Covering Points with Lines

Stefan Langerman* Pat Morin ${ }^{\dagger}$
School of Computer Science
McGill University
\{sl, morin\}@cgm.cs.mcgill.ca

Abstract

Given a set of n points in the plane, is it possible to find k lines that cover all the points in the set? We show that although this problem is NPhard, it can be solved efficiently for small values of k. In particular, we give a $O\left(n k \log k+k^{2(k+1)}\right)$ algorithm for this problem, and a generalization to higher dimensions.

1 Introduction

We consider the point cover problem in R^{d} : given a set S of n points in R^{d} and an integer k, is it possible to find a set of k hyperplanes $H=\left\{h_{1}, \ldots, h_{k}\right\}$ such that for every point in S, there is a hyperplane in H incident to it. In a dual setting (see e.g. [4]), this is equivalent to the hyperplane cover problem: given an arrangement of n hyperplanes in R^{d}, can we find a set of k points such that there is at least one point on each hyperplane?

In 1982, Megiddo and Tamir proved that this problem is NP-hard [8] even when $d=2$, and it was recently shown that the corresponding optimization problem is also APX-hard [7][2]. These facts have been used to prove hardness results for several clustering [1] art gallery [2] and covering problems [5]. The two dimensional problem is also reducible to a particular instance of the set covering problem where each set in the given set system intersects with any other set in at most one element. It is shown in [7] that approximating the minimum set cover with intersection 1 within a factor $o(\log n)$ in random polynomial is not possible unless $N P \subseteq Z T I M E\left(n^{O(\log \log n)}\right)$.

However, Johnson [6] shows that any minimum set cover problem can be approximated within a factor $O(\log n)$ using a greedy algorithm. This is also the best known approximation algorithm for the minimum point cover problem. Approximation algorithms for restricted versions and variants of this problem can be found in [1][5].

In this paper, we study the point cover problem under the lens of fixed parameter tractability [3]. In this setting, we identify some parameters of our

[^0]problem - in this case, k and d - which are likely to be small, and look for polynomial time algorithms when these parameters are considered constants, but where the exponent of the polynomial is independent from the parameters k and d.

In contrast, the point cover problem can be solved by looking at all k-tuple of hyperplanes amongst all the $\binom{n}{d}$ hyperplanes defined by any d points of S. For each of these $O\left(n^{d k}\right)$ tuples, we can check whether it covers all the points in S in $O(k n)$ time, resulting in a $O\left(k n^{d k+1}\right)$ time algorithm. For d and k constants, the algorithm is polynomial, but the exponent in n depends on the parameters of the problem. Instead, we will be looking for an algorithm of the form $O(p(n) f(d, k))$ where f is some arbitrary function independent of n, and $\mathrm{p}(\mathrm{n})$ is some small polynomial in n. We prove:

Theorem 1 The point cover problem can be solved in $O\left(n k^{d k}\right)$ time.
Theorem 2 The point cover problem can be solved in $O\left(n(2 k)^{d-1} \log k+d k^{d(k+1)}\right)$ time.

Details appear in the final version.

References

[1] Pankaj K. Agarwal and Cecilia M. Procopiuc. Exact and approximation algorithms for clustering. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pages 658-667, 1998.
[2] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons is apx-hard. In Proc. 13th Canad. Conf. Comput. Geom., pages 45-48, 2001.
[3] R. G. Downey and M. R. Fellows. Parameterized complexity. SpringerVerlag, New York, 1999.
[4] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.
[5] R. Hassin and N. Megiddo. Approximation algorithms for hitting objects by straight lines. Discrete Appl. Math., 30:29-42, 1991.
[6] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci., 9:256-278, 1974.
[7] V. S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of set cover with intersection 1. In Proc. 27th Int. Coll. Automata, Languages and Programming, pages 624-635, 2000.
[8] N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane. Oper. Res. Lett., 1:194-197, 1982.

[^0]: *Research supported by grants from MITACS, FCAR and CRM.
 \dagger Research partly funded by NSERC.

