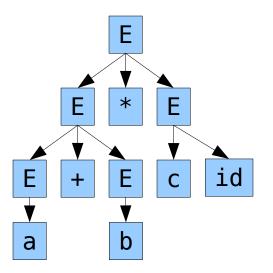
Ambiguity $E \rightarrow E + E | E * E | (E) | id$

 Different parse trees for the same sentence result in ambiguity









Ambiguity - Cont'd

- Ambiguity is usually bad
- The same program means two different things
- We try to write grammars that avoid ambiguity

Context Free Grammars and Regular Expressions

- CFGs are more powerful than regular expressions
 - Converting a regular expression to a CFG is trivial
 - The CFG $S \rightarrow aSb \mid \epsilon$ generates a language that is not regular
 - But not that powerful
 - The language { a^mbⁿc^mdⁿ : n,m>0 } can not be expressed by a CFG

Enforcing Order of Operations

- We can write a CFG to enforce specific order of operations
 - Example: + and *
 - Exercises:
 - Add comparison operator with lower level of precedence than +
 - Add exponentiation operator with higher level of precedence than *

Picking Up - Context free grammars

- CFGs can specify programming languages
- It's not enough to write a correct CFG
 - An ambiguous CFG can give two different parse trees for the same string
 - Same program has two different meanings!
 - Not all CFGs are easy to parse efficiently
- Carleton UNIVERSITY Canada's Capital University
- We look at restricted classes of CFGs
 - Sufficiently restricted grammars can be parsed easily
 - The parser can be generated automatically

Parser Generators

- Benefits of parser generators
 - No need to write code (just grammar)
 - Parser always corresponds exactly to the grammar specification
 - Can check for errors or ambiguities in grammars
 - No surprise programs
- Drawbacks
 - Need to write a restricted class of grammar [LL(1), LR(1), LR(k),...]
 - Must be able to understand when and why a grammar is not LL(1) or LR(1) or LR(k)
 - Means learning a bit of parsing theory
 - Means learning how to make your grammar LL(1), LR(1), or LR(k)

Ambiguity

This grammar is ambiguous - consider the input $E \rightarrow E - E \mid id$ a - b - c

Rewrite this grammar to be unambiguous

Rewrite this grammar so that - becomes left associative:

• $a - b - c \sim ((a - b) - c)$

Solutions

A Common Ambiguity – The Dangling Else

stmt → if expr then stmt
 | if expr then stmt else stmt
 | other

- Show that this grammar is ambiguous
- Remove the ambiguity
 - Implement the "else matches innermost if" rule

Solution

stmt	\rightarrow matched_stmt open_stmt
<pre>matched_stmt</pre>	\rightarrow if expr then matched_stmt
	else matched_stmt
	other
open_stmt	\rightarrow if expr then stmt
	if expr then matched_stmt
	else open_stmt

Left Recursion

- A top-down parser expands the left-most non-terminal based on the next token
- Left-recursion is difficult for top-down parsing
- Immediate left recursion:
 - $A \rightarrow A\alpha \mid \beta$
 - Rewrite as: $A \to \beta A^{\,\prime}\,$ and $A^{\,\prime}\,\to\, \alpha A^{\,\prime}\,|\,\epsilon$
- More complicated left recursion occurs when A can derive a string starting with A $A \rightarrow^+ A \alpha$

da's Capital University

29

Removing Left Recursion

- Removing immediate left-recursion is easy
- Simple case:
 - $\ \mathsf{A} \to \mathsf{A} \alpha \,|\, \beta$
 - Rewrite as: $A \to \beta A^{\,\prime}\,$ and $A^{\,\prime}\,\to\, \alpha A^{\,\prime}\,\,|\,\epsilon$
- More complicated:
 - $\mathsf{A} \to \mathsf{A} \alpha_{_1} \, | \, \mathsf{A} \alpha_{_2} \, | \, ... \, | \, \mathsf{A} \alpha_{_\kappa} \, | \, \beta_{_1} \, | \, \beta_{_2} \, | \, ... \, | \, \beta_{_\tau}$
 - Rewrite as:

•
$$\mathbf{A} \rightarrow \beta_1 \mathbf{A'} \mid \beta_2 \mathbf{A'} \mid \dots \mid \beta_{\tau} \mathbf{A'}$$

• $A' \rightarrow \alpha_1 A' | \alpha_2 A' | ... | \alpha_{\kappa} A' | \epsilon$

Algorithm for Removing all Left Recursion

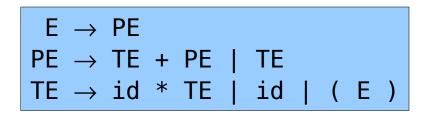
Textbook page 213

Left Factoring

- Left factoring is a technique for making a grammar suitable for top-down parsing
- For each non-terminal A find the longest prefix α common to two or more alternatives
 - Replace A $\rightarrow \alpha \beta_1 | \alpha \beta_2 | \alpha \beta_3 | ... | \alpha \beta_n$ with
 - $\text{ A} \rightarrow \ \alpha \text{ A' and A'} \ \rightarrow \ \beta_1 \ \mid \beta_2 \ \mid \beta_3 \ \mid ... \ \mid \beta_n$
- Repeat until no two alternatives have a common prefix

Left Factoring Example

• Left factor the following grammars



Summary of Grammar-Manipulation Tricks

- Eliminating ambiguity
 - Different parse trees for same program
- Enforcing order of operations
 - Left-associative
 - right-associative
 - Eliminating left-recursion
 - Gets rid of potential "infinite recursions"
- Left factoring
 - Allows choosing between alternative productions based on current input symbol

Canada's Capital University

Exercise

rexpr	\rightarrow	rexpr + rterm rterm
rterm	\rightarrow	<pre>rterm rfactor rfactor</pre>
rfactor	\rightarrow	rfactor * rprimary
rprimary	\rightarrow	a b

- Remove left recursion
- Left-factor

Top-Down Parsing

- Top-down parsing is the problem of constructing a pre-order traversal of the parse tree
- This results in a leftmost derivation
- The expansion of the leftmost non-terminal is determined by looking at a prefix of the input

LL(1) and LL(k)

- If the correct expansion can always be determined by looking ahead at most k symbols then the grammar is an LL(k) grammar
- LL(1) grammars are most common

FIRST(α)

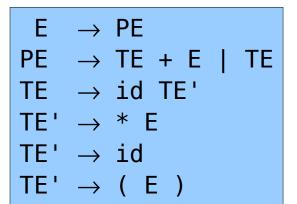
- Let α be any string of grammar symbols
- FIRST(α) is the set of terminals that begin strings that can be derived from α a
 - If α can derive ε then ε is also in FIRST(α)
- Why is FIRST useful
 - Suppose A $\rightarrow ~\alpha \mid \beta$ and FIRST(α) and FIRST(β) are disjoint
 - Then, by looking at the next symbol we know which production to use next

Computing FIRST(X)

- If X is a terminal then FIRST(X) = {X}
- If X is a non-terminal and $X \rightarrow Y_1 Y_2 \dots Y_k$
 - -i = 0; define FIRST(Y₀) = { ε }
 - while ϵ is in FIRST(Y_i)
 - Add FIRST(Y_{i+1}) to FIRST(X)
 - i = i+1
 - if (i =k or X $\rightarrow \epsilon$)
 - Add ϵ to FIRST(X)
- Repeat above step for all non-terminals until nothing is added to any FIRST set

Example

 Compute FIRST(E), FIRST(PE), FIRST(TE), FIRST(TE')



Canada's Capital University

Computing FIRST(X_1X_2...X_k)

- Given FIRST(X) for every symbol X we can compute FIRST(X₁X₂...X_k) for any string of symbols X₁X₂...X_k:
 - _ i = 0 ; define FIRST(X₀) = { ϵ }
 - while ϵ is in FIRST(X_i)
 - Add FIRST(X_{i+1}) to FIRST($X_1X_2...X_k$)
 - i = i+1
 - if (i =k)
 - Add ε to FIRST(X)

FOLLOW(A)

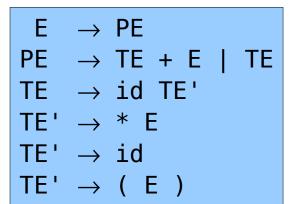
- Let A be any non-terminal
- FOLLOW(A) is the set of terminals a that can appear immediately to the right of A in some sentential form
 - I.e. $S \rightarrow^* \alpha A$ a β for some α and β and start symbol S
 - Also, if A can be a rightmost symbol in some sentential form then \$ (end of input marker) is in FOLLOW(A)

Computing FOLLOW(A)

- Place \$ into FOLLOW(S)
- Repeat until nothing changes:
 - if A $\rightarrow \alpha B\beta$ then add FIRST(β)\{ ϵ } to FOLLOW(B)
 - if A $\rightarrow \alpha B$ then add FOLLOW(A) to FOLLOW(B)
 - if A $\rightarrow \alpha B\beta$ and ϵ is in FIRST(β) then add FOLLOW(A) to FOLLOW(B)

Example

 Compute FOLLOW(E), FOLLOW(PE), FOLLOW(TE), FOLLOW(TE')



Canada's Capital University

FIRST and FOLLOW Example

- FIRST(F) = FIRST(T) = FIRST(E) = {(, id }
- FIRST(E') = $\{+, \epsilon\}$
- FIRST(T') = {*, ε}
- FOLLOW(E) = FOLLOW(E') = {), \$}
- FOLLOW(T) = FOLLOW(T') = {+,),\$}
- FOLLOW(F) = {+, *,), \$}

Canada's Capital University

LL(1) Grammars

- <u>Left to right parsers producing a leftmost</u> derivation looking ahead by at most <u>1</u> symbol
- Grammar G is LL(1) iff for every two productions of the form A $\rightarrow \alpha \mid \beta$
 - FIRST(α) and FIRST(β) are disjoint
 - If ε is in FIRST(β) then FIRST(α) and FOLLOW(A) are disjoint (and vice versa)
- Most programming language constructs are LL(1) but careful grammar writing is required

LL(1) Predictions Tables

- LL(1) languages can be parsed efficiently through the use of a prediction table
 - Rows are non-terminals
 - Columns are input symbols (terminals)
 - Values are productions

Constructin LL(1) Prediction Table

- The following algorithm constructs the LL(1) prediction table
- For each production A $\rightarrow \alpha$ in the grammar
 - For each terminal a in FIRST(α), set M[A,a] = A $\rightarrow \alpha$
 - If ε is in FIRST(α) then for each terminal b in FOLLOW(A), set M[A,b] = A $\rightarrow \alpha$

LL(1) Prediction Table Example

	ld	+	*	()	\$
E	$E \rightarrow T E'$			$E\toT\:E'$		
E'		$E' \rightarrow + T E'$			E' 🛛 e	$E' \to \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow * F T'$		$T' \rightarrow \epsilon$	$T' \to \epsilon$
F	$F \to id$			$F \rightarrow (E)$		

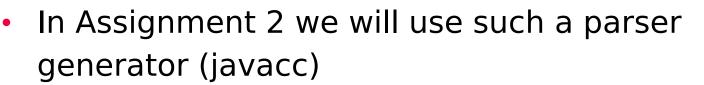
LL(1) Prediction Table Example

Use the table to find the derivation of
 id + id * id + id

	ld	+	*	()	\$
E	$E\toT\:E'$			$E \rightarrow T E'$		
E'		$E' \rightarrow + T E'$			E' 🗆 e	$E' \to \epsilon$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow * F T'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \to id$			$F \rightarrow (E)$		

LL(1) Parser Generators

- Given a grammar G, an LL(1) parser generator can
 - Computer FIRST(A) and FOLLOW(A) for every nonterminal A in G
 - Determine if G is LL(1)
 - Construct the prediction table for G
 - Create code that parses any string in G and produces the parse tree



Summary

- Programming languages can be specified with context-free grammars
- Some of these grammars are easy to parse and generate a unique parse tree for any program

- An LL(1) grammar is one for which a leftmost derivation can be done with only one symbol of lookahead
- LL(1) parser generators exist and can produce efficient parsers given only the grammar