
Want to Write a Compiler?

Pat Morin

COMP 3002

2

What is a Compiler?

• From Day 1:
– A compiler is a program that translates
– from a source language S
– into a target language T
– while preserving semantics

• Often (but not always)
– S is a programming language
– T is a machine language

3

Want to Write a Compiler?

• A compiler has 3 main parameter
– Source language (S)

• What kind of input does the compiler take?
• C, C++, Java, Python,

– Implementation language (I)
• What language is the compiler written in?
• C, Java, i386, x84_64

– Target language (T)
• What is the compiler's target language
• i386, x86_64, PPC, MIPS, ...

S T
I

source
code
(in S)

compiled
code
(in T)

4

Source Language Issues

• Complexity
– Is a completely handwritten compiler feasible?

• Stability
– Is the language definition still changing?

• Novelty
– Do there already exist compilers for this language?

• Complicated, or still-changing languages
promote the use of compiler generation
tools

5

Target Language Issues

• Novelty
– Is this a new architecture?
– Are there similar architectures/instruction sets?

• Available tools
– Is there an assembler for this language?
– Are there other compilers for this language?

6

Performance criteria

• Speed
– Does it have to be a fast compiler?
– Does it have to be a small compiler?
– Does it have to generate fast code?

• Portability
– Should the compiler run on many different

architectures (rehostability)
– Should the compiler generate code for many

different architectures (retargetability)

7

Possible Workarounds

• Rewrite an existing front end
– when the source is new
– reuse back (code generation) end of the compiler

• Rewrite an existing back end
– when the target architecture is new
– retarget an existing compiler to a new architecture

• What happens when both the source
language and target language are new?
– Write a compiler from scratch?
– Do we have other options?

8

Composing Compilers

• Compilers can be composed and used to
compile each other

• Example:
– We have written a Java to JVM compiler in C and we

want to make it to run on two different platforms
i386 and x86_64

– both platforms have C compilers
Java JVM

C C i386
i386

Java JVM
i386

Java JVM
C C x64

x64

Java JVM
i386

9

Example

• Assignment 3:

• Assignment 4:

PRM
Java

JVM
Java JVM

i386

PRM JVM
JVM

PRM JVM
JVM

fib.prm a.j

JVM
Java

JVM'
Java JVM

i386

PRM JVM
JVM

JVM JVM'
JVM

a.j a.j'

PRM
Java

JVM

JVM
Java

JVM'

10

Example

• Show how to
– To take your PRM compiler and make it faster
– To take your Jasmin optimizer and make it faster

PRM
Java

JVM

PRM
Java

PRM'

Java
i386

JVM

11

Bootstrapping by cross-compiling

• Sometimes the source and implementation
language are the same
– E.g. A C compiler written in C

• In this case, cross compiling can be useful

C
C

x641
C

i386
i386

C
i386

x643
C

C
x644

C
i386

i3862

C
x64

x645

12

Bootstrapping Cont'd

• Bootstrapping by reduced functionality
– Implement, in machine language, a simplified

compiler
• A subset of the target language
• No optimizations

– Write a compiler for the full language in the reduced
language

C

asm

i386

C

C

i386 C

i386

i386

13

Bootstrapping for Self-
Improvement
• If we are writing a good optimizing compiler

with I=S then
– We can compile the compiler with itself
– We get a fast compiler

• gcc does this (several times)

C

i386

i386

C

C

i386gcc C

i386

i386gcc
C

i386

i386cc

C

C

i386gcc C

i386

i386gcc

14

Summary

• When writing a compiler there are several
techniques we can use to leverage existing
technology
– Reusing front-ends or back ends
– Cross-compiling
– Starting from reduced instruction sets
– Self-compiling

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

