
ON THE FALSE-POSITIVE RATE OF BLOOM FILTERS∗

Prosenjit Bose Hua Guo Evangelos Kranakis Anil Maheshwari Pat Morin
Jason Morrison Michiel Smid Yihui Tang

May 30, 2004

Abstract. Bloom filters are a randomized data structure for membership queries dating back to 1970.
Bloom filters sometimes give erroneous answers to queries, called false positives. Bloom analyzed the prob-
ability of such erroneous answers, called the false-positive rate, and Bloom’s analysis has appeared in many
publications throughout the years. We show that Bloom’s analysis is incorrect and give a correct analysis.

Keywords: Data structures, analysis of algorithms

1 Introduction

A Bloom filter [2] is an extremely simple randomized data structure for testing membership in a set and
has found applications in many areas including (sequential, distributed and parallel) databases [7, 12, 13],
computer networks [3], social networks [9], and cryptography [1, 5]. A Bloom filter represents an n element
set S using a bit-vector B = B1, . . . , Bm of length m. Initially all the bits of B are set to 0. It is assumed that
each element x to be stored or searched for comes with a sequence of k random1 hash values x1, . . . , xk ∈
{1, . . . ,m}. To store the element x one simply sets the bits Bx1 = Bx2 = · · · = Bxk

= 1. To query a
Bloom filter for an element y one simply checks if By1 , . . . , Byk

are all set to 1. If so, the filter outputs “yes”
otherwise it outputs “no.”

If y is stored in the filter then, by definition, By1 , . . . , Byk
are all set to 1, so the query algorithm

correctly outputs yes. However, the converse is not true. It is possible that y is not stored in the filter but
(by coincidence) By1 , . . . , Byk

are all set to 1. This situation is called a false positive and the probability
that this occurs is called the false-positive rate. Bloom derives the false-positive rate in the following way:
The probability that any particular bit Bi is equal to 0 is (1− 1/m)kn, since the value i must be avoided by
all kn hash values. Therefore, the probability that a particular bit is set to 1 is

p
def= Pr{Bi = 1} = 1− (1− 1/m)kn .

Now, in order for y to result in a false positive, each of the k hash values y1, . . . , yk must be the index of a
bit that is set to 1. The probability that this happens is

pk,n,m
def= Pr{By1 = 1 and By2 = 1 and . . . and Byk

= 1}

which is claimed to be
pk = (1− (1− 1/m)kn)k . (1)

This proof, which has appeared in many papers throughout the years, is not quite correct. The error
occurs in deriving (1), where there is an implicit assumption that the event “Byi = 1” and the event

∗School of Computer Science, Carleton University, {jit,hguo2,kranakis,maheshwa,morin,morrison,michiel,y tang}@scs.carleton.ca
1Here, as usual, the term “random” means chosen uniformly at random and independently of any other “random” choices.

1

“By1 = By2 = · · · = Byi−1 = 1” are independent. At first glance, this seems to be true, since y1, . . . , yi

are independent. However, a simple counterexample to this proof can be obtained by considering the case
n = 1, k = 2, m = 2. In this case, by simply enumerating the 16 possible situations2 one finds that the
false-positive rate is 5/8, whereas pk evaluates to 9/16 = 4.5/8. Thus, Bloom’s bound underestimates the
false-positive rate in this case.

Mitzenmacher [10] gives a concentration result on the number of 1 bits in Bloom filter that somewhat
justifies the standard analysis of Bloom filters for certain common choices of parameters. In this paper, we
perform a more detailed analysis of the false-positive rate of Bloom filters. The analysis of the false-positive
rate is not nearly as straightforward as one would hope. The contributions of this paper are as follows:

1. We give an exact formula for the false-positive rate of Bloom filters. Unfortunately, this formula is not
anywhere near closed form, but could be useful for small values of k, n and m.

2. We give an upper bound on the false-positive rate that converges to pk for most common choices of
the parameters k and m.

3. We show that, rather than being an upper-bound, pk is actually a strict lower bound on the false-
positive rate for any k ≥ 2. That is, for any choice of k, m, and n with k ≥ 2, the false-positive rate
of the resulting Bloom filter is greater than pk

To the best of our knowledge, this is the first paper to point out this error in the analysis of Bloom
filters and give a corrected analysis. The only similar result we know of is a paper by Carter et al [4] in
which they define a data structure (Approximate Membership Tester 1) that, under their assumptions, is
equivalent to a Bloom filter. They show that the expected number of bits set to 1 in the filter is mp so the
probability of a false positive “is at most about” pk. Their use of the qualifier “about” indicates that they
realize this is not the exact probability, but they do not elaborate any further.

The remainder of this paper is organized as follows: In Section 2 we derive an exact formula for the
false-positive rate. In Section 3 we give tight upper and lower bounds on the false-positive rate. In Section 4
we summarize and conclude.

2 An Exact Formula

We model the problem of determining the false-positive rate as a problem on balls and urns. We are given
m urns. We throw kn white balls at random into these urns. We call an urn white if it contains at least one
white ball. Next we throw k black balls in the urns. Let A be the event that each black ball is in a white
urn. We want to evaluate Pr{A}. To see that this correctly models Bloom filters, treat the urns as the bits
B1, . . . , Bm and use the convention that Bi = 1 if and only if urn i is white. Thus, the event A corresponds
to a false positive (k randomly chosen bits are all set to 1). Thus, the false-positive rate pk,n,m is equal to
Pr{A}.

Observe that the set of white urns can be represented as a subset of {1, . . . ,m}. For any I ⊆
{1, . . . ,m}, let EI be the event that I is the set of white urns. Observe that 1 ≤ |I| ≤ m. Using conditional
probabilities, we get

Pr{A} =
∑

I⊆{1,...,m}

Pr{A | EI} · Pr{EI}.

If I is fixed then

Pr{A | EI} =
(
|I|
m

)k

,

whereas Pr{EI} is the quotient of
2There are two elements involved, the element x stored in the table and some element y not stored in the table. Whether

or not y is a false positive depends only on x1, x2, y1 and y2.

2

• the number of surjections from a set of size kn onto a set of size i, and

• the number of functions from a set of size kn to a set of size m.

The number of surjections from a set of size kn onto a set of size i is given by i!
{

kn
i

}
where{

kn

i

}
=

1
i!

i∑
j=0

(−1)j

(
i

j

)
jkn

is called a Stirling number of the second kind [6, Section 6.1].

The number of functions from a set of size kn to a set of size m is equal to mkn.

Putting everything together, we obtain

Pr{A} =
∑

I⊆{1,...,m}

(
|I|
m

)k

×
|I|!
{

kn
|I|
}

mkn

=
1

mk(n+1)

m∑
i=1

iki!
(

m

i

){
kn

i

}
.

Theorem 1 Let pk,n,m be the false-positive rate for a Bloom filter that stores n elements in a bit-vector of
size m using k hash functions. Then,

pk,n,m =
1

mk(n+1)

m∑
i=1

iki!
(

m

i

){
kn

i

}
.

3 Asymptotic Bounds

Unfortunately, the formula for pk,n,m given by Theorem 1 is not very enlightening. In particular, it is not
easy to compare it directly with pk, the value derived by Bloom. In this section, we use probability theory to
study the asymptotics of pk,n,m, and give closed-form upper and lower bounds. We make use of the following
result on balls and urns due to Kamath et al [8] (see also Motwani and Raghavan [11, Theorem 4.18]):

Theorem 2 (Kamath, Motwani, Palem, Spirakis 1994) Let W denote the number of white urns after
throwing kn white balls into m urns. Then

E[W] = m

(
1−

(
1− 1

m

)kn
)

and for λ > 0

Pr{|W − E[W]| ≥ λ} ≤ 2 exp
(
−λ2(m− 1/2)

m2 − E[W]2

)
≤ 2 exp(−λ2/(2m)) .

Again, let A be the event “every black ball is contained in a white urn.” We want to compute upper
and lower bounds on Pr{A}.

3

3.1 The Upper Bound

In this section we give an upper-bound on pk,n,m. However, it is awkward (and not very useful) to give an
upper bound that holds for all possible choices of k, n and m. Our upper bound requires the condition that

k

p

√
lnm− 2k ln p

m
≤ c (2)

for some constant c < 1. The reasons for this will become apparent in the analysis. To see that this
assumption is justified, note that, in nearly all applications of Bloom filters, the parameter k is chosen (as a
function of m and n) so that p = 1− (1−1/m)kn is a constant, usually close to 1/2. Under these conditions,
k = Θ(m/n) and (2) becomes

k

p

√
lnm− 2k ln p

m
= O

(
m

n

√
m/n + lnm

m

)
< c .

For sufficiently large values of m, this is satisfied as long as m = o(n3/2). Again, this is true in all applications
of Bloom filters since, if we are willing to use m = Θ(n log n) bits of storage, hash tables are a better
alternative since they offer constant time searches with no false positives.

We obtain the upper bound by conditioning on the value of W which, according to Theorem 2
is strongly concentrated around its expected value. Recall the definition p = 1 − (1 − 1/m)kn and let
j = E[W] +

√
m(lnm− 2k ln p). Then

Pr{A} = Pr{W ≤ j} × Pr{A | W ≤ j}+ Pr{W > j} × Pr{A | W > j} (3)
≤ 1× Pr{A | W = j}+ Pr{W > j} × 1 (4)

≤

(
E[W] +

√
m(lnm− 2k ln p)

m

)k

+ 2 exp
(
−m(lnm− 2k ln p)

2m

)
(5)

=

(
p +

√
lnm− 2k ln p

m

)k

+ 2pk/
√

m (6)

≤
k∑

i=0

pk−i

(
k

√
lnm− 2k ln p

m

)i

+ 2pk/
√

m (7)

≤ pk ×

 k∑
i=0

(
k

p

√
lnm− 2k ln p

m

)i

+ 2/
√

m

 (8)

= pk ×

1−

(
k
p

√
ln m−2k ln p

m

)k+1

1− k
p

√
ln m−2k ln p

m

+ 2/
√

m

 (9)

≤ pk ×

 1

1− k
p

√
ln m−2k ln p

m

+ 2/
√

m

 (10)

= pk ×

1 +
k
p

√
ln m−2k ln p

m

1− k
p

√
ln m−2k ln p

m

+ 2/
√

m

 (11)

= pk ×

(
1 + O

(
k

p

√
lnm− k ln p

m

))
(12)

where (7) uses the inequality (easily verified by induction on k) which states that

(a + b)k ≤ ak + kb(a + b)k−1 , valid for a, b ≥ 0

4

and that, when iterated k + 1 times gives

(a + b)k ≤
k∑

i=0

ak−ibik!/(k − i)! ≤
k∑

i=0

ak−i(bk)i , valid for a, b ≥ 0.

3.2 The Lower Bound

For the lower bound, we use a very different argument. Let b1, . . . , bk be the urns in which the k black balls
are thrown. We will show that, for 2 ≤ i ≤ k,

Pr{bi is white | b1, . . . , bi−1 are white} > Pr{bi is white} = p . (13)

Therefore,

Pr{A} =
k∏

i=1

Pr{bi is white | b1, . . . , bi−1 are white} > pk .

Note that this lower-bound is strict, so the actual false-positive rate of a Bloom filter is strictly greater
than pk whenever k ≥ 2. To finish the proof, all that remains is to justify (13). Recall that b1, . . . , bi−1 are
just randomly chosen urns. For any j ≥ 2, the following is obvious

Pr{b1, . . . , bi−1 are white | W ≥ j} > Pr{b1, . . . , bi−1 are white} . (14)

We say that this is obvious because, for example, the case in which all white balls land in one urn is excluded.
From the definition of conditional probability, (14) is equivalent to

Pr{W ≥ j | b1, . . . , bi−1 are white} > Pr{W ≥ j} .

The above statement says that the random variable W conditioned on “b1, . . . , bi−1 are white” stochastically
dominates the random variable W (conditioned on nothing). Note that, if a random variable X stochastically
dominates a random variable Y then E[X] > E[Y]. Therefore,

E[W | b1, . . . , bi−1 are white] > E[W] .

Consider the random variable W/m and observe that E[W/m] = Pr{bi is white}. Therefore, we have

Pr{bi is white | b1, . . . , bi−1 are white} = E[W/m | b1, . . . , bi−1 are white]
> E[W/m]
= Pr{bi is white}

as required for (13).

This completes the proof of

Theorem 3 Let pk,n,m be the false-positive rate for a Bloom filter that stores n elements in a bit-vector of
size m using k hash functions, where k ≥ 2 and k, n and m satisfy (2). Let p = 1− (1− 1/m)kn. Then,

pk < pk,n,m ≤ pk ×

(
1 + O

(
k

p

√
lnm− k ln p

m

))

4 Conclusions

We have shown that the analysis of Bloom filters originally given by Bloom, and repeated in many subsequent
papers, is incorrect. The actual false-positive rate is strictly larger than pk = (1− (1− 1/m)kn)k. We have

5

also given bounds on how much larger the false-positive rate can be. Our upper bounds show that, for large
enough values of m with small values of k, the difference between pk and the actual false-positive rate is
negligible.

Mullin [12] and Gremillion [7] both observe that the false-positive rate of Bloom filters in their
database applications are slightly higher than pk. However, they attribute this to poor quality pseudorandom
numbers. Our results offer another possible explanation: the actual false-positive rate is higher than pk,
even if perfect random numbers are available.

Acknowledgement

The authors are grateful to Michael Mitzenmacher for bringing his paper [10] to our attention.

References

[1] S. M. Bellovin and W. R. Cheswick. Privacy-enhanced searches using encrypted Bloom filters. Draft,
2004. http://www.research.att.com/~smb/papers/bloom-encrypt.ps.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[3] A. Broder and M. Mitzenmacher. Network applications of Bloom filters: A survey. In Proceedings of the
40th Annual Allerton Conference on Communication, Control and Computing, pages 636–646, 2002.

[4] L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman. Exact and approximate membership
testers. In Annual ACM Symposium on Theory of Computing, pages 59–65, 1978.

[5] E.-J. Goh. Secure indexes for efficient searching on encrypted compressed data. Technical Report
2003/216, Cryptology ePrint Archive, 2003. http://eprint.iacr.org/2003/216/.

[6] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 2nd edition,
1994.

[7] L. L. Gremillion. Designing a Bloom filter for differential access. Communications of the ACM,
25(7):600–604, 1982.

[8] A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occupancy and the satisfiability
threshold conjecture. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer
Science, pages 592–603, 1994.

[9] J. Schachter M. Ceglowski. Loaf. Online at http://loaf.cantbedone.org/.

[10] M. Mitzenmacher. Compressed Bloom filters. IEEE/ACM Transacations on Networks, 10(5), 2002.

[11] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[12] J. K. Mullin. A second look at Bloom filters. Communications of the ACM, 26(8), 1983.

[13] M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching. Commu-
nications of the ACM, 25(7):600–604, 1982.

6

