
CCCG 2006, Kingston, Ontario, August 14–16, 2006

Removing Outliers to Minimize Area and Perimeter∗

Rossen Atanassov Pat Morin Stefanie Wuhrer

Abstract

We consider the problem of removing c points from a
set S of n points so that the resulting point set has
the smallest possible convex hull. Our main result is an
O

(
n

((
4c
2c

)
(3c)c + log n

))
time algorithm that solves this

problem when “smallest” is taken to mean least area or
least perimeter.

1 Introduction

Motivated by the problem of removing outliers in a data
set, this paper considers the following problem: Let S
be a set of n points in R2 with convex hull denoted by
CH(S). We consider the problem of selecting a sub-
set S′ ⊆ S, |S′| = c such that the area, or perime-
ter, of CH(S \ S′) is minimum. We call these problems
the area-based, respectively, perimeter-based, outlier re-
moval problems. We are particularly interested in the
case when c (the number of outliers) is small.

Previous Work. The outlier removal problems stated
above and similar problems are fairly well-studied prob-
lems in computational geometry. However, most work
thus far has focused on the case when c is large. More
specifically, most research has been on the problem of
finding a k point subset (a k-cluster) X ⊆ S, |X| =
k, such that CH(X) has minimum area or perimeter.
These are the same problems studied in the current pa-
per with k = n − c except that our focus is on large
values of k (small c) and most existing research focuses
on designing efficient algorithms for small values of k.

The problem of finding a subset of S of size k that
has the least perimeter convex hull was first consid-
ered over 20 years ago by Dobkin et al [4] who gave
an O(k2n log n + k5n) time algorithm. This algorithm
can be improved to run in O(k2n log n+k4n) time using
techniques of Aggarwal et al [1]. Both algorithms are
based on the fact that the k points that define the solu-
tion are a subset of the k′ points that define some cell
in the order k′ Voronŏı diagram, where k′ = dπ(k − 1)e.
This allows the problem to be solved by considering
O(k′n) = O(kn) subproblems each of size k′ = O(k).

The problem of finding a subset of S of size k that has
the minimum area convex hull was considered by Epp-
stein et al [7] and later by Eppstein [6] who give O(kn3)

∗School of Computer Science. Carleton University. This work
was partly funded by NSERC.

and O((k3 +log n)n2) time algorithms for this problem,
respectively. The second algorithm (by Eppstein) uses
the first algorithm along with the fact that the k points
that define the solution are among the 2k − 4 vertical
nearest neighbours of one of the

(
n
2

)
line segments deter-

mined by pairs of points in S. This allows the problem
to be solved by considering O(n2) subproblems each of
size O(k).

New Results. For fixed values of k, the results above
give O(n log n) and O(n2 log n) time algorithms for find-
ing the k point subset of S with minimum perimeter,
respectively, area, convex hull. However, when k is
close to n the above algorithms require Ω(n3) time.
In the current paper we consider specifically the case
when k = n − c and show that perimeter-based and
area-based outlier removal problems can be solved in
O

(
n

((
4c
2c

)
(3c)c + log n

))
time. Thus, for any fixed c,

both problems can be solved in O(n log n) time.
Due to space constraints, many details and all proofs

have been ommitted from this abstract. Full details can
be found in the accompanying technical report [2].

The remainder of the paper is organized as follows:
Section 2 presents definitions, notation, and previous
results that are used in subsequent sections. Section 3
describes the outlier removal algorithm. Section 4 con-
cludes and suggests directions for future research.

2 Preliminaries

The convex layers S0, . . . , Sk of S are defined as fol-
lows: S0 is the subset of S on the boundary of CH(S).
Si, for i ≥ 1 is the subset of S on the boundary of
CH(S \

⋃i−1
j=0 Sj). The convex layers of S can be com-

puted in O(n log n) time [3, 8] or, more simply, the first
c convex layers can be computed in O(cn log n) time by
repeated applications of any O(n log n) time convex hull
algorithm. For the remainder of this paper we will use
the notation pi,j to denote the (j mod |Si|)th point of
Si, and use the convention that pi,0, . . . , pi,|Si|−1 occur
in counterclockwise order on the boundary of CH(Si).

Once the convex layers S0, . . . , Sc have been com-
puted, we can find, in O(c2n) time, for each point pi,j

on layer i and for each layer i′ > i and i′ ≤ c the two
points pi′,k and pi′,` such that the line through pi,j and
pi′,k (respectively pi,j and pi′,`) is tangent to Si′ . This
is accomplished by a simple walk around Si, updating
tangents pi′,k and pi′,` as we proceed.

18th Canadian Conference on Computational Geometry, 2006

p0,j

p0,j−1
p0,j+1

p1,` p1,k

S0 S1

Figure 1: Removing a point p0,j from S0 exposes a chain
p1,`, . . . , p1,k of S1.

Consider a point p0,j ∈ S0 and refer to Figure 1. If
we remove p0,j from S then a (possibly empty) sequence
p1,k, . . . , p1,` of S1 appears on the boundary of CH(S \
{p0,j}). When this happens we say that p1,k, . . . , p1,` is
exposed. This exposed sequence can be obtained from
the preprocessing described above by using two tangents
p1,k and p1,` joining p0,j−1 and p0,j+1 to S1. Finding
the two tangent points takes O(1) time and traversing
the sequence takes O(tj) time, where tj = `− k + 1.

Once we have removed a point p0,j from S0, if we
know the area (or perimeter) of CH(S) we can com-
pute the area (or perimeter) of CH(S \ {p0,j}) in O(tj)
time. We do this by computing the area of the trian-
gle 4p0,j−1p0,jp0,j+1 and subtracting from it the area
of CH({p0,j−1, p0,j+1} ∪ {p1,k, . . . , p1,`}). This gives us
the difference in area (perimeter) between CH(S) and
CH(S \ {p0,j}).

3 The Algorithm

In this section we present our algorithm for solving the
perimeter-based and area-based outlier removal prob-
lems. Our solution to both problems is to enumerate all
the combinatorial types of solutions of size c. For each
such solution type, we then use a combination of divide-
and-conquer and dynamic programming to find the op-
timal solution of that particular solution type. Before
we present the general algorithm, it will be helpful to
discuss the special cases c = 1 and c = 2 to illustrate
the principles involved.

3.1 Removing 1 Outlier

The case c = 1 asks us to remove 1 point of S so that
the convex hull of the resulting set is minimum. This
can be solved as follows: We first compute the two con-
vex layers S0 and S1 in O(n log n) time and preprocess
them for the tangent queries described in the previous
section. We then determine, for each point p0,j ∈ S0 the
difference in area between CH(S) and CH(S\{p0,j}) us-
ing the method described in the previous section. This
process takes O(1 + tj) time, where tj is the number of

vertices of S1 exposed by the removal of p0,j . We output
the point p0,j that gives the largest difference in area.

To analyze the overall running time of this algorithm
we observe that any particular point p1,k ∈ S1 ap-
pears in at most two triangles 4p0,j−1, p0,j , p0,j+1 and
4p0,j , p0,j+1, p0,j+2. Stated another way,

|S0|−1∑
j=0

tj ≤ 2|S1| ≤ 2n .

Thus, the overall running time of this algorithm is

T (n) = O(n log n) +
|S0|−1∑

j=0

O(1 + tj) = O(n log n) ,

as claimed.

3.2 Removing 2 Outliers

Next we consider the case c = 2. In this case, the opti-
mal solution S′ has one of three following forms:

1. S′ contains two consecutive points p0,j and p0,j+1

of S0.

2. S′ contains two non-consecutive points p0,j1 and
p0,j2 of S0 (with j2 6∈ {j1 + 1, j1 − 1}).

3. S′ contains one point p0,j of S0 and one point p1,j′

of S1.

The solutions of Type 1 can be found in much the
same way as the algorithm for the case c = 1. For
each j ∈ {0, . . . , |S0| − 1} we compute the difference
in area between CH(S) and CH(S \ {p0,j , p0,j+1}). The
analysis remains exactly the same as before except that,
now, each point of S1 can appear in at most 3 area
computatons, instead of only 2. Thus, all solutions of
Type 1 can be evaluated in O(n log n) time.

The solutions of Type 3 can also be found in a sim-
ilar manner. For each point p0,j ∈ S0 we remove p0,j

to expose a sequence p1,k, . . . , p1,` of S1 and compute
the area of CH(S \ {p0,j}). We then remove each of
p1,k, . . . , p1,` in turn (exposing a chain of points from
S2) and compute the area of the resulting convex hull.
To analyze the cost of all these, we observe that each
point p1,j ∈ S1 appears in at most 2 subproblems be-
cause there are at most 2 points in S0 whose removal
causes p1,j to appear on the convex hull. Similarly, for
each point p2,j ∈ S2 there are at most 2 points of S1

whose removal causes p2,j to appear on the convex hull.
Thus, each point in S1 appears in at most 2 subproblems
and each point in S2 appears in at most 4 area compu-
tations. The overall running time of this algorithm is
therefore bounded by

O (n log n + |S0|+ 2|S1|+ 4|S2|) = O(n log n) ,

CCCG 2006, Kingston, Ontario, August 14–16, 2006

as required.
Finally, we consider solutions of Type 2. To find these

we compute, for each p0,j ∈ S0 the difference xj be-
tween the area of CH(S \ {p0,j}) and CH(S) using the
technique described for the case c = 1. In this way,
we reduce the problem to that of finding two indices
0 ≤ j1, j2 < |S0| with j2 ≥ j1 + 2 such that xj1 + xj2

is maximum. We do this by computing the following
quantity

Dj = max{xj1 + xj2 : 0 ≤ j1, j2 ≤ j and j2 ≥ j1 + 2} ,

that can be computed in O(|S0|) time using the recur-
rence

Dj = max{Dj−1, xj + max{x0, . . . , xj−2}} .

Since the best solution of each of the three types can
be found in O(n log n) time we can find the overall best
solution in O(n log n) time by keeping the best of the
three.

3.3 Removing c Outliers

The solution for the case c = 2 illustrates all of the ideas
used in our algorithm. We begin by enumerating the
combinatorial types of solutions and then compute the
best solution of each type. The algorithm for computing
the best solution of each type is a divide-and-conquer
algorithm whose merge step is accomplished by solv-
ing a dynamic programming problem (as in the Type 2
solutions described above).

For ease of exposition (to avoid treating S0 as a spe-
cial case), we describe an algorithm to find the optimal
solution with the restriction that it does not include
both p0,−1 and p0,0. To find the true optimal solution
we can run this algorithm at most c times, shifting the
numerical labelling of the points on S0 by one each time.

3.3.1 The Types of Solutions

We represent the type of a solution as a rooted ordered
binary tree in which each node is labeled with a positive
integer and the sum of all node labels is c. We call such
trees solution trees. The following lemma tells us that,
for small values of c, there are not too many solution
trees:

Lemma 1 The number of solution trees is at most
O(C(2c)), where C(r) =

(
2r
r

)
/(r + 1) is the rth Catalan

number.

Solution trees are interpreted as follows (refer to
Figure 2 for an example): Any solution removes some el-
ements of S0 and the elements removed come in d groups
G1

0, . . . , G
d
0 of consecutive elements with each group sep-

arated by at least one element of S0. The sizes of these

p0,0 p0,0
3

1

3 4

1

(a) (b) (c)

Figure 2: Examples of (a) a point set S, (b) a solution
S \ {S′}, and (c) the solution tree for S′.

groups are given by the labels of the nodes on the right-
most path in T , in the order in which they occur. That
is, the jth node, N j

0 on the rightmost path of T has the
label |Gj

0|.
For some group Gj

0, let p1,k, . . . , p1,` denote the points
of S1 that appear on the boundary of CH(S \Gj

0). Any
solution removes some subset p1,k, . . . , p1,` of elements
from S1. Again, this subset can be partitioned into
groups of consecutive elements with any two groups sep-
arated by at least one element of S1. In the solution tree
T , the sizes of these groups are given, in the order in
which they occur, by the labels of the rightmost path in
the subtree of T rooted at the left child of N j

0 .
This process is repeated recursively: Let S<i =⋃i−1
j=0 Si and let S′

<i = S<i ∩ S′. For each consecu-
tive group Gj

i of nodes that are removed from Si, let
pi+1,k, . . . , pi+1,` denote the vertices on Si+1 that ap-
pear on the boundary of CH(S \ (S′

<i ∪ Gj
i)). In the

solution tree T , the rightmost path of the left subtree
of the node representing Gj

i contains nodes represent-
ing the sizes of consecutive groups of nodes that are
removed from the chain pi+1,k, . . . , pi+1,l of Si+1. In
this way, any solution S′ to the outlier removal prob-
lem that does not remove both p0,0 and p0,−1 maps to
a unique solution tree.

3.3.2 Computing the Solution of a Specific Type

In this section we describe an algorithm that takes as
input a solution tree T and outputs the value of the
optimal solution S′ whose solution tree is T .

The algorithm we describe is recursive and operates
on a subchain pi,j , . . . , pi,k of Si along with a solution
(sub)tree T . The algorithm requires that some subset
of

⋃i−1
j=0 Si has already been removed from S so that

pi,j , . . . , pi,k are on the boundary of the convex hull of
the current point set. The algorithm finds an optimal
solution of type T such that the only points removed
from the convex hull of the current point set are in
pi,j , . . . , pi,k.

Let d denote the number of nodes on the rightmost
path of T . The algorithm accomplishes its task by re-

18th Canadian Conference on Computational Geometry, 2006

FindOptimalOfType(T, i, j, k)
1: if T is empty then
2: return 0
3: d← the number of nodes on the rightmost path of T
4: for g = 1 to d do
5: Ng ← gth node on the rightmost path of T
6: cg = label(Ng)
7: for ` = j to k − cg + 1 do
8: delete Si,`, . . . , Si,`+cg−1 from Si exposing Si+1,j′ , . . . , Si+1,k′ on Si+1

9: s← reduction in area (perimeter) obtained by the deletion of Si,`, . . . , Si,`+cg−1

10: Xg,`−j+1 ← s + FindOptimalOfType(left(Ng), i + 1, j′, k′)
11: reinsert Si,`, . . . , Si,`+cd−1 into Si

12: return CombineSolutions(X, d, k − j + 1, c1, . . . , cd)

Figure 3: Pseudocode for the FindOptimalOfType algorithm.

cursively solving O(d(k−j+1)) subproblems on the left
children of these d nodes and then combining these so-
lutions using dynamic programming. The pseudocode
for the algorithm is given in Figure 3. The call to
CombineSolutions in the last line of the algorithm is
a dynamic programming subroutine whose description
we omit but that runs in O(d(k − g)) time. The Com-
bineSolutions subroutine computes the optimal loca-
tions of the groups of points represented by N1, . . . , Nd

in T . At the topmost level, the algorithm is called as
FindOptimalOfType(T, 0, 0, |S0| − 1).

To analyze the cost of FindOptimalOfType it
suffices to determine, for each point pi,j , the maxi-
mum number of times pi,j is deleted (in line 8) by
the algorithm. All other work done by the algorithm
can be bounded in terms of this quantity. Using
Carathéodory’s Theorem [5], it is possible to show that
a point in Si is deleted at most (3c)i+1 times. This
implies that the points of Sc (which are never deleted)
appear in at most 3mc−1 subproblems. Putting all this
together we obtain:

Lemma 2 The algorithm FindOptimalOfType
finds the optimal solution whose solution tree is T in
O((3c)cn) time.

4 Conclusions

Taken together, the preceding discussion completes the
proof of our main theorem:

Theorem 1 For any constant c, there exists an algo-
rithm for the (perimeter-based or area-based) outlier re-
moval problem that runs in O(n log n) time.

We have made no attempt to optimize the depen-
dence of our running time with respect to the value of
c and, indeed, the running time of our algorithm is su-
perpolynomial in c. Does there exist an algorithm that

is polynomial in c but that still runs in O(n log n) time
for any fixed value of c?

References

[1] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and
Subhash Suri. Finding k points with minimum di-
ameter and related problems. Journal of Algorithms,
12:38–56, 1991.

[2] Rossen Atanassov, Pat Morin, and Stefanie Wuhrer.
Removing outliers to minimize area and perime-
ter. Technical Report TR-06-07, Carleton University
School of Computer Science, 2006.

[3] Bernard Chazelle. On the convex layers of a pla-
nar set. IEEE Transactions on Information Theory,
31:509–517, 1985.

[4] David Dobkin, Robert Drysdale, and Leo Guibas.
Finding smallest polygons. Computational Geome-
try, 1:181–214, 1983.

[5] Jürgen Eckhoff. Helly, Radon, and Carathéodory
type theorems. In P. M. Gruber and J. M. Wills,
editors, Handbook of Convex Geometry, volume B,
chapter 2.1, pages 389–448. North-Holland, 1993.

[6] David Eppstein. New algorithms for minimum area
k-gons. In SODA: ACM-SIAM Symposium on Dis-
crete Algorithms, 1992.

[7] David Eppstein, Mark Overmars, Günter Rote, and
Gerhard Woeginger. Finding minimum area k-
gons. Discrete and Computational Geometry, 7:45–
58, 1992.

[8] John Hershberger and Subhash Suri. Applications of
a semi-dynamic convex hull algorithm. BIT, 32:249–
267, 1992.

