
Compilers: History and Context

COMP 3002

2

Outline

• Compilers and languages

• Compilers and architectures
– parallelism
– memory hierarchies

• Other uses of compilers
– Program translations
– Software productivity tools

3

Programming Language Evolution
• New generations of programming

languages have introduced new challenges
– C, Fortran

• Register allocation, aggregate types
– Simula, C++

• Virtual method dispatch
– Java and the JVM

• Bounds checking, type-safety
• Garbage collection
• Just-in-time compilation

4

Hardware Evolution
• New types of hardware have introduced

new challenges
– Parallelism

• Instruction level
• Multiprocessor

– Memory hierarchies

5

Instruction-Level Parallelism
• Modern machines don't execute code

sequentially
– Processor analyzes code to look for instruction

dependencies
– Independent instructions are executed in parallel

• Compilers try to maximize the available
parallelism

mov x, R0
mov y, R1
inc R0
mul R1, 2
mul R0, R0
add R0, R1

inc R0
mul R0, R0

mov y, R1
mul R1, 2

add R0, R1

mov x, R0

6

Vector Parallelism
• Many machines now have vector

instructions
– Can load and operate on an entire vector

for (i = 0; i < n; i++) {
 a[i] = b[i] + c[i];
}

for (i = 0; i < n; i += 8) {
 a[i,..,i+7] = b[i,..,i+7] + c[i,..,i+7];
}
for (i -= 8; i < n; i++) {
 a[i] = b[i] + c[i];
}

7

Multiprocessor
• Currently, many machines have multiple

processors or cores
– Compilers can try to to automatically parllelize code
– We're still not quite there yet

do in parallel {
 sum(a, b, c, n/2);
 sum(a+n/2, b+n/2, c+n/2, n-n/2);
}

sum(a, b, c, n) {
 for (i = 0; i < n; i++) {
 a[i] = b[i] + c[i];
 }
}

8

Memory Hierarchies
• Current machines have a multi-level

memory hierarchy
– CPU cache
– L1 cache
– L2 cache
– RAM
– Swap space

• Managing this hierarchy is like register
allocation

9

RISC
• Reduced instruction set computing

• Success of compilers led to processors
having fewer instructions
– that execute faster

• Complex instructions were to make
assembly programming easier

10

Program Translations
• Compilers

– Input language A -> Output language B

• Includes
– binary translation

• 68040 -> PowerPC
– hardware synthesis

• RTL -> hardware design
– database query interpreters

• SQL query -> query program
– compiled simulation

• simulation spec. -> simulation program

11

Software Productivity Tools
• Syntax highlight

• Code (re)factoring

• Type checking

• Bounds checking

• Memory-management tools

	Title of presentation
	Heading of presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

